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ABSTRACT
Based on the existing research work on the modeling and control of 
cyclically operated high-throughput screening systems, this paper 
presents the scheduling and control of high-throughput screening 
systems with uncertainties and disturbances. Different definitions 
of disturbance decoupling problems are considered in order to 
achieve the optimal scheduling of high-throughput screening sys-
tems. Online scheduling was achieved by computing optimal pre-
filters and output feedback controllers, which can be computed 
using residuation theory. The control strategies achieved by the 
controllers are optimal in the sense of the just-in-time criterion 
commonly used in industrial schedule practice.
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1. Introduction

A successful drug discovery is an extremely time-consuming procedure, including initial 
target identification and validation, pre-clinical trials on animals, regulatory approval to 
start trials in humans, clinical trials, submission of marketing and manufacturing 
authorization, licensing review, product sale, and post-marketing surveillance (Major, 
1998; Mayer et al., 2008; Mayr & Fuerst, 2008; Noah, 2010; Pereira & Williams, 2007). 
With the development of robotics and high-speed computing technology, it is feasible to 
develop automatic systems that can screen a large number of biochemical compounds in 
a short period. Such an automatic compound screening and analyzing process is called 
high-throughput screening (HTS) in drug discovery of pharmaceutical industries. HTS is 
a standard technology routinely employed in the pharmaceutical industry for drug 
discovery processes. It is used for initial screening in the process of drug discovery to 
reduce what is an almost infinite number of possible combinations of compounds to 
a reasonably few enough possibilities on which further testing can be carried out. Many 
HTS systems consist of several activities on several different resources. An HTS operation 
can incorporate multiple batches, each with hundreds of events, where a batch is 
a combination of all the operations to be performed on a set of substances for complete 
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analysis. HTS provides a practical and efficient method to test a large number of synthetic 
compounds in miniaturized in vitro assays to identify hit targets of interest. Then, the 
chemical compounds that have therapeutic and useful pharmacological or biological 
activities, called leads, are evaluated and undergo lead optimization to identify promising 
lead compounds. Followed by the initial synthesis and animal testing in preclinical trials 
and three phases of clinical trials on humans, a drug can be put on the market after the 
Food and Drug Administration (FDA) approval.

It is necessary to develop a schedule for an HTS system that ensures that analysis is 
completed in the shortest possible time, i.e. increase the throughput or reduce the 
makespan (makespan is the completion time of the last activity of a process). The 
optimal schedule must also ensure consistency in time spent on each activity for every 
batch. This means that the operation of the HTS system must be cyclic. There have 
been various methods developed to obtain an optimal schedule for an HTS system and 
other cyclic systems. The problem of obtaining a time-optimal schedule for an HTS 
system, as an example of a strictly cyclic system, was formulated and solved as mixed 
integer linear programming (MILP) problem by Mayer and Raisch (2004). This MILP 
approach is useful for obtaining a static schedule, which works well so long as there are 
no changes to the cyclic design. A time-optimal schedule was also obtained by Mayer 
and Raisch (2003) for cyclic systems with multicapacity resources. HTS processes with 
hierarchical nested cycles were considered by Mayer et al. (2008), where mixed integer 
optimization was adopted to minimize the overall cycle time. In these existing works, 
the schedules obtained are static as they do not tolerate any deviation from the cyclic 
processes.

Starting from a static schedule, a max-plus algebra model of an HTS system was 
obtained in Brunsch and Raisch (2009). In a max-plus linear system, the addition and 
multiplication operations in the classical control systems are replaced by max and 
addition, respectively. The real number is also replaced by a special algebra called max- 
plus algebra with the operations changed accordingly (Baccelli et al., 1992; Golan, 1999). 
The scheduling problem can be transformed into the problem of computing a feedback 
controller that generates possible control actions in the presence of disturbances for such 
a max-plus linear system model. The controller generates a control input that gives an 
optimal schedule in spite of system malfunctions and delays. Brunsch et al. (2012) 
presented an optimal feedback controller. There have been investigations in this vein 
into scheduling and control of dioid models of discrete event systems in the presence of 
disturbances (Shang et al. (2013, p. 2016a)), all of which can be applied to HTS systems. 
In Shang, et al. (2016b), the concept of disturbance decoupling problem (DDP) for 
uncertain max-plus linear systems whose system matrices vary between intervals was 
introduced.

In this paper, an HTS process is first modeled in max-plus algebra and a static 
schedule is developed for the process based on the model. Online scheduling was then 
considered by computing controllers that ensure an optimal schedule when there are 
disturbances. The result is extended to the uncertain case where system matrices lie in 
intervals. The rest of this paper is organized as follows. Section 2 gives the mathematical 
fundamentals of the max-plus algebra that is to be used in describing the HTS system. In 
Section 3, the specifications of the HTS system considered are described. Sections 4 and 5 
detail online scheduling of certain and uncertain HTS systems, respectively. Simulation 

PRODUCTION & MANUFACTURING RESEARCH 451



results are presented in Section 6 and a discussion of the result and contribution of the 
study is presented in Section 7. Section 8 concludes this paper with future research 
directions.

2. Mathematical preliminaries of max-plus algebra

2.1. Idempotent semirings

Definition 1. A semiring is a set S, equipped with two operations � and � , such that 
ðS;�Þ is a commutative monoid (the zero element will be denoted ε), ðS;�Þ is a monoid 
(the unit element will be denoted e), operation � is right and left distributive over � , 
and ε is absorbing for the product (i.e. ε� a ¼ a� ε ¼ ε;"a).

A semiring S is idempotent if a� a ¼ a for all a 2 S. In an idempotent semiring S, 
operation � induces a partial order relation: 

ab � ( a ¼ a� b;"a; b 2 S: (1) 

Then, a _ b ¼ a� b. An idempotent semiring S is complete if sums of infinite numbers 
of terms are always defined, and if multiplication distributes over infinite sums too. In 
particular, the sum of all the elements of the idempotent semiring is denoted T (for ‘top’). 
In this paper, we denote Zmax ¼ ðZ [ f� 1;þ1g;max; � 1;þ; 0Þ as the integer max- 
plus semiring, where ε ¼ � 1 is the neutral (zero) element for max and e ¼ 0 is the unit 
element for þ . A non-empty subset B of a semiring S is a sub-semiring of S if for all 
a; b 2 B we have a� b 2 B and a� b 2 B. 

Definition 2. A mapping f : S ! S,where S is a complete idempotent semiring, is 
residuated if and only if f ðεÞ ¼ ε and f is lower-semicontinuous, that is, 

f �
i2I

ai

� �

¼ �
i2I

f aið Þ;

for any (finite or infinite) set I. The mapping f is said to be residuated and f # is called its 
residual.

Theorem 1. (Baccelli et al. 1992)When f is residuated, f # is the unique order preserving 
mapping such that 

f � f # � Id and f # � f � Id; (2) 

where Id is the identity mapping from S to S.

The operator f � f # denotes function composition, i.e. f � f # means that f is 
a function of f #.

It is straightforward that: La : S ! S; x 7!ax and Ra : S ! S; x7!xa are lower semi- 
continuous. Therefore, these mappings are residuated i.e. LaðxÞ� b (resp. RaðxÞ� b) 
admits a greatest solution, then the following notations are considered: 
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L]aðbÞ ¼ a o= b ¼ � xjaxbf gand
R]aðbÞ ¼ b o= a ¼ � xjxabf g;"a; b 2 S;

where L#
a and R#

a ðbÞ are the residual mappings. 

Theorem 2. (Baccelli et al. 1992)Over a complete max-plus algebra, the implicit equation 
x ¼ ax� b admits x ¼ a�b as the least solution, where a� ¼ �i2N ai (ð�Þ� is the Kleene Star 
operator) with a0 ¼ e.

Definition 3 (Cohen et al. 1996, 1997, 2006). Let S be a complete idempotent semiring and 
let C be a n� p matrix with entries in S. We call null kernel of C as the set of elements 
x 2 Sp such that Cx ¼ ε, denoted as ker C. We call equivalence kernel of LC (denoted by 
kereq C), the subset of all pairs of elements of Sp whose components are both mapped by LC 

to the same element in Sn,i.e. the following definition 

kereq C :¼ s; s0ð Þ 2 Spð Þ
2
jCs ¼ Cs0

n o
: (3) 

Clearly kereq C, is an equivalence relation on Sp, i:e:, Cs ¼ Cs0 , s0;sðmodkereqCÞ and 
furthermore it is a congruence and then we can define the quotient Sp= kereq C.

The subset of elements s0 2 Sp that are equivalent to s modulo kereq C is denoted as 
½s�C, i:e:, 

sC ¼ s0 2 Spjs0;sðmod kereqCÞ
� �

� Sp: (4) 

Definition 4 (Restricted map). Let f : Sp ! Sn be a map and A � Sp. We will denote 
fjA : A ! Sn the map defined by fjA ¼ f � IdjA where IdjA : A ! Sp; x 7!x be the cano-
nical injection. Identically, let B � Sn with Imf � B. Map Bjf : Sp ! B is defined by 
f ¼ IdjB�Bjf ,where IdjB : B ! Sn; x7!x be the canonical injection.

Definition 5 (Isotone map). A map f : Sp ! Sp is said to be order preserving or isotone if 
the following property holds: a� b) f ðaÞ� f ðbÞ:

Definition 6 (Closure map). An isotone map f : Sp ! Sp is a closure map if f � IdSp 

and f � f ¼ f .

Proposition 1 (2003. A closure map f : Sp ! Sp restricted to its image Imf jf is a residuated 
map whose residual is the canonical injection IdjImf : Imf ! Sp, s7!s. 

Corollary 1. Let K : Sp ! Sp; s7!s� be a map, where s� ¼ �i2N si. The map ImKjK is 
a residuated map whose residual is ImKjK

� �#
¼ IdjImK. This means that x ¼ s� is the 

greatest solution to inequality x� � s�. Actually, the greatest solution achieves equality.

There are basic properties for star and residuation operations in the residuation theory 
(Baccelli et al. 1992), for example, 

a�ðba�Þ� ¼ ða� bÞ� ¼ ða�bÞ�a�; (5) 

ðabÞ�a ¼ aðbaÞ�; (6) 
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aða o= ðaxÞÞ ¼ ax; (7) 

ðabÞ o= x ¼ b o= ða � nxÞ: (8) 

2.2. Max-plus linear systems

A max-plus linear system is defined by the following equations: 

xðkÞ ¼ Axðk � 1Þ � BuðkÞ

yðkÞ ¼ CxðkÞ; (9) 

where xðkÞ 2 Z
n
max, uðkÞ 2 Z

p
max, yðkÞ 2 Z

q
max and k 2 Z.

This kind of system makes it possible to describe the behaviors of TEGs, by associating 
to each transition a firing date sequence xiðkÞ 2 Zmax and predict the system evolution. 
For a state equation in (9), each increasing sequence xðkÞf g, it is possible to define the 
transformation XðγÞ ¼ �

k2Z
xðkÞγk where γ is a backward shift operator in event domain 

(i.e. YðγÞ ¼ γXðγÞ , yðkÞf g ¼ xðk � 1Þf g, (see, Baccelli et al. (1992), p. 228). This 
transformation is analogous to the z-transform used in discrete-time classical control 
theory and the formal series XðγÞ is a synthetic representation of the trajectory xðkÞ. The 
set of the formal power series in γ is denoted by Zmax½½γ�� and constitutes an idempotent 
semiring. Therefore, the state equation in (9) becomes a polynomial equation or an 
event-domain representation, 

XðγÞ ¼ AXðγÞ � BUðγÞ; where A ¼ γA;

YðγÞ ¼ CXðγÞ; (10) 

where the state XðγÞ 2 Zmax½½γ��
� �n

, the output YðγÞ 2 Zmax½½γ��
� �q

, and the input 

UðγÞ 2 Zmax½½γ��
� �p

, and matrices A ¼Δ γA 2 Zmax½½γ��
� �n�n

, B 2 Zmax½½γ��
� �n�p 

and C 2
Zmax½½γ��
� �q�n 

represent the link between transitions. According to the state equation 
(10), the evolution of the system is 

XðγÞ ¼ A�BUðγÞ;

YðγÞ ¼ CA�BUðγÞ: (11) 

The trajectories UðγÞ and YðγÞ can be related (Baccelli et al. (1992), p. 243) by the 
equation YðγÞ ¼ HðγÞUðγÞ, where HðγÞ ¼ CA�B 2 Zmax½½γ��

� �q�p 
is called the transfer 

matrix of the TEG. Entries of matrix H are periodic series (Baccelli et al. (1992), p. 260) in 
the idempotent semiring, usually represented by pðγÞ � qðγÞðτγνÞ

�, where pðγÞ is 
a polynomial representing the transient behavior, qðγÞ is a polynomial corresponding 
to a pattern which is repeated periodically, the period being given by the monomial ðτγνÞ. 
For example, consider a transfer matrix HðγÞ ¼ 0γ0 � 1γ� 3γ4 � ð5γ5 � 6γ7Þð3γ4Þ

�

represented in Figure 1. The transient behavior is given by pðγÞ ¼ 0γ0 � 1γ� 3γ4 

while the periodic behavior is given by qðγÞðτγνÞ
�
¼ ð5γ5 � 6γ7Þð3γ4Þ

�.
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3. Modeling of HTS systems

We consider an HTS system from the High-Throughput Screening Center (HTSC) at 
Washington University in St. Louis whose layout is shown in Figure 2. The system 
consists of different resources as identified in Figure 2 on which different activities are 

Figure 1. Diagram showing a series with transient and periodic behavior (Hardouin et al., 2010).

Figure 2. Layout of an HTS system. Source: HTSC at Washington University in St. Louis.
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carried out. Table 1 lists the resources used in the assay and their associated tasks. 
Cytomat2C is the microplate hotel where all the microplates are kept and where they 
are returned after all the processes are completed. The microplates have either 384 wells 
or 96 wells each. Teleshake is the station where the incubation occurs while reading is 
done in Envision. SCARA is the robot doing all of the transfer activities between 
resources while necessary biochemical substances are added to the microplates in the 
Multidrop.

An enzymatic assay process that consists of 11 activities was carried out on the HTS 
system of Figure 2. To develop a schedule for the process, we are interested in the start 
and release times of each activity of the process.

Figure 3 shows the start and release times of each of the activities. oi is the start time of 
activity i and ri its release time. It should be noted that for this particular process, the start 
time of activity i corresponds to the release time of activity ði � 1Þ. It can be seen that the 
11 activities of the process are carried out on 5 resources. Activities 1 and 11 are carried 
out on the Cytomat2C; activities 2; 4; 6; 8; and 10 are transfer activities carried out by the 
SCARA robot; activities 5 and 9 are done on the Envision. The Multidrop and the 
Teleshake are single activity resources responsible for activity 3 and acticvity 7, respec-
tively. All the resources are single capacity resources, except for the Teleshake, which has 
a capacity of 4. he assay process utilized full 384 -well microplates. If the microplates were 
not full or 96 -well microplates were used, the duration of activities 5 and 9, which are 
done on the Envision, might be reduced. For this process, the duration of other activities 
that include transfer, liquid dispensing and incubaTtion would remain unchanged 
because they are independent of the number of wells. The Gantt chart for one batch of 
the assay process is shown in Figure 4. We see that the makespan of a single process is 491 
s. It can also be seen from the Gantt chart that there is some overlap between some 

Table 1. Resources and their associated tasks at the HTS plant at Washington University in St. Louis.
Resource Device Type Tasks

Cytomat2C Microplate hotel Feeds microplates into the system.
Stores microplates after they are processed.

Teleshake Incubator (4-shelf microplate 
shaker)

Allows the biochemical substances to incubate in a controlled 
environment.

Envision Reader Analyzes chemical changes occurring in biochemical substances.
SCARA Robot arm (transportation 

device)
Transfers microplates between resources.

Multidrop- 
384

Liquid dispenser Dispenses liquid substance into the microplates’ wells.

Figure 3. Diagram showing the start and release times of each activity of the assay process.
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activities during a batch in which case a batch occupies more than one resource at the 
same time. Such is the case during transfer activities 6 and 8 and during the incubation, 
activity 7.

4. Scheduling of HTS systems by max-plus algebra

A timed event graph (TEG), shown in Figure 5 was generated to capture the information 
provided in Figure 3. The TEG has 12 transitions representing the start and release events 
of the different activities. The 4 tokens in the TEG indicate that the Teleshake has 
a capacity of 4. Each transition can be described by max-plus algebra. For instance, 

x2ðkÞ ¼ x1ðkÞ � 32 ¼ 32x1ðkÞ;

x12ðkÞ ¼ 5� x11ðkÞ � 0� x9ðkÞ � 0� x13ðk � 4Þ

¼ 5x11ðkÞ � x9ðkÞ � x13ðk � 4Þ:

In Zmax½½γ�� domain, these equations become 

X2ðγÞ ¼ 32X1ðγÞ;

X12ðγÞ ¼ 5X11ðγÞ � X9ðγÞ � γ4X13ðγÞ:

Figure 4. Gantt chart of a single batch of the assay process.

x1 x2 x319 x4 x523 x654

5 x13 x14x12 5210 x21 x22342054 x20

932

x8 x9x7 181 1 x10

0

x11 x19

0

x16 x17x15 181 1 x18

0

0

Figure 5. TEG of the assay process.
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The HTS system can be modeled as a max-plus linear system as in Eq. (10). The elements 
of matrix A are the states of the system and are given by the minimal time of each activity 
as shown in Figure 5. Matrices B and C are the input and output matrices respectively. 
The output signal is the release time of the last activity. The elements of matrix A that are 
not ε are 

A1;22 ¼ γ A2;1 ¼ 32 A3;2 ¼ 19 A4;3 ¼ 9 A5;4 ¼ 23 A6;5 ¼ 54
A6;8 ¼ e A7;10 ¼ γ A8;6 ¼ 18 A8;7 ¼ 1 A9;8 ¼ 18 A9;12 ¼ e
A10;9 ¼ 1 A11;14 ¼ γ A12;11 ¼ 5 A12;9 ¼ e A12;13 ¼ γ4 A13;12 ¼ 210
A13;16 ¼ e A14;13 ¼ 5 A15;18 ¼ γ A16;15 ¼ 1 A16;13 ¼ e A17;16 ¼ 18
A18;17 ¼ 1 A19;17 ¼ e A20;19 ¼ 54 A21;20 ¼ 20 A22;21 ¼ 34;

where Ai;j gives the element at row i and column j in matrix A.
The elements of matrices B and C that are not ε are 

B1;1 ¼ B7;2 ¼ B11;3 ¼ B15;4 ¼ C1;22 ¼ e;

where Bi;j and Ci;j give the element at row i and column j in matrices B and C.
It is trivial to obtain an off-line schedule for the system by computing its output 

trajectory as given in Eq. (11). To obtain an on-line schedule in the presence of 
disturbances, we need to find an optimal controller that solves the disturbance decou-
pling problem as explained in Shang et al. (2013, 2016a).

4.1. Online scheduling for HTS system

Disturbances are unforeseen disruptions to the normal evolution of an HTS system 
where a disturbance can be a breakdown of the robot arm or an obstruction in its way. 
Disturbances are usually modelled as uncontrollable inputs in a system. For our running 
example, we assume that there is a disruption in the movement of the robot arm. These 
disturbances are shown as inputs q1 to q5 in Figure 6. The system equations become 

XðγÞ ¼ AXðγÞ � BUðγÞ � SQðγÞ;

YðγÞ ¼ CXðγÞ;

x1 x2 x319 x4 x523 x654

5 x13 x14x12 5210 x21 x22342054 x20

932

x8 x9x7 181 1 x10

0

x11 x19

0

x16 x17x15 181 1 x18

0

0

q2

q3

q1

q4

q5

Figure 6. TEG of the assay process with disturbances.
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where matrices A;B and C are as earlier defined and the non- ε elements of the 
disturbance matrix are: 

S2;1 ¼ S4;2 ¼ S8;3 ¼ S16;4 ¼ S20;5 ¼ e:

Definition 7. (Shang, Hardouin, Lhommeau, Maia et al. 2016a) The system (12) is called 
disturbance decoupled by a state-feedback control uðkÞ ¼ Fxðk � 1Þ � vðkÞ) (or an open- 
loop control uðkÞ ¼ PvðkÞ) if and only if any disturbance signal will not affect the system 
output yðkÞ for all k 2 Z and for any initial condition x0.

Solving the DDP means that the control UðγÞ has to achieve 

CA�BUðγÞ � CA�SQðγÞ ¼ CA�BUðγÞ (12) 

, CA�SQðγÞ�CA�BUðγÞ: (13) 

The control input is computed from an external input, VðγÞ, and the disturbance, QðγÞ, 
which is measurable, as UðγÞ ¼ PQðγÞ � VðγÞ. For any external input VðγÞ and dis-
turbance QðγÞ, the inequality above is equivalent to 

CA�SQðγÞCA�BPQðγÞ � CA�BVðγÞ: (14) 

Definition 8. (Shang, Hardouin, Lhommeau, Maia et al. 2016a) The max-plus linear 
system described in (12) is called modified disturbance decoupled by a state feedback 
control uðkÞ ¼ Fxðk � 1Þ � vðkÞ (or an open-loop control uðkÞ ¼ PvðkÞ) if and only if the 
system output signals will not be disturbed more than the output signals influenced by the 
disturbances.

The objective of the modified disturbance decoupling problem (MDDP) is to find 
the greatest open-loop or output feedback control UðγÞ such that the output 
trajectories will not be delayed more than the disturbance signals have acted on 
the system. This means finding the greatest control, UðγÞ, such that the following 
equation holds, 

CA�BUðγÞ � CA�SQðγÞ ¼ CA�SQðγÞ (15) 

, CA�BUðγÞCA�SQðγÞ: (16) 

The scheduling problem can be transformed into a DDP or MDDP in max-plus linear 
systems. This is done by finding a prefilter or feedback controller that generates a control 
input to solve the DDP or MDDP. Such a control input generates an optimal schedule in 
spite of system malfunctions and delays, based on the just-in-time criterion according to 
the industry standard.

If the control UðγÞ ¼ PQðγÞ, where P is a prefilter which generates the control by 
taking the measured disturbances into account, then, solving the MDDP is equivalent to 
finding a prefilter P satisfying 
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CA�BPQðγÞ � CA�SQðγÞ ¼ CA�SQðγÞ; "QðγÞ: (17) 

The optimum prefilter matrix Popt that solves both the DDP and MDDP is given by 

Popt ¼ CA�B
� �

o= CA�S
� �

: (18) 

According to Shang et al.(2016a), the optimal feedback controller Fopt that generates 
a schedule according to the just-in-time criterion is given by 

Fopt ¼ CA�B
� �

o= CA�eB
� �

o= CA�eB
� �

where eB ¼ BjS½ �:

When simulated in MinMaxGD, a C++ toolbox for handling periodic series introduced 
in Cottenceau et al. (2000), we obtain 

Popt ¼

459γð491γÞ� 431γð491γÞ� 354γð491γÞ� 126γð491γÞ� 54γð491γÞ�

104ð491γÞ� 76ð491γÞ� 490γð491γÞ� 262γð491γÞ� 190γð491γÞ�

118ð491γÞ� 90ð491γÞ� 13ð491γÞ� 276γð491γÞ� 204γð491γÞ�

332ð491γÞ� 304ð491γÞ� 227ð491γÞ� 490γð491γÞ� 418γð491γÞ�

2

6
6
4

3

7
7
5;

and 

Fopt ¼

γð491γÞ�

136γð491γÞ�

150γð491γÞ�

364γð491γÞ�

2

6
6
4

3

7
7
5:

Each element in Popt and Fopt is periodic with a period of 491 time units. For instance, 

Poptð2; 1Þ ¼ 104ð491γÞ�

¼ 104ðe� 491γ� 982γ2 � 1473γ3 � 1964γ4 � � � �Þ

¼ 104� 595γ� 1086γ2 � 1577γ3 � 2068γ4 � � � � :

A realization of the TEG together with the controllers is shown in Figure 7. It can be seen 
that the disturbances pass through the prefilter before going into the system. We see that 

V ¼ PoptQ; and 

U ¼ F̂CX � V ¼ F̂Y � V:

For instance, the first external input, V1, is gotten from the first row of Popt and the 
disturbance vector as follows: 

V1 ¼ 459γð491γÞ� 431γð491γÞ� 354γð491γÞ� 126γð491γÞ� 54γð491γÞ�
� �

q1
q2
q3
q4
q5

2

6
6
6
6
4

3

7
7
7
7
5

;

and the first control input U1 is 
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U1 ¼ γð491γÞ�y � V1:

In γð491γÞ�, the cycle time is 491, and γ represents a token in the cyclic mode.

5. Online scheduling of uncertain HTS systems

For the HTS process we have been considering, the time delays indicated in Figure 5 and 
Figure 6 give the minimum amount of time to be spent on each activity. In some cases, 
certain activities have a lower limit and an upper limit of the time they take rather than 
a minimal time. In such a situation where the times for some activities are not fixed, we 
have what we call an uncertain HTS system, which can be described by uncertain max- 
plus linear system.

An uncertain max-plus linear system is defined as 

xðkÞ ¼ Axðk � 1Þ � BuðkÞ � SqðkÞ;

yðkÞ ¼ CxðkÞ; (19) 

where system matrices lie in corresponding matrix intervals with known lower and upper 
bounds, specifically, A 2 A ¼ ½Al;Au� 2 IðZmaxÞ

n�n, B 2 B ¼ ½Bl;Bu� 2 IðZmaxÞ
n�p, 

S 2 S ¼ ½Sl; Su� 2 IðZmaxÞ
n�r , and C 2 C ¼ ½Cl;Cu� 2 IðZmaxÞ

q�n. And the states are 
xðkÞ 2 X ffi Z

n
max, the inputs are uðkÞ 2 U ffi Z

p
max, the disturbances are 

qðkÞ 2 Q ffi Z
r
max, and the outputs are yðkÞ 2 Y ffi Z

q
max and k 2 Z.

An uncertain HTS system with disturbances can be disturbance decoupled by different 
control inputs in much the same way as for systems without uncertainties. However, the 
controls have to be selected very restrictively in order to solve the DDP and the MDDP 
for all the variations of the system matrices, as well as for arbitrary disturbances. 
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Figure 7. TEG model of the HTS system with integrated