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Highlights 

• The Tweedie exponential dispersion process model based on SSADT is generalized.  

• The optimum plan is the one that uses only the minimum and maximum stress levels. 

• An explicit expression of allocation proportion is given.  

• The proposed optimum plan can improve the performance through validation.  
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Abstract: In this paper, we are interested in the optimization of step-stress accelerated degradation 

test plan when the degradation path follows the Tweedie exponential dispersion process which has 

been shown to be an important family in degradation analysis. We firstly prove that, under the 

Tweedie exponential dispersion process model with a drift parameter being an exponential function of 

the (transformed) stress level, a multi-level step-stress accelerated degradation test plan will 

correspond to a simple step-stress accelerated degradation test plan using only the minimum and 

maximum stress levels under D-optimality and V-optimality criteria. The optimum step-stress 

accelerated degradation test plan based on these two optimality criteria is subsequently derived, a 

numerical example is furthermore presented to compare the efficiency of the proposed optimum 

simple step-stress accelerated degradation test plans and some step-stress accelerated degradation test 

plans proposed by a previous study. In addition, a simulation study is conducted for investigating the 

performances of the proposed step-stress accelerated degradation test plans.    

Keywords: Reliability, Step-Stress Accelerated Degradation Test, Tweedie Exponential Dispersion 

Process, Optimal Design 

 

1. Introduction 

Assessing the reliability information of product is an essential task for manufacturers, especially 

for newly developed products [1]. However, for highly reliable products, it is not an easy task to 

obtain their life information by using traditional life test because failures are not likely to occur in a 

short and acceptable duration even by censoring life test [2]. Usually, the degradation of a product is 

also very slow under normal use or service conditions. In addition, for some expensive products, the 

economic cost of obtaining enough life data is too high or even unbearable. To obtain the reliability 

information more rapidly/efficiently, we can conduct an accelerated degradation tests (ADT) 

campaign that uses higher levels of factors accelerating the quality characteristics degradation (e.g., 

factors or variables such as temperature or voltage) to obtain the lifetime information at the normal 

use or service condition using extrapolation [3].  
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ADT has become an efficient approach to reliability assessment or lifetime prediction for 

degrading products [4]. Depending on the different stress loadings application, ADT can be classified 

into constant-stress accelerated degradation test (CSADT), step-stress accelerated degradation test 

(SSADT) and progressive-stress accelerated degradation test [5]. To fully get the potential of the 

subsequent analysis of ADT results, we must carefully design the ADT to ensure an accurate 

evaluation of reliability-related indexes at the service condition and maximize the efficiency-to-cost 

ratio. Therefore, the optimal design problem of an ADT plan received considerable attention from 

reliability researchers and engineers [6]. In a CSADT, the products are divided into several groups, 

and each group of products are exposed to a constant severe stress condition to collect degradation 

data. Tsai et al. [7] discussed the optimal design problem of the CSADT based on the Gamma process. 

They determined the test stress levels and the proportion of units allocated to each stress level by 

minimizing the asymptotic variance of the mean time to failure. Wang et al. [8] developed an 

optimum CSADT plan for inverse Gaussian (IG) process model under M-optimality criterion from the 

perspective of degradation mechanism equivalence. Jiang et al. [9] obtained the optimum CSADT 

plan for Wiener process model based on the criterion that minimize the mean of the upper prediction 

limit for the degradation characteristic at the use condition. More researches on CSADT optimization 

can be found in [10-11]. 

Although CSADT is an efficient test, it needs a large number of units to conduct an experiment 

[12]. For a newly developed product or an expensive product, we may not have many test units on 

hand. In this situation, SSADT is more suitable to be adopted since it requires less test units [13]. 

Besides, it has been shown that using step-stress stress loading can provide equivalent estimation 

precision to that from other stress loadings [14]. Furthermore, it has been shown that there exist 

SSADT plans that can generate a Fisher information matrix identical to that derived from a general 

stress loading function [15]. Given these advantages of SSADT, extensive studies have been 

conducted to obtain optimum SSADT plans. Duan and Wang [16] discusses the design problem of the 

SSADT based on the non-stationary Gamma process with random effects. They obtain an optimal 

experiment plan by minimizing the asymptotic variance of the estimated reliability of the product 

under the budget and boundary constraints. Zheng and Chen [17] developed an optimal design method 

for SSADT based on the generalized Wiener process degradation model. Wang et al. [18] Provided an 

optimal SSADT plan for the IG degradation process under the constraint of the total experimental 

budget by minimizing the asymptotic variance of the estimated p-quantile of the lifetime distribution 

of the product. Further applications of SSADT can be found in [19-20].  

To carry out the optimal design of SSADT, two critical tasks need to be dealt with, one is the 

selection of the optimization criterion, and the other is the selection of the degradation model. For the 

first one, extensive studies have applied different optimization criteria to obtain optimal ADT plans, 
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and these strategies can be sorted into two categories [17]. The first strategy is to enhance the 

estimation accuracy of the unknown parameters of degradation models, such as D-optimality. The 

second strategy focuses on the accuracy of reliability indexes, such as the p-quantile of the lifetime 

distribution, which is called V-optimality and is commonly used in the optimal design of ADTs. 

Therefore, in this research, the optimal design is conducted based on the D-optimality and V-

optimality, respectively.  

For the second one, a suitable degradation model is required for analyzing the observed 

degradation data and to estimate the product’s lifetime under use or service condition. There are three 

commonly used stochastic process models: Wiener process, Gamma process, and IG process [21]. The 

Wiener process is usually used to describe non-monotonic degradation paths [22], while the Gamma 

process and IG process models are applied for monotonic degradation paths [23-24]. These three well-

known stochastic process models could fit most of degradation data well. However, in some 

engineering applications, these three well-known processes are not suitable. For example, a discrete-

type compound Poisson process may be more appropriate to model a leakage current of thin gate 

oxides in nanotechnology [25]. Moreover, a degradation model is selected through Akaike 

information criterion (AIC) from the candidate models. As we know, the drawback of AIC to choose a 

model is that if all the candidate models fit poorly, AIC will not give any warning of that. Then the 

corresponding results of the reliability analysis based on the selected unsuitable models could be poor. 

Hence, considering the diversity of the products, a more general class of degradation model, which 

has a wide range of applications, is necessary for describing the real degradation data more accurately. 

To promote the adaptability of the modeling method for degradation data, the Tweedie exponential 

dispersion process (TED) process was proposed to describe the degradation process of some products, 

which includes Wiener process, Gamma process, and IG process as special cases. The TED has been 

proven to provide more suitable degradation models to describe the product’s degradation path [26-

27]. Zhou and Xu [28] proposed to use the TED process to describe the degradation path of the 

product’s physical or chemical characteristics. They used the maximum likelihood estimation (MLE) 

and Bootstrap method to obtain the point estimates and interval estimates of the parameters. In the 

data analysis, they found that the TED model can fit the data much better than the commonly used 

models. Lee and Tseng [29] proposed a semi-analytical procedure to determine the total sample size, 

testing stress levels, the measurement frequencies, and the number of measurements (within a 

degradation path) globally under the TED degradation model. Chen and Xia [30] obtained the optimal 

CSADT plan based on the numerical computation under the constraint of budget by using TED 

process. Although the research efforts, including the articles cited above, have been devoted to 

statistical inference and optimal design of CSADT for the TED process, the SSADT experiment 
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design problem under TED process has not been discussed to our knowledge. Furthermore, most of 

the optimal design results of ADT are obtained based primarily on numerical studies, not exact results.  

The aim of this research is to develop the method to find the optimal SSADT plan for products 

with TED degradation process. Some theoretical results are given for these problems. Compared with 

the existing works, the major contribution of this study lies in the following two aspects: 1) It is 

proved that, under the TED model with a drift parameter being an exponential function of the 

(transformed) stress level, a multi-level SSADT plan will degenerate to a simple SSADT plan using 

only the minimum and maximum stress levels under D-optimality and V-optimality criteria; 2) The 

optimum number of inspection allocation proportions for each stress level are derived based on these 

two optimal criteria.  

The remainder of this study is organized as follows. In Section 2, the TED model, and the 

SSADT settings are introduced. In Section 3, we prove that the optimal SSADT plan is indeed a 

simple SSADT plan using only the minimum and maximum stress levels, and then the optimum 

SSADT plan are derived. In Section 4, a numerical example is provided to compare the efficiency of a 

SSADT plan proposed by a previous study and the optimum plans proposed in this paper. In Section 

5, a simulation study is conducted for investigating the performance of optimum SSADT plans. 

Section 6 concludes the paper. 

2. Model Description and Statistical inference 

In this section, the theoretical frame of SSADT based on the TED degradation process is 

proposed. At first, we introduce the concepts and some properties of the TED process, and then 

present some assumptions to describe the SSADT experiment. 

2.1 TED Degradation Model 

A stochastic process describing the evolution of a performance indicator or any quality 

characteristics over time is defined as an exponential dispersion (ED) process * ( )    + , if 

satisfying the following three properties [28-31]:  

(1)  ( )    with probability one; 

(2) * ( )    + has statistically independent increments; 

(3) The increment follows ED distribution, i.e.,  (    )   ( )    (     ), for      , 

where the probability density function (PDF) of ED distribution   (    ) is 

 (       )   (     )     { [  ( )    ( ( ))]} ,                              (1) 

where   is the mean drift rate and   is the dispersion parameter;  ( )  is a canonical function, 

guaranteeing that the cumulative distribution function (CDF) of Equation (1) is normalized and equal 

to one;  ( ) is called the cumulant function, which is a twice differentiable function, and satisfying  

  ( ( ))   , in which   ( ) is the first derivative of  ( ).  
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The expectation and the variance of  ( )  are  ( ( ))    ,    ( ( ))    ( ( ))    

 ( )   , respectively, in which   ( ) is the second-order derivatives of  ( ), and  ( ) is called the 

variance function. An ED model can be characterized by its variance function within the class of all 

ED models. Furthermore, the TED process is an important class of ED process with power variance 

function:  

 ( )       (    - ,   -                                                 (2) 

where   is the power classification parameter, which is determined by the degradation mechanism of 

the product and can be estimated based on degradation data. Different parameters   correspond to 

different stochastic process models, such as the Wiener process (   ), the Gamma process (   ), 

and the IG process (   ). More details can be found in Table 1. That is, the TEDP model can 

describe more complex and diverse degradation processes of many products and have a wider range of 

applicability compared with others stochastic models. For convenience, the TED process is denoted by 

 ( )    (    ).  

Table 1  The relationship between the TED process and some well-known processes 

Model    ( ) Mean Variance 

TED   (    - ,   -             

Wiener 0 1        

Compound Poisson   (   )             

Gamma 2             

IG 3             

 

For the TED process, the PDF (1) of  ( ) has no closed expression except for some special 

values [32]. According to the previous research [33-34], the saddle-point approximation (SAM) 

method provides a highly accurate approximation expression of PDF of  ( ). Therefore, we adopt 

SAM to obtain the approximated PDF of TED process, which is expressed as  

 (         )  √
 

        
    * 

  

 
 (     )+ ,                                    (3) 

where  (     ) is called the unit deviance function, and which is expressed as  

 
 (     )  

{
 
 

 
 
(     )                                                 

 2
 

 
  .

 

  
/  .

