Resensitization of temozolomide-resistant glioblastoma cells using ursolic acid nanocrystals
Marion Sicot, Patrick Saulnier, Guillaume Bastiat

To cite this version:
Marion Sicot, Patrick Saulnier, Guillaume Bastiat. Resensitization of temozolomide-resistant glioblastoma cells using ursolic acid nanocrystals. SFNano Annual Meeting 2022, Dec 2022, Strasbourg, France. hal-03880683

HAL Id: hal-03880683
https://univ-angers.hal.science/hal-03880683
Submitted on 1 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Resensitization of temozolomide-resistant glioblastoma cells using ursolic acid nanocrystals

Marion Sicot1, Patrick Saulnier1 and Guillaume Bastiat1
1 UNIV Angers, INSERM U1066, CNRS 6021, MINT, Angers, France.
*marion.sicot@univ-angers.fr

Introduction
Glioblastoma (GBM) is the glioma with the highest grade (IV) according to the World health Organization [1]. Despite it being a rather rare condition (6 cases for 100,000) [2], the survival prognosis is very low. The overall median survival is of only 15 months after treatment initiation [3]. The chemotherapy agent used in the gold standard treatment (Stupp protocol) is temozolomide (TMZ): an alkylating agent. TMZ adds methyl adducts on the O6 position of guanines [4,5]. The O6-methylguanine-DNA methyltransferase (MGMT) is a highly conserved protein involved in DNA repair by removing alkyl groups from the O6 position of guanines [6]. The mechanism of action of MGMT thus impairs the efficacy of a TMZ treatment and the outcome of the Stupp protocol is then dependent on the expression of MGMT. The median survival of patients with a methylated MGMT promoter (low MGMT expression) treated with TMZ is higher than for patients with a non-methylated MGMT promoter (high MGMT expression) [7,8]. The strategy used in this study is to use a MGMT inhibitor, ursolic acid (UA) to restore TMZ efficacy for patients with non-methylated MGMT promoter. UA has been formulated in nanocrystals (NCs) for which their destabilization and internalization has been observed using FRET (Fluorescence Resonance Energy Transfer) inducing dyes and the capacity of the UA NCs to inhibit the expression of MGMT and potentiate TMZ efficacy has been studied.

Ursolic acid nanocrystals integrity can be followed with FRET

Ursolic acid nanocrystals are internalized and degrade overtime

Ursolic acid nanocrystals resensitize temozolomide-resistant cells

Conclusion
UA has been formulated into 200 nm nanocrystals using an antisolvant crystallization method with a recovery of approximately 70% of the initial UA mass. FRET inducing dyes (DiI and DiD) were successfully added to the UA NCs formulation. The measurement of this FRET signal allowed for the visualization of the UA NCs integrity. After 24 hours of contact with MGMT-positive cells, UA NCs were internalized and still intact, but were destabilized after approximately 72h. UA NCs were able to decrease the protein expression of MGMT and potentiate the efficacy of TMZ more than unimolecular UA.

References:

Acknowledgements: