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Abstract: In the domain of computer vision, entropy—defined as a measure of irregularity—has been
proposed as an effective method for analyzing the texture of images. Several studies have shown
that, with specific parameter tuning, entropy-based approaches achieve high accuracy in terms of
classification results for texture images, when associated with machine learning classifiers. However,
few entropy measures have been extended to studying color images. Moreover, the literature is
missing comparative analyses of entropy-based and modern deep learning-based classification
methods for RGB color images. In order to address this matter, we first propose a new entropy-
based measure for RGB images based on a multivariate approach. This multivariate approach
is a bi-dimensional extension of the methods that have been successfully applied to multivariate
signals (unidimensional data). Then, we compare the classification results of this new approach
with those obtained from several deep learning methods. The entropy-based method for RGB image
classification that we propose leads to promising results. In future studies, the measure could be
extended to study other color spaces as well.

Keywords: biomedical data; classification; deep learning; entropy; RGB images; texture

1. Introduction

Texture analysis of an image is a key concept in computer vision. The texture anal-
ysis can be applied in multiple fields, such as object recognition, pattern recognition,
and biomedical images classification, among others. Some of the most recently developed
methods that describe the texture of an image are based on information theory concepts and,
more precisely, on entropy measures [1]. Entropy quantifies the irregularity: it increases
with the degree of disorder and is maximal for completely random systems.

In the recent decade, we have seen the emergence of multiple variations of entropy-
based measures. One-dimensional (1D) entropy measures (e.g., approximate entropy 1D [2],
sample entropy 1D [3], and fuzzy entropy 1D [4]) have shown that, by quantifying the irreg-
ularity of biological temporal series, it is possible to differentiate healthy from diseased sys-
tems and to classify them with a high degree of accuracy. With the work of Ahmed et al. [5],
entropy-based measures for multivariate signals, which we often encounter in biological
systems, have been developed [6]. For instance, it has been possible to identify women
at risk of preterm delivery by classifying uterine electromyogram recordings from their
multivariate entropy values [7]. Moreover, most of the above-mentioned unidimensional
entropy methods have been extended to their multiscale version [6–8]. With the develop-
ment of two-dimensional (2D) versions of entropy algorithms (e.g., bi-dimensional sample
entropy [9], bi-dimensional fuzzy entropy [10], bi-dimensional permutation entropy [11],
and bi-dimensional dispersion entropy [12]), designed to extract texture information from
2D patterns in grayscale images, it has been possible to successfully classify biomedi-
cal images from healthy and pathological subjects, such as dermoscopic images or cells
images [10].
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Before the breakthrough of data-driven methods to classify images in the last decade,
extracting image features by hand was the most frequently used method. For images,
the feature, or vector of features, is a representation of the image that can be used for
classification purposes using machine learning classifiers [13]. One of the limitations of
machine learning-based methods is that machine learning classifiers cannot process raw
data (such as images). The drawback of traditional machine learning approaches, whereby
the feature vectors have to be created by experts, is addressed by deep learning. In the
latter, the feature vectors are not designed by humans, but learned automatically from
the data [14]. The applications of such methods are multiple, e.g., object detection, face
identification, or texture analysis. In 2012, Krizhevsky et al. have been able to develop a
very large network and to train it with a lot of data from the ImageNet dataset [15]. This has
been performed without overfitting, thanks to innovative techniques. The model achieved
the best performances with a reduced training time at that time. This paper inspired many
models widely used today, such as VGG networks [16], residual networks [17], and dense
networks [18].

Despite all the texture extraction methods that have been developed, far less have
been proposed for color RGB images [19–21]. Moreover, very few of them are based on
entropy measures [22]. When deep learning-based approaches are used on color images,
good accuracy is usually obtained in classification results. However, the learning-based
approaches have the drawback of relying on a training step and of being black boxes for
the end user. Analyzing those two different approaches (entropy-based measures and deep
learning methods) would allow us to compare their performances and to determine the
advantages and drawbacks of each of them for color images.

In this paper, we propose to study texture for color images through two approaches:
the first one is a hand-crafted feature extraction method; the second one uses the deep
learning approach. For the hand-crafted method, we focus on entropy-based measures
because of their novelty [19] and the promising results they have shown for grayscale
images. Moreover, extensions of these measures to color images have not been studied
thoroughly yet. We first propose two new approaches of entropy-based measures to analyze
the texture of RGB images: the multivariate multiscale sample entropy and the multivariate
multiscale fuzzy entropy (MMSampEnRGB and MMFuzEnRGB, respectively). We detail
their validation tests, application to biomedical texture images, and comparison to other
texture classification methods. Then, we propose to compare entropy-based methods
with deep learning approaches for texture image classification. Our experimentation will
explore the classification results of different neural networks architectures. This work will
complement other comparative studies present in the literature ([21,23,24]) with a more
precise approach since it focuses on entropy measures.

The paper is organized as follows: first, we present the datasets and methods used
to evaluate our algorithms. Then, the different existing and new entropy-based methods
are presented, followed by the description of the implemented deep learning architectures.
Finally, we present the comparison of the results obtained and discuss them.

2. Materials and Methods
2.1. Datasets

The classification has been performed on a biomedical texture database (Epistroma),
generic texture databases (KTH-TIPS2-a and Alot), and synthetic images (MIX process). All
the experimental results were obtained using Matlab 2020a software and Python3 installed
in Intel Xeon(R) W-2223 processor, NV137 graphics card laptop.

The Epistroma dataset [25] is composed of images of epithelium (825 samples) and
stroma (551 samples) tissues samples from a series of 643 consecutive patients who under-
went surgery for histologically verified colorectal cancer at the Helsinki University Central
Hospital between 1989 and 1998. Linder et al. [26] showed that the texture analysis is a
relevant method to discriminate the two histological tissue types.
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The KTH-TIPS2-a dataset [27] is used to evaluate the ability of our algorithm in
identifying categories of textures such as “wood” or “wool” with different illuminations
and poses [28]. The database contains 4 physical samples of 11 different materials. For
more details on the databases, see Table 1.

The Alot dataset [29] is composed of 25,000 images of different materials. The sin-
gularity of this dataset is that the captured images are material-specific representations
of 250 materials. The distinctive properties of the materials are highlighted with the vari-
ation of imaging settings, such as local intensity variation or color properties [30]. This
adjustment to each image makes it easier to distinguish one type of material from the others.

Table 1. Databases used in this study. All databases contain RGB images.

Dataset Subject Classes
Images per

Classes
(Mean)

Total
Images

Images Size
(px) Year Reference

Epistroma

Histological
images of
colorectal

cancer

2 688 1376 172 × 172 to
2372 × 2372

from 1989
to 1998 [25]

KTH-
TIPS2-a Mixed 11 432 4608 200 × 200 2006 [27]

ALOT Mixed 250 100 25,000 1536 × 1024 2009 [29]

2.2. Synthetic Images
2.2.1. MIX Process for Multivariate One-Dimensional Signals

In order to evaluate entropy extraction algorithms of signals composed of q variates,
we introduce a MIX process based on the one-dimensional version. The one-dimensional
version, MIX(p), is defined as a family of one-dimensional stochastic processes that
generates signals by asserting, for each point, whether the latter belongs to a deterministic
sine function or to a random uniform variable, according to the choice of the parametric
probability p, 0 < p < 1 [2]. The larger the p value is, the more frequent the random
dynamics are. We define the MIX process for multivariate signals with q variates as follows:
let Xi = sin 2πi

12 be a sinusoidal signal, and Yi uniform random variables in the range
[−
√

3,
√

3]. In addition, consider the random variable Zi, where Zi = 1 with probability p
and Zi = 0 with probability 1− p. We define MIX1D−RGB(p) as follows:

MIX1D−RGB(p)i,k = (1− Zi)Xi + ZiYi, (1)

with k, the different variates of the signal, 1 ≤ k ≤ q; see an example in Figure 1.

Figure 1. First 100 samples of a multivariate signal generated with a MIX process. p varies from 0 to
1 with a step of 0.5 (from left to right).

2.2.2. MIX Process for RGB Images

In order to evaluate our algorithms on RGB images with different controlled irreg-
ularity levels, we introduce a family of two-dimensional MIX processes for RGB images,
MIX2D−RGB(p), based on the two-dimensional version for grayscale images [9]. We define
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the MIX process for RGB images as follows: consider Xi,j = sin 2πi
12 + sin 2π j

12 to be a sinu-
soidal image and Yi,j an image composed of uniformly distributed white noise pixels in
the range [−

√
3,
√

3]. In addition, consider the random variable Zi,j, where Zi,j = 1 with
probability p and Zi,j = 0 with probability 1− p. We define MIX2D−RGB(p) as follows:

MIX2D−RGB(p)i,j,k = (1− Zi,j)Xi,j + Zi,jYi,j, (2)

with k being the different channels of the image, 1 ≤ k ≤ 3.
By modifying the value of p, we can generate different levels of spatial regularity. For

p = 0, the generated image will present a periodic, regular pattern. For p = 1, the pixel
values of the resulting image will be completely random, the image will therefore be highly
irregular; see Figure 2. In other words, a MIX process for RGB images is defined here as a
process of three variates, with each variate being a different MIX process.

Figure 2. First row: 256× 256 color images generated by a MIX process. p varies from 0 to 1 with a
step of 0.5 (from left to right). Second row: pixel values of the first row from each image presented
above (256 pixels). The pixels from the three color channels are presented. Note that, for p = 0,
the channels merge into the others to form a periodic, regular sine wave. When p increases, the signal
becomes more irregular.

2.3. Pre-Processing of the Images

With respect to reducing the computation time, the images from the biomedical and
generic databases have been cropped from the center to form 50× 50 and 100× 100 images.
The values of the pixels have been converted to double and normalized. The mean and
standard deviation of each image were, thus, respectively, defined as µ = 0 and σ = 1.

2.4. Entropy Methods

One of the goals of this paper is to compare texture RGB image classification results
using different entropy methods, with those given by deep learning methods. Therefore, we
extracted the entropy from images using the algorithms described in the following sections.
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2.4.1. Sample Entropy

One-dimensional approximate entropy (ApEn1D [2]) has shown promising results
in quantifying irregularity of medical signals. Nevertheless, ApEn1D shows a higher
similarity degree than expected, and it lacks relative consistency. Therefore, it is biased.
To overcome these drawbacks, sample entropy (SampEn1D) has been proposed in 2000 [3]
and has been used in many biomedical signal processing applications. For a time series,
sample entropy is the negative natural logarithm of the conditional probability that two
sequences similar for m points remain similar at the next point, where self-matches are not
included in calculating the probability. The similarity of vectors is based on the Heaviside
function. A lower value of sample entropy indicates more self-similarity in the time series.
SampEn1D is less dependent on signals’ length and more consistent than ApEn1D. Sample
entropy has been recently extended to its bi-dimensional version to process grayscale
images: SampEn2D [9]. The drawback of both SampEn1D and SampEn2D is that they can
present undefined values because of abrupt changes caused by the two-state classifier,
i.e., the Heaviside function, which decides whether two vectors match each other.

2.4.2. Fuzzy Entropy

Fuzzy entropy (FuzEn1D) is a set of statistics that has been developed in 2007 [4]
to avoid the problem of undefined values in SampEn1D, by using the concept of “fuzzy
sets” (introduced in 1965 [31]). In the physical world, boundaries between classes may be
ambiguous, and it is difficult to determine whether an input pattern fully belongs to a class.
With fuzzy entropy, we calculate a similarity degree of two vectors through a fuzzy function,
which makes it possible to emancipate from the problem of hard boundaries. Therefore,
for fuzzy entropy, the computation steps are similar to that of sample entropy, except that
a fuzzy function (an exponential function in our work) is used for the measurement of
vectors’ similarity. The bi-dimensional version of fuzzy entropy has also been proposed:
FuzEn2D [10]. With this new measure, it was possible to extract texture information from
biomedical grayscale images, such as skin texture images [10]. Very recently, entropy has
been studied on RGB images and a new measure has been introduced: FuzEnRGB [22].

2.4.3. Multiscale Entropy

The above-mentioned entropy measures have been extended to analyze data on several
scale factors through their multiscale versions. Multiscale entropy measures quantify the
complexity of data as their irregularity over several scale factors. The entropy is evaluated at
multiple scale factors, τ, on coarse-grained signals or images constructed from the original
signal or image. This creates an entropy feature vector that represents the complexity of
the system. Multiscale entropy values for 1D signals, as defined by Costa et al. in 2002 [32],
will decrease for completely random signals (such as white noise), and will show higher
entropy values for correlated signals over several scale factors. The same feature is found
for bi-dimensional multiscale entropy applied to grayscale images [8].

2.4.4. Multivariate Entropy

Before the work of Ahmed et al. [5], no entropy measure existed for multivariate
signals that are often encountered in biological systems. The variables were all treated
separately, even for systems where the different channels were statistically dependent
and correlated. Multivariate sample entropy (MSampEn) and its extension to multivariate
multiscale sample entropy (MMSE) [5] analyze the entropy of each data channel separately
in a rigorous and unified way. The two methods have already shown promising results in
the classification of real-world multichannel data and have been extended to multivariate
multiscale fuzzy entropy (MMFE) ([6,7]).
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2.4.5. New Introduced Methods: Multivariate Sample and Fuzzy Entropy Measures for
RGB Images

The new entropy measures that we propose are the multivariate sample entropy
for RGB images (MSampEnRGB) and the multivariate fuzzy entropy for RGB images
(MFuzEnRGB), and their multiscale versions.

The calculation of the multivariate entropy for RGB images is inspired from mul-
tivariate embedding theory. The method represents a natural extension of multivariate
sample entropy for 1D signals. The adaptations are mainly related to the construction
of the composite delay vectors that are bi-dimensional (construction from an image and
not from a signal of 1D-data). The computation of the distance between two embedding
vectors is also modified, as well as the calculation of the frequency of occurrence where the
bi-dimensional version of the data has to be taken into account (see below).

For a q-variate matrix I with W width and H height, {xi,j,k}W,H
i,j=0, k = 0, 1, . . . , q− 1,

the multivariate sample entropy for RGB images is calculated according to the follow-
ing steps:

1. Form Nm = (W − n)× (H − n) composite delay vectors Xm(i, j) ∈ Rm, where m =

Σq
k=1mk, i = 0, 1, . . . , W − n− 1, j = 0, 1, . . . , H − n− 1, M = [m1, m2, . . . , mq] ∈ Rq

is the embedding vector, and n = max{M}. The composite delay vector Xm(i, j) is
determined as follows:

Xm(i, j) = [xi,j,1, xi+1,j,1, . . . , xi+m1−1,j,1, xi,j+1,1, xi+1,j+1,1, xi+m1−1,j+1,1, . . . ,

xi,j+m1−1,1, xi+1,j+m1−1,1, . . . , xi+m1−1,j+m1−1,1,

xi,j,2, xi+1,j,2, . . . , xi+m2−1,j,2, xi,j+1,2, xi+1,j+1,2, . . . , xi+m2−1,j+1,2, . . . ,

xi,j+m2−1,2, xi+1,j+m2−1,2, . . . , xi+m2−1,j+m2−1,2, . . . ,

xi,j,q, xi+1,j,q, . . . , xi+mq−1,j,q, xi,j+1,q, xi+1,j+1,q, . . . , xi+mp−1,j+1,q, . . . ,

xi,j+mp−1,q, xi+1,j+mq−1,q, . . . , xi+mq−1,j+mq−1,q].

(3)

2. Define the distance between any two vectors Xm(i, j) and Xm(a, b), where a = 0, 1, . . . ,
W − n− 1, b = 0, 1, . . . , H − n− 1 and (i, j) 6= (a, b), as the Chebychev or maximum
norm distance between two vectors, that is,

d[Xm(i, j), Xm(a, b)] = maxe, f∈0,...,m−1,g∈0,...,q−1{|x(i + e, j + f , g)−
x(a + e, b + f , g)|}.

(4)

3. For a given composite delay vector Xm(i, j) and a threshold r, count the number
of instances Pi,j for which d[Xm(i, j), Xm(a, b)] ≤ r, (i, j) 6= (a, b); then, calculate the
frequency of occurrence:

Bm
i,j(r) =

1
Nm − n− 1

Pi,j, (5)

and define
Bm(r) =

1
Nm − n

Σi=W−n;j=H−n
i=1;j=1 Bm

i,j(r). (6)

4. Extend the dimension of the multivariate delay vector in Equation (3). This can
be performed in p different ways, as from a space with the embedding vector
M = [m1, m2, . . . , mk, . . . , mq] the system can evolve to any space for which the em-
bedding vector is [m1, m2, . . . , mk + 1, . . . mq]. Thus, a total of q× (Nm − n) vectors
Xm+1(i, j) ∈ Rm+1 are obtained, where Xm+1(i, j) denotes any embedded vector upon
increasing the embedding dimension from mk to mk + 1 for a specific variable k.
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5. For a given Xm+1(i, j), calculate the number of vectors Qi,j, such that d[Xm+1(i, j),
Xm+1(a, b)] ≤ r, (i, j) 6= (a, b); then, calculate the frequency of occurrence:

Bm+1
i,j (r) =

1
q× (Nm − n)− 1

Qi,j, (7)

and define
Bm+1(r) =

1
q× (Nm − n)

Σi=p(W−n);j=p(H−n)
i=1;j=1 Bm+1

i,j (r). (8)

6. Finally, for a tolerance level r, estimate the multivariate sample entropy as

MSampEnRGB(I, M, r) = − ln
[

Bm+1(r)
Bm(r)

]
. (9)

For the multivariate fuzzy entropy, the process is similar, except for steps 3, 5, and 6.
They are, respectively, replaced by the following three steps:

3. For a given composite delay vector Xm(i, j), a threshold r and a fuzzy power s, compute
the degree of similarity Dm

ij,ab:

Dm
ij,ab = exp(

−(d[Xm(i, j), Xm(a, b)])s

r
). (10)

Then, the function Φm is defined as follows:

Φm(s, r) =
1

Nm − n
Σi=H−n,j=W−n

i=1,j=1 Φm
i,j(r), (11)

where Φm
i,j(r) is the average of all the similarity degrees of a given composite delay

vector Xm(i, j).
5. For a given composite delay vector Xm+1(i, j), a threshold r and a fuzzy power s,

compute the degree of similarity Dm+1
ij,ab :

Dm+1
ij,ab = exp(

−(d[Xm+1(i, j), Xm+1(a, b)])s

r
). (12)

Then, the function Φm+1 is defined as follows:

Φm+1(s, r) =
1

q× (Nm − n)
Σi=p(H−n),j=p(W−n)

i=1,j=1 Φm+1
i,j (r), (13)

where Φm+1
i,j (r) is the average of all the similarity degrees of a given composite delay

vector Xm+1(i, j).
6. Finally, for a tolerance level r and a fuzzy power s, estimate the multivariate fuzzy

entropy as

MFuzEnRGB(I, M, r, s) = − ln
Φm+1(s, r)

Φm(s, r)
(14)

2.5. Deep-Learning Methods

Deep learning employs neural networks that consist of several layers. The size,
number, and order of these layers create different network architectures. For image related
tasks such as object detection, recognition, and image segmentation, convolutional neural
networks (CNN) have proven to be very effective. A typical CNN employs three distinct
layer types namely convolutional, pooling, and dense layers. The number and size of these
layers vary with different network architectures.

The first layers of a CNN are designed to extract high-level features within the image.
The first layer is typically a convolutional layer that sweeps a kernel filter over the image
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producing a feature map output. The output of the convolutional layer(s) is passed to a
pooling layer. Pooling layers perform an aggregation function. Through this aggregation,
the dimensions of the feature vectors are reduced. Depending on the network architecture,
several convolution and pooling layers may be employed. The combination of these layers
is used to extract the features of the image, which are then passed to the classification
layers that form the final layers of the network. These classification layers consist of flatten,
dense, and softmax activation. The flatten layer converts the feature maps created by the
convolutional and pooling layers into a one-dimensional vector that can be processed by
the fully connected layers. The fully connected layers is composed of neurons that are
connected to all the neurons in the previous layer. To create a classification output a softmax
layer is used. The softmax function takes the output vector from the fully connected layer
and compresses it to a vector of zero-to-one values. This allows the network to produce
probability scores from 0 to 1 representing the probability that the input image contains the
given class.

Several studies describing deep learning theory and architectures more thoroughly
have recently been published [20,23,33,34]. From the deep learning concept, several variants
have been proposed, as described thereafter.

2.5.1. Full Learning (or End-to-End Learning)

In full learning, the feature extraction layers of the model are trained to learn to extract
the best features from the images that will be given to the classification layers. The latter
are trained to extract the probability of those features belonging to each class. This process
can, therefore, be time-consuming and computationally intensive because of all the training
phases. In addition, it requires a large dataset to avoid overfitting problems, which is
not usually the case in biomedical databases. An advantage of end-to-end fully trained
CNN is that the extracted features will be fully adapted to the database. In this work we
constructed a 10-layer CNN by alternating convolution and pooling layers for the feature
extraction phase and flatten and dense layers for the classification phase (see Table 2).

Table 2. Architecture of the proposed CNN.

10-Layers CNN

Layer Input Output Parameters

Rescaling image size (224, 224, 3) 0
Conv2D (224, 224, 3) (222, 222, 32) 896

MaxPooling2D (222, 222, 32) (111, 111, 32) 0
Conv2D (111, 111, 32) (109, 109, 64) 18,496

MaxPooling2D (109, 109, 64) (54, 54, 64) 0
Conv2D (54, 54, 64) (52, 52, 64) 36,928

MaxPooling2D (52, 52, 64) (26, 26, 64) 0

Flatten (26, 26, 64) (1, 43,264) 0
Dense (1, 43,264) (1, 128) 5,537,920
Dense (1, 128) (1, number of classes) 258

2.5.2. Transfer Learning

Transfer learning allows us to make use of an existing pretrained network to reduce
the training time and computation. When using a pretrained network, the weights of the
feature extraction layers of the network are already defined as the network has been trained
on a different very large dataset such as ImageNet [35] to adapt the network to the specific
task. The classification head is generally removed to use the model as a feature extractor.
The features can then be introduced to a machine learning algorithm (e.g., support vector
machine (SVM) [36]), for which the training time is significantly less than training the entire
network. Based on its good classification results in addition to reduced computation time
with reference to the literature [37], we chose to use a model of residual network with
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50 layers (ResNet50) [17], pre-trained on the ImageNet dataset, to extract features from the
images. Those features were then given to a SVM machine learning model for classification.

2.5.3. Fine Tuning

Fine tuning is a method that takes characteristics from both of the above-mentioned
methods. A pre-trained model is used, but the feature extraction layers are frozen to
tune the weights of the last fully connected classification layers. This type of pre-trained
networks is often used in texture images classification because it does not need any training
phase to extract feature vectors from the images and, therefore, a large amount of training
data is not required. Pre-trained models, as used in transfer learning and fine tuning,
have the advantages of being easy to implement while using a trusted and proven model.
Moreover, the computational cost is relatively low, compared to end-to-end fully-trained
convolutional networks. This is the reason why they have already been used in many
biomedical applications (e.g., diagnosis of leukemia in blood slides [38]). For this method,
we use the same ResNet50 model as the one mentioned above to extract the features of the
images, but the classification is performed with fully connected layers.

3. Results and Discussion
3.1. MIX Process

Images with 100× 100 pixels have been generated by a MIXRGB process. Multivari-
ate fuzzy and sample entropy (MSampEnRGB et MFuzEnRGB) have been computed on
these images. The algorithms have been evaluated for multiple parameter combinations:
M = [111] and r = 0.02 or r = 1, M = [222], and r = 0.02 or r = 1. For MFuzEnRGB,
the fuzzy power is s = 2.

The results obtained are as expected: an increase in the entropy value is associated
with an increase in the irregularity of the image, that is induced by an increasing value of p
(see Figure 3). With these parameters, the results show that the new entropy measures can
be used to properly assess the degree of irregularity of an image. We can also deduce from
these results that, for the MIX process, M= [222] gives us a more accurate estimation of
the irregularity of an image than M= [111], since M= [222] leads to better differentiation
between images of two consecutive irregularity than M= [111].
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Figure 3. Multivariate sample and fuzzy entropy values on RGB images created with MIX processes,
p varying from 0 to 1 with a step of 0.2.

3.2. Texture Image Classification Results

Entropy associated with machine learning and deep learning algorithms have been
used on the previously mentioned databases. All the entropy extractions have been per-
formed on the Epistroma database. Images converted to grayscale have been processed
with the univariate multiscale entropy measures and RGB images have been processed
with the univariate multiscale entropy measures [22] and the new multivariate entropy
measures. The metric used to compare the different results is the accuracy. The latter refers
to the rate of good classification of the algorithm, corresponding to the following equation:

accuracy =
Number of correctly classified images

Number of images in total
× 100. (15)

The accuracy is then averaged over five random splits between training (75%) and
test (25%). The best classification results have been selected after a phase of parameters
optimization, for each database and for each method independently. The parameters are m
and r for the sample entropy; m, r, and s for the fuzzy entropy; M and r for the multivariate
sample entropy; and M, r, and s for the multivariate fuzzy entropy. For all the multiscale
entropy calculations, a maximum scale factor τ = 10 has been considered.

The results of the classification from machine learning (SVM classifier) used on the
univariate entropy extractions are presented in Table 3. The results of the classification
from machine learning (SVM classifier) used on the multivariate entropy extractions are
presented in Table 4. From these entropy-based methods, we observe an improvement of
the accuracy when the algorithms are applied to color images, compared to when they are
used for grayscale images. Moreover, the results are better when the multivariate sample
entropy algorithms are used instead of univariate sample entropy algorithms. We do not
observe an improvement of the fuzzy entropy algorithms with the multivariate version.
We also note a large improvement when we increase the size of the images.
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Table 3. Average accuracy of machine-learning classification (SVM) on univariate entropy extractions
results of 50× 50 pixels images from the Epistroma database. For sample entropy, the parameters are:
m = 1, r = 0.02. For fuzzy entropy, the parameters are m = 4, r = 0.24, and s = 9. These parameters
are those that give the best results on the database used.

Univariate sample entropy (for grayscale images): 67.02%

Univariate multiscale sample entropy (for grayscale images): 69.06%

Univariate fuzzy entropy (for grayscale images): 62.85%

Univariate multiscale fuzzy entropy (for grayscale images): 66.95%

Univariate fuzzy entropy (for RGB images): 67.75%

Univariate multiscale fuzzy entropy (for RGB images): 69.10%

Table 4. Average accuracy of SVM classifier performed on multivariate multiscale entropy extractions
of RGB images from the Epistroma dataset. The sizes 50 × 50 pixels and 100 × 100 pixels have
been considered. For sample entropy, the parameters are M = [222], r = 0.15. For fuzzy entropy,
the parameters are M = [222], r = 0.15 and s = 2. These parameters are those that give the best
results on the database used.

Size of the images 50 × 50 100 × 100

Multivariate multiscale sample entropy RGB 70.64% 78.11%

Multivariate multiscale fuzzy entropy RGB 66.45% 72.96%

Finally, the results of the classification from deep learning are presented in Table 5.
We observe that deep learning is capable of classifying with good accuracy biomedical
and generic texture RGB images, even for small-size images (50× 50 pixels). Nevertheless,
some architectures are not adapted to all types of databases. It is the case for the end-
to-end fully trained network (10-layer CNN), that gives the worst classification results,
especially when the database is composed of lots of classes (as it is the case for the Alot
database that contains 250 classes). This result indicates that the training of the network on
a small database will not give a representation of the image by features precise enough to
differentiate a large number of classes. The best classification results are obtained on the
networks trained on very large databases.

Table 5. Deep learning classification results for 50× 50 pixels RGB images. The best results are shown
in bold.

Epistroma KTH-TIPS2-a Alot

10-layers CNN 91.03% 85.32% 67.25%

Resnet50 with fully connected layer 93.05% 94.98% 81.04%

Resnet50 with SVM classification 92.22% 96.54% 81.08%

In this paper, we proposed a new entropy-based measure to process RGB images. It
is based on a multivariate entropy approach. The results allow for extracting information
from color image texture to serve classification purposes. Color and texture play a key role
in many applications and are a hot topic in computer vision and pattern recognition [20].
Two main classes can be identified for color texture classification: the hand-crafted (tradi-
tional) methods and the data-driven (i.e., deep learning) ones. In this work, we compared
classification results obtained with these two classes, having the traditional methods being
based on entropy measures.

Our results show that, for the databases used and when the same type of classifier—
SVM on both feature extractions phases (entropy and deep learning features)—is chosen,
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deep learning outperforms entropy for the classification tasks. These results are in ac-
cordance with other studies, performed on other databases and with other hand-crafted
methods [21]. This means that the deep learning extraction gives a more precise represen-
tation of the image, with relatively little intervention from the end user. However, this
representation is not totally linked to the texture of the image and takes into consideration
a large number of features, unlike the entropy measures that are specific to texture analysis.
Moreover, the data-driven method relies on layers that contain free parameters. The latter
have to be set by a compulsory step, the training step. This is why, in the last few years,
CNN—which has received increasing attention—has often been used with pre-trained
networks. In contrary, the hand-crafted methods do not require any training. Moreover,
they are well-established and transparent. It has been shown by others that when direction
and temperature of the light change simultaneously, hand-crafted descriptors can perform
better than learned descriptors [21]. Finally, even if the deep-learning methods can lead
to very good performances in classification studies, they certainly are not the panacea for
all problems [23]; among others, they still have the drawback of being black boxes to the
end user. This can be an issue for some application domains, particularly when medical
data are involved. Moreover, for some tasks (e.g., classification of images from very small
databases, often encountered in the medical field), the use of deep learning is excessive and
the size of the database will be insufficient to train the model. The future would perhaps be
to aggregate descriptors resulting from the combination of hand-crafted methods and deep
learning ones, as recently proposed [39,40].

4. Conclusions

The image processing domain has been subject to drastic changes with the recent
development of data-driven intelligence. We have seen that some traditional computer
vision methods are being replaced by deep learning approaches because the aforementioned
are often more efficient. However, we can still find many applications where there is
still advantages from years of work of hand-crafted methods. Further improvements of
these traditional methods are essential to address modern computer vision issues. Our
multivariate entropy algorithms show promising results in the analysis of the texture for
RGB biomedical images. Other studies could be conducted to extend these methods to
other color spaces. The future step would perhaps be aggregating descriptors that result
from the combination of hand-crafted methods and deep learning ones.
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