 

 
  /3                          

 *  (    )    (  )   +                               

 {
(   (     ))

   

(   )(   )
 
     

(   ) 
 
    

   
}         

 .                     (4) 

2.2 Lifetime Distribution 
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The product’s lifetime   is defined as the first passage time when the degradation path  ( ) 

crosses a prespecified critical threshold  , that is 

     *   ( )   + .                                                          (5) 

According to Hong and Ye [35], the CDF of the lifetime   can be approached by the Birnbaum–

Saunders distribution as  

  ( )   [√
 

  
. √  

 

√ 
/] ,                                                      (6) 

where  ( ) is the CDF of the standard normal distribution. Then, the PDF of the lifetime   is given by 

  ( )  
    

  
√

 

     
   [ 

 

   
. √  

 

√ 
/
 

].                                  (7) 

2.3 Notations and assumptions 

To use TED process for the purposes mentioned above, initial choices and assumptions have to 

be put forward. IT is assumed that:  

(1) The upper stress bound is   , below which the failure mechanism is the same as the one 

under the normal use stress level   . 

(2) The SSADT has   stress levels and satisfies                 . At the beginning 

of the test, there are   units are selected and tested under stress   . After a period of time   , the stress 

level is increased to    until time   . This continues until the stress increased to   , and the test is 

finally terminated at time   . The stress level of SSADT can be expressed as: 

  { 

          
           
              
            

 

(3) In the TED process, the parameter   denotes the degradation rate which obviously should be 

changed when the acceleration stress is different. The link function between degradation rate and 

stress level can follow one of the three functions below: 

• Power law relation:  (  )     
 

; 

• Arrhenius relation:   (  )      (     ); 

• Exponential relation:  (  )      (   ). 

The standardized stress levels are defined as 

   {

(         ) (         ) 
(         ) (         ) 
(     ) (     ) 

                          
                          
                               

                     (8) 

Under the standardization, we can have                     , and we can 

obtain a unique form of the degradation rate: 

    (  )    
                                                              (9) 
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(4) The test unit’s degradation path under stress level    follows an TED process with unchanged 

parameters       . That is 

 (    )     (       )                                                        (10) 

(5) The cumulative degradation function under the SSADT is derived as follows (For 

convenience, denote     ): 

 ( )  

{
 
 

 
 
 (    )     (       )                                                                  
 (     )   ((    )   )     (  (    )          )         
                                                                                                                                

 (     )   ((     )   )     .(      )   /  

        (  (      )  ∑   
   
   (       )    )                         

    (11) 

The corresponding degradation path is shown in Fig. 1. 
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Fig. 1. The degradation path under SSADT 

(6) Let    represent the number of inspections under   , and the inspections are conducted at the 

same inspection time interval    under all stress levels. We define the total number of inspections 

  ∑   
 
   . And set         be the proportion of inspection number under stress level   . 

2.4 Parameter estimation 

Suppose that there are a total number of   test units subjected to the degradation test, and the i-th 

unit under the j-th stress level is measured at          with observations       (    ),      , 

      ,          . Let               (   ) be the observed degradation increments at the 

inspection interval            (   ), then by the above assumptions  

         (        ) .                                                        (12) 

                  



9 

 

Then the log-likelihood function is given by 

  ∑ ∑ ∑      (       )
  
   

 
   

 
     

  ∑ ∑ ∑ 0
  (    )

 
 
(   )    

 
 
 

 
  (     )  

   

 
 (           )1

  
   

 
   

 
    ,        (13) 

where   (       ) is the parameter vector.  

The maximum likelihood estimators (MLEs) of   can be obtained by maximizing Eq.13. We 

may also take the first derivative of   with respect to  . Setting this partial derivative to zero, then we 

can have 

 ̂  
  

  ∑ ∑ ∑  (           )
  
   

 
   

 
   

 .                                                 (14) 

Then, the profile log-likelihood function of (     ) can be given by substituting  ̂  for   in (13).  

Subsequently, the MLEs ( ̂   ̂   ̂ ) of (     ) can be obtained by maximizing the profile log-

likelihood function through a multiple-dimensional search. Here, we made use of the MATLAB 

function “fmincon” for this purpose. By substituting the MLEs ( ̂   ̂   ̂ ) of (     )  into (14), 

then the MLE  ̂  of   can be obtained. 

3. Optimal design of a SSADT 

An SSADT is characterized by the total number of test units available n, the number  of stress 

levels used in the test, as well as the stress value of each level, the allocation scheme of the 

measurements to each stress level, the test duration   , and the measurement time interval   . Here, 

we have assumed that the number of units, the test duration   , and the measurement time interval    

are given. Therefore, in this section, the objective of the SSADT planning is to determine the optimal 

stress levels, as well as the proportion of units allocated to each level based on some optimization 

criterion. The procedure of optimal design is as follows:  

Step 1: Derive the Fisher information matrix of the TED model, because many optimal SSADT 

design criteria are based on Fisher information matrix if the goal of conducting an experiment is to 

estimate the model parameters or their functions (e.g., lifetime percentiles). (see subsection 3.1).  

Step 2: We briefly show the definitions of two commonly used optimality criteria: D-optimality 

and V-optimality. These two optimization criteria optimize the objective function from different 

perspectives. Sometimes one may be interested in different optimization criteria in different situations, 

or not only interested in a particular objective function.  

Step 3: We then derive that for each criterion described in subsection 3.2, a multi-level SSADT 

plan, when optimized, degenerates to a simple SSADT plan using only the minimum and maximum 

stress levels. This result establishes a rationale for considering a simple SSADT using only the 

minimum and maximum stress levels.  
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Step 4: We consider the design problem of a simple SSADT plan and present the optimal 

allocation of inspections at each stress level for different criteria. 

3.1 Fisher information matrix 

The Fisher information matrix can be obtained by taking the expected values of the negative 

second derivatives of the log-likelihood function in Eq.13 with respect to the parameters. However, 

according to the research in [30-31,36-37], the Fisher information matrix could be singular and 

thereby the inverse matrix cannot be calculated because of the influence of the parameter  . Therefore, 

following to the research in [30-31,36-37], the effect of   on the Fisher information matrix does not be 

considered here, and which is replaced by  ̂ . As a result, the parameter vector   reduces to   

(     ). The Fisher information matrix  ( ) can be obtained by:  

 ( )  

[
 
 
 
 
  . 

   

   
/  . 

   

    
/  . 

   

    
/

 . 
   

    
/  . 

   

   
/  . 

   

    
/

 . 
   

    
/  . 

   

    
/  . 

   

   
/ ]
 
 
 
 
 

  .                                      (15) 

The elements of  ( ) are derived as follows: 

{
 
 
 
 
 

 
 
 
 
  . 

   

   
/    ∑ ∑   

  
   

 
          

  

 . 
   

    
/     ∑ ∑   

  
   

 
      

      
  

 . 
   

    
/   

 . 
   

   
/      ∑ ∑   

  
   

 
     

        
  

 . 
   

    
/   

 . 
   

   
/  

  

   

 .    

Let     
      

  
     (   )   . Then, we have 

 ( )  [

     ∑   
 
           ∑   

 
        

      ∑   
 
              ∑   

 
     

    

  
  

   

]                (16) 

3.2 Optimization criteria 

Based on the above Fisher information matrix  ( ), the optimal stress levels, as well as the 

proportion of number of measurements allocated to each level can be determined subject to different 

optimality criteria. The D-optimality and V-optimality are two commonly used optimality criteria. 

Before proceeding further, we briefly review the definitions of these two commonly used criteria.   

Criterion 1 (D-optimality). Actually, we need first to estimate the parameters of degradation 

model when we analyze the reliability. The accuracy of model parameter estimation will affect the 

accuracy of reliability. D-optimality focuses on the accuracy of parameters estimation and is based on 
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the maximization of the Fisher information matrix determinant. The principle of this criterion relies on 

the fact that the overall volume of the asymptotic joint confidence region of parameters is proportional 

to the inverse matrix of the Fisher information matrix. Motivated by this, maximizing the determinant 

of the Fisher information matrix is equivalent to minimizing asymptotic joint confidence ellipsoid of 

parameters, and then maximizing the joint precision of the estimators of parameters. The determinant 

of the Fisher information matrix can be obtained by: 

   ( ( ))  
 

 
         0(∑   

 
     )(∑     

 
     

 )  (∑   
 
       )

 
1         (17) 

Criterion 2 (V-optimality). This optimality criterion is based on the minimization of the 

asymptotic variance of the estimated p-th percentile (    ( ̂ )) of the lifetime distribution at common 

stress level   . The percentiles of product’s lifetime distribution is an important reliability measures to 

be estimated. Using the Delta-method [10], the expression of     ( ̂ ) is thereby given by 

    ( ̂ )   ( ) 
  ( ) ( )                                                 (18) 

The  -th percentile of the lifetime distribution is derived as follows: 

   
4  √

  

 
 √  

  
 

 
    5

 

   
                                                     (19) 

The elements of  ( )  .
   

  
 
   

  
 
   

  
/ are derived as follows: 

{
 
 

 
 
   

  
 

(       ),(   )   
 (       )       -

        
   

  
  

   

  
  

    (       )
 

      

 ,  

where    √
  
   

 
    ,    √

  

 
, and    is  -th percentile of the standard normal distribution. 

3.3 Degeneration of an optimum multi-level SSADT plan 

Theorem 1 Based on the D-optimality and V-optimality criteria above, if a test unit’s 

degradation path follows the TED process and the relationship of drift parameter and stress satisfies 

Eq.9, the optimal multi-level SSADT plan using stress levels    <    <   <    will degenerate to a 

simple SSADT plan using only the minimum and maximum stress levels,    and   . 

Proof.   

For D-optimality: For fixed total sample size  ,    and  , maximization of    ( ( )) in Eq.16 

is equivalent to the maximization of a function G such as: 

 (          )  (∑   
 
     )(∑   

 
       

 )  (∑   
 
       )

 
.              (20) 

The further detailed proof can be found in Appendix A. 

For V-optimality: The inverse of Fisher information matrix is 
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   ( )  

[
 
 
 
 
 

       ∑   
 
     

   

            (          )
 

      ∑   
 
       

            (          )
 

 
      ∑   

 
       

            (          )

     ∑   
 
     

            (          )
 

  
   

  ]
 
 
 
 
 

. 

Then, the asymptotic variance of the estimated p-th percentile of the failure time distribution is 

    ( ̂ )  .
   

  
/
 (∑   

 
     

   )

     0(∑   
 
     )(∑   

 
     

   ) (∑   
 
       )

 
1
 
   

  
.
   

  
/
 

 .          (21) 

Hence, when  ,    and   are fixed, minimizing this variance is equivalent to the minimization of 

      
(∑   
 
     

   )

(∑   
 
     )(∑   

 
       

 ) (∑   
 
       )

  .                                 (22) 

The further detailed proof can be found in Appendix A. 

Notice that Theorem 1 provides an important insight regarding the optimum design of a SSADT 

plan. That is, the optimum SSADT plan is actually a simple SSADT using only minimum and 

maximum stress levels. Based on this observation, the next problem is how to allocate the inspection 

number under the two stress levels, which is shown in the following subsection 3.4. 

3.4 Optimal simple SSADT plan 

Since only the minimum and maximum stress levels are used in test, we can see that the decision 

variable is the inspection number    under stress level   . Given the total inspection number  , we 

have         for stress level   . The optimal allocation proportion based on each criterion is 

obtained as follows.   

Theorem 2 For the D-optimality and V-optimality criteria, when the total sample size  , 

inspection number   and the time interval    between inspections are given, the optimum SSADT 

plan based on TED process is given as follows:  

(1) For D-optimality: the optimum plan assigns inspections: 

.
  

 
 
  

 
/  (     )  (

 

 
 
 

 
) .   

(2) For V-optimality: the optimum plan assigns inspections: 

.
  
 
 
  

 
/  (     )  (

  √  

  √     √  
 

  √  

  √     √  
) . 

Proof.  See Appendix B.  

Based on Theorem 1 and Theorem 2, a simple SSADT plan uses the optimal allocation of 

inspections could generate the most efficient statistical results. For D-optimality, the optimum plan 

assigns inspections at maximum stress    and minimum stress    is equal, which is convenient for a 

degradation experiment. In other words, the optimum plan assigns inspections does not depend on the 

experimental design variables from a degradation test. For V-optimality, the optimum plan assigns 
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inspections is related to the difference between    and   . It is worth mentioning that although the 

simple SSADT is optimum, a test may require more than two stress levels to verify whether the 

exponential relationship in (9) is valid.  At times it could be beneficial to use more than two stress 

levels to attain more flexibility with some loss of efficiency. 

4. A numerical example 

This section illustrates the models and methods discussed above with a set of degradation data of 

LED chips [38]. Five units were placed at three temperature levels (    ,     and     ) to 

conduct SSADTs. The experiment lasted for 13 months. During the experiment, the temperature of the 

first seven months was     , the temperature of the eighth month to the eleventh month was     , 

and the temperature of the twelfth month to the thirteenth month was     . The percentage reduction 

in the light intensity of the five LEDs is recorded each month, and the data is shown in Table 2 and 

Fig.2. The normal operating temperature is set to     , and the upper limit of the operating 

temperature is set to     . When the light intensity of the led chip is reduced to 50% of the initial 

light intensity, the LED chip is considered to be fail. It can be seen from the data in Table 2 that the 

percentage of light intensity decreases. First, by subtracting the current value of the data in the table 

from 100%, the degraded data is converted to the increasing data suitable for describing the model in 

this paper, the failure threshold after transformation is      .  

Table 2. Percentage reduction in light intensity of LED chips at three temperature levels 

Test Time (Month) Temperature(K) Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

1 323 97 98 96 99 95 

2 323 96 97 94 95 93 

3 323 92 94 93 93 88 

4 323 91 92 90 91 85 

5 323 88 89 85 85 83 

6 323 86 86 82 84 82 

7 323 85 82 80 79 77 

8 373 82 80 77 77 75 

9 373 81 79 72 73 73 

10 373 77 76 70 71 68 

11 373 75 74 68 69 65 

12 383 71 70 65 63 60 

13 383 62 60 58 59 55 
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Fig.2 Degradation path of light intensity of LED chips under SSADT 

4.1 Statistical inference 

Under the assumption that the degradation process follows the TED process, the parameter   can 

be estimated as  ̂  ( ̂   ̂   ̂   ̂ ) = (       ,        ,         ,        ). To present a 

reliable analysis, it is necessary to test whether the TED process model conforms to the observed 

degradation data. The Kolmogorov-Smirnov test is adopted. We select the degradation data as the 

samples at temperature 323K. Then, we propose the hypothesis to be tested,   : The data conforms to 

the theoretical distribution. The Kolmogorov-Smirnov test statistic is             and the  -value 

is      . The corresponding critical value with 0.05 level is               . Obviously,         

     , and the hypothesis    cannot be rejected. The TED process fits the data well.  

Furthermore, numerical comparisons of the log-likelihood function value and AIC value between 

the proposed TED model and the Wiener, Gamma, IG process models are presented in Table 3. The 

AIC value is calculated as AIC =      ̂ +       , where    ̂ is the log-likelihood function value, 

and       is the number of model parameters. The model which has a larger log-likelihood function 

value and a smaller AIC value is preferable to describe data. From Table 3, it is can be seen that the 

proposed TED process model with  ̂          gets the maximal log-likelihood function value. 

Therefore, based on the log-likelihood function criterion, the TED process model with  ̂          

can be considered as the most suitable degradation model for LED chip’s degradation data. The log-

likelihood function value obtained based on the Gamma process (   ) ranks second, and the 

smallest is that based on the Wiener process (   ). For the case where the power classification 

parameter   takes other values, the corresponding log-likelihood function values are shown in Figure 

3. It can be seen that the farther the power classification parameter   is from the real value  ̂ , the 

worse the model effect is. Therefore, the Wiener, Gamma and IG processes are suitable for describing 

the degradation data with power classification parameters of 0, 2, and 3, respectively. And if the real 

power classification parameter value   is far from 0, 2, and 3, then the fitting effect of these three 
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commonly used stochastic process models on degradation data will be poor. Considering the diversity 

of the products degradation process, these three stochastic process models have limitations, and the 

TED process has wider applicability. Taking the number of parameters into account, since the power 

classification parameter  ̂          is very close to 2, which correspond to Gamma process, and 

the TED process model has one more parameter, the Gamma process model has the minimum AIC 

value, followed by the TED process, and that based on Wiener process is largest. The farther the 

power classification parameter   is from the real value  ̂ , the larger the AIC value. Considering that 

the AIC value of the TED process is very close to that of Gamma process, and TED process has 

largest log-likelihood function value. In addition, the power classification parameter  ̂         , 

but the power classification parameter of Gamma process is 2, which means that the Gamma process 

is an approximation to the true degenerate process. The TED process is more accurate in describing 

the real degradation process. Although the TED process is more complicated than Gamma process, 

there is only one more parameter, which is not too complicated and can be calculated effectively. 

Therefore, although Gamma process is also a good choice for this data from AIC, considering 

flexibility and wide range of applications, the TED process is used to characterize this set of data. 

Table 3   Comparison the TED process with three well-known processes 

           Log-likelihood AIC 

TED 2.18069 2.25606 0.52675 4.023736 -117.2488 242.4976 

Wiener 0 2.216247 0.5565 0.3221178 -129.0482 264.0964 

Gamma 2 2.249493 0.53148 3.355369 -117.6303 241.2606 

IG 3 2.282095 0.50746 8.609644 -118.9262 243.8524 

 

 
Fig.3. The log-likelihood functions based on different power classification parameter   
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4.2 Optimum SSADT plans 

It is supposed that a SSADT have 5 LED chips for testing, the previous three stress levels 

(         ,           and          ) are to be used when conducting a SSADT and there are 13 

inspections to be allocated into each stress level. Therefore, the total sample size    , inspection 

number      and the inspection interval     . According to Theorem 2 in subsection 3.4, the 

optimal allocations of inspections are calculated by multiplying the theoretical optimal proportions by 

13. For D-optimality, we have (  
 ,  

 ) = (   ,   ); for V-optimality, we have (  
 ,  

 ) = (        , 

        ). It is can be seen these numbers are decimals, thus the nearest integers are used. For D-

optimality, ( ,  ) or ( ,  ) inspections would be allocated at stress levels    and   , respectively; for 

V-optimality, ( ,  ) or (  ,  ) inspections would be allocated at stress levels    and    respectively. 

To compare any given SSADT plans with the above optimal simple SSADT plan, we compute 

the values of the objective function for each SSADT plan, i.e., the determinant of the Fisher 

information matrix and asymptotic variance of the estimated p-th percentile. In addition, the Relative 

Efficiency (RE) of a SSADT plan are also calculated, which are defined as 

  (        )  
   ( )corresponding to the   A T plan (        )

   ( )corresponding to the optimal   A T plan for   optimality
 

and 

  (        )  
    ( ̂   ) corresponding to the optimal   A T plan for   optimality

    ( ̂   ) corresponding to the   A T plan (        )
 

The results of comparisons between the optimal SSADT plans and the original SSADT plan are 

presented in Table 4. For D-optimality criteria, the optimum plan could improve the efficiency by 18 

percent according to the determinant of the Fisher information matrix    ( ). However, the optimum 

plan ( , , ) has lower the efficiency than the original plan by 2.88 percent according to the 

    ( ̂   ). For V-optimality criteria, on the one hand, the optimum plan could improve the efficiency 

about 19.73 percent according to the     ( ̂   ). On the other hand, it can be found that the optimum 

plan (  , , ) has lower the efficiency than the original plan by 11 percent according to the    ( ). 

According to the results of Table 4, no matter which kind of optimality criteria, the result of the plans 

which are used by rounding the theoretical allocation of measurements to nearest integers is almost 

equal. And for product’s reliability indicators of interest, the experimenter can significantly improve 

efficiency by using the optimal number of measurements under the corresponding optimization 

criteria. 
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Table 4: Comparisons between the original SSADT plan and the optimal plans 

 (  ,  ,  )    ( )(RE)     ( ̂   )(RE) 

Original plan (7, 4, 2) 1546.279 (0.8296) 102.7117 (0.8027) 

D-optimality (7, 0, 6) 1863.882 (1.0000) 106.5393 (0.7739) 

 (6, 0, 7) 1863.882 (1.0000) 94.6537 (0.8710) 

V-optimality (9, 0, 4) 1597.613 (0.8571) 82.6341 (0.9977) 

 (10, 0, 3) 1331.344 (0.7143) 82.4465 (1.0000) 

 

5. Simulation study 

In this section, to demonstrate that the SSADT designs presented above also have good 

performance than other SSADT plans with different sample size, we conducted a simulation study 

here. The following experimental settings are considered: the number of samples    ,   ,    and 

  ,    , (  ,   ,  ,   ) = (   ,    ,    ,  ), ( , , , ) = (2, 2.5, 1.8, 50), and the total number of 

measurements     ,    and   . The optimal allocations of measurements are calculated according 

to Theorem 2. If the theoretical allocation is not an integer, the nearest integers are used as above. And 

an equally allocated SSADT plan is compared with the result of each optimum SSADT plan. The 

simulation results are presented in Tables 5 and 6, respectively. The following observations can be 

drawn from the simulation results: 

(1) For the D-optimality criteria, with the increase of sample size   or the total measurement 

number  , the determinant of Fisher information matrix increases for all SSADT plans. And the 

differences of determinant values for different SSADT plan increase as   or   increase. When the 

sample size   or the measurement number   are relatively small (     or     ), The 

determinant value grows relatively slowly, and the difference between the determinant values is 

relatively small; When   or   is relatively large (     or     ), the determinant value growth 

is relatively fast, and the difference between the determinant values is relatively large. Regardless of 

how   or   change, the determinant value of the optimum plan is the largest. Therefore, the D-

optimality criteria is sensitive to the accelerated degradation test plan, the sample size   and the 

measurement number  .  

In terms of RE, the optimum plans under D-optimality have significantly higher efficiency than 

do other plans, the optimum plans under V-optimality have minimal RE. Therefore, the optimum plan 

can significantly improve the efficiency, and the D-optimality criteria is relatively sensitive to the plan 

used. Furthermore, the RE is less affected by the sample size   and the measurement number  , 

which means the RE under D-optimality is robust to the sample size   and the measurement number 

 .  And the optimum plan under D-optimality performance well in small sample size.  

                  



18 

 

(2) For the V-optimality criteria, with the increase of sample size   or the total measurement 

number  , the asymptotic variance of the life quantile decreases for all SSADT plans. When the 

sample size   or the measurement number   is relatively small (     or     ), the asymptotic 

variance for all SSADT plans descend faster, and the difference between the asymptotic variances is 

relatively large; When the sample size   or the measurement number   is relatively large (      or 

    ), the asymptotic variances for all SSADT plans decrease slowly, and the difference between 

the asymptotic variances is relatively small. That is, too small sample size   or the measurement 

number   will cause large asymptotic variance of the life quantile, large sample size   or the 

measurement number   will not cause a large reduction in variance. These situations provide a 

reference for us to choose an appropriate sample size   or the measurement number  . In addition, 

regardless of how   or   change, the asymptotic variance of the optimum plan under V-optimality is 

the smallest. The plan that assigns the same inspection number under the four stress levels has the 

highest variance. Therefore, when the sample size is relatively small, the V-optimality criteria is 

relatively sensitive to the plan used, we need to choose the accelerated degradation test plan carefully, 

and the optimum plan is recommended to be adopted; When the sample size is relatively large, the 

overall asymptotic variance is relatively small, the V-optimality criteria is relatively robust to the plan 

used. 

In terms of RE, the optimum plan under V-optimality performs best and nearly full efficiency, 

the plan that assigns the same inspection number for the given four stress levels has the smallest RE. 

Therefore, the optimum plan can significantly improve the efficiency. In addition, the RE is less 

affected by the sample size   and the measurement number  , which means the RE under V-

optimality is robust to the sample size   and the measurement number  .   
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Table 5: Theoretical results for each SSADT plan 

  
    

 
     

 
     

 
     

 

M (  ,   ,  ,   ) Det(I)(RE) 
Avar(    ) 

(RE) 

Det(I) 

(RE) 

Avar(    ) 
(RE) 

Det(I) 

(RE) 

Avar(    ) 
(RE) 

Det(I) 

(RE) 

Avar(    ) 
(RE) 

12 (3,3,3,3) 
1130.23 

(0.5590) 

1.5268 

(0.4718) 

334884.084 

(0.5590) 

0.2290 

(0.4718) 

1794769.389 

(0.5590) 

0.1309 

(0.4718) 

5232563.816 

(0.5590) 

0.0916 

(0.4718) 

 
(6,0,0,6) 

2021.74 

(1.000) 

1.0285 

(0.7004) 

599035.173 

(1.000) 

0.1543 

(0.7004) 

3210454.129 

(1.000) 

0.0882 

(0.7004) 

9359924.575 

(1.000) 

0.0617 

(0.7004) 

 
(10,0,0,2) 

1123.19 

(0.5556) 

0.7204 

(1.000) 

332797.318 

(0.5556) 

0.1081 

(1.000) 

1783585.627 

(0.5556) 

0.0617 

(1.000) 

5199958.097 

(0.5556) 

0.0432 

(1.000) 

 
(9,0,0,3) 

1516.31 

(0.7500) 

0.7436 

(0.9687) 

449276.38 

(0.7500) 

0.1115 

(0.9687) 

2407840.597 

(0.7500) 

0.0637 

(0.9687) 

7019943.431 

(0.7500) 

0.0446 

(0.9687) 

24 (6,6,6,6) 
9041.870 

(0.5590) 

0.7634 

(0.4718) 

2679072.67 

(0.5590) 

0.1145 

(0.4718) 

14358155.11 

(0.5590) 

0.0654 

(0.4718) 

41860510.53 

(0.5590) 

0.0458 

(0.4718) 

 
(12,0,0,12) 

16173.950 

(1.000) 

0.5142 

(0.7004) 

4792281.38 

(1.000) 

0.0771 

(0.7004) 

25683633.03 

(1.000) 

0.0441 

(0.7004) 

74879396.6 

(1.000) 

0.0308 

(0.7004) 

 
(20,0,0,4) 

8985.53 

(0.5556) 

0.3602 

(1.000) 

2662378.55 

(0.5556) 

0.0540 

(1.000) 

14268685.02 

(0.5556) 

0.0309 

(1.000) 

41599664.78 

(0.5556) 

0.0216 

(1.000) 

 
(19,0,0,5) 

10670.31 

(0.6597) 

0.3630 

(0.9922) 

3161574.52 

(0.6597) 

0.0544 

(0.9922) 

16944063.46 

(0.6597) 

0.0311 

(0.9922) 

49399601.92 

(0.6597) 

0.0217 

(0.9922) 

36 (9,9,9,9) 
30516.31 

(0.5590) 

0.5089 

(0.4718) 

9041870.27 

(0.5590) 

0.0763 

(0.4718) 

48458773.5 

(0.5590) 

0.0436 

(0.4718) 

141279223 

(0.5590) 

0.0305 

(0.4718) 

 
(18,0,0,18) 

54587.08 

(1.000) 

0.3428 

(0.7004) 

16173949.7 

(1.000) 

0.0514 

(0.7004) 

86682261.49 

(1.000) 

0.0294 

(0.7004) 

252717963.5 

(1.000) 

0.0205 

(0.7004) 

 
(30,0,0,6) 

30326.16 

(0.5556) 

0.2401 

(1.000) 

8985527.59 

(0.5556) 

0.0360 

(1.000) 

48156811.94 

(0.5556) 

0.0206 

(1.000) 

140398868.6 

(0.5556) 

0.0144 

(1.000) 

 
(29,0,0,7) 

34201.16 

(0.6265) 

0.2409 

(0.9969) 

10133678.3 

(0.6265) 

0.0361 

(0.9969) 

54310182.35 

(0.6265) 

0.0206 

(0.9969) 

158338724.1 

(0.6265) 

0.0144 

(0.9969) 
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Table 6: The average of 1000 simulated results for each SSADT plan 

  
    

 
     

 
     

 
     

 

M (  ,   ,  ,   ) 
Det(I) 

(RE) 

Avar(    ) 
(RE) 

Det(I) 

(RE) 

Avar(    ) 
(RE) 

Det(I) 

(RE) 

Avar(    ) 
(RE) 

Det(I) 

(RE) 

Avar(    ) 
(RE) 

12 (3,3,3,3) 
1.188203e+03 

(0.5942) 

0.6477 

(0.7296) 

3.240802e+05 

(0.5412) 

0.2132 

(0.4866) 

1.777996e+06 

(0.5455) 

0.1267 

(0.4767) 

5.221907e+06 

(0.5636) 

0.0894 

(0.4765) 

 
(6,0,0,6) 

1.999628e+03 

(1.000) 

0.6242 

(0.7570) 

5.987476e+05 

(1.0000) 

0.1472 

(0.7047) 

3.259160e+06 

(1.0000) 

0.0865 

(0.6978) 

9.265883e+06 

(1.0000) 

0.0607 

(0.7016) 

 
(10,0,0,2) 

1.153975e+03 

(0.5771) 

0.4725 

(1.0000) 

3.327246e+05 

(0.5557) 

0.1037 

(1.0000) 

1.785328e+06 

(0.5478) 

0.0604 

(1.0000) 

5.162781e+06 

(0.5572) 

0.0426 

(1.0000) 

 
(9,0,0,3) 

1.555858e+03 

(0.7781) 

0.4955 

(0.9537) 

4.616349e+05 

(0.7710) 

0.1076 

(0.9637) 

2.394626e+06 

(0.7347) 

0.0625 

(0.9653) 

7.094643e+06 

(0.7657) 

0.0441 

(0.9653) 

24 (6,6,6,6) 
9.221750e+03 

(0.5858) 

0.5118 

(0.5646) 

2.596628e+06 

(0.5397) 

0.1104 

(0.4787) 

1.428755e+07 

(0.5518) 

0.0645 

(0.4732) 

4.145059e+07 

(0.5540) 

0.0452 

(0.4762) 

 
(12,0,0,12) 

1.574240e+04 

(1.0000) 

0.4030 

(0.7170) 

4.811627e+06 

(1.0000) 

0.0755 

(0.7001) 

2.589298e+07 

(1.0000) 

0.0437 

(0.6982) 

7.481956e+07 

(1.0000) 

0.0307 

(0.7015) 

 
(20,0,0,4) 

9.753330e+03 

(0.6196) 

0.2889 

(1.0000) 

2.682511e+06 

(0.5575) 

0.0528 

(1.0000) 

1.419131e+07 

(0.5481) 

0.0305 

(1.0000) 

4.173539e+07 

(0.5578) 

0.0215 

(1.0000) 

 
(19,0,0,5) 

1.079573e+04 

(0.6858) 

0.2942 

(0.9820) 

3.179363e+06 

(0.6608) 

0.0534 

(0.9902) 

1.677987e+07 

(0.6480) 

0.0308 

(0.9920) 

4.998070e+07 

(0.6680) 

0.0217 

(0.9926) 

36 (9,9,9,9) 
2.981906e+04 

(0.5479) 

0.3872 

(0.5400) 

8.847249e+06 

(0.5454) 

0.0744 

(0.4771) 

4.832393e+07 

(0.5580) 

0.0432 

(0.4745) 

1.423945e+08 

(0.5666) 

0.0303 

(0.4730) 

 
(18,0,0,18) 

5.442127e+04 

(1.0000) 

0.2920 

(0.7162) 

1.622179e+07 

(1.0000) 

0.0507 

(0.7000) 

8.660255e+07 

(1.0000) 

0.0292 

(0.7016) 

2.513005e+08 

(1.0000) 

0.0205 

(0.7005) 

 
(30,0,0,6) 

3.186558e+04 

(0.5855) 

0.2091 

(1.0000) 

8.791722e+06 

(0.5420) 

0.0355 

(1.0000) 

4.842867e+07 

(0.5592) 

0.0205 

(1.0000) 

1.404175e+08 

(0.5588) 

0.0143 

(1.0000) 

 
(29,0,0,7) 

3.406215e+04 

(0.6259) 

0.2093 

(0.9989) 

1.013832e+07 

(0.6250) 

0.0358 

(0.9922) 

5.433593e+07 

(0.6274) 

0.0205 

(0.9976) 

1.588978e+08 

(0.6323) 

0.0144 

(0.9954) 
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6. Conclusions 

In this paper, we investigated the optimal SSADT plan problem for the TED process based on the 

D-optimality criterion and V-optimality criterion. Although many research efforts have been devoted 

to finding the optimum SSADT plan, most of the results are based primarily on numerical studies or 

special degradation models. In this paper, the studied TED process is a general class of degradation 

model, which includes some commonly used stochastic process as its special cases, e.g., Wiener, 

Gamma, and IG processes. In addition, we have derived that the optimal SSADT plan with multiple 

stress levels based on TED process with an exponential drift parameter-stress relationship in a formal 

manner. Our results suggest that the optimal SSADT actually is the simple SSADT with two stress 

levels, that is the minimum stress level    and the maximum stress level   . Furthermore, we have 

theoretically derived the optimal allocation of inspections at each stress level based on D-optimality 

and V-optimality criteria, respectively. 

A numerical example, a study of SSADT of LE s’ light intensity, is provided for comparison. 

The results indicate that the efficiency is improved by using the optimum simple SSADT plan. 

Furthermore, the Monte Carlo simulations are used to study the performances of the optimum plan 

and some non-optimum plans. The results also show that the efficiency is improved by using the 

optimum simple SSADT plan. 

In the future work, when the parameter-stress relationship is not an exponential function, the 

optimal SSADT design can be considered. Also, it will be useful to search for a robust SSADT plan in 

the sense that the plan could provide reasonable efficiencies to many objectives of interest 

simultaneously. 
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Appendix A  

PROOF OF THEOREM 1. 

For D-optimality: For fixed total sample size  ,    and  , maximizing    ( ( )) in Eq.17 is 

equivalent to maximizing 
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For V-optimality: For fixed total sample size  ,    and  , minimizing Eq.22 is equivalent to 

minimizing 
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When    ,   (  )   (  ) and   (  ) is monotone increasing. Then, 
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Appendix B 

PROOF OF THEOREM 2 

For D-optimality: we define: 
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Taking the derivative with respect to    and   , we have : 
     (     )

   
 and 

     (     )

   
. With solving 

the above two equations for   and setting the two expression equal to each other , we can find the 

optimal values as   
    

  
 

 
.  

For V-optimality: we define: 

     (     )       (     )   (       ) 

Taking the derivative with respect to p1 and pm, we have:  
      (     )

   
 and 

      (     )

   
. With solving 

the above two equations for   and setting these two expressions equal to each other, we can find the 

optimal values as 
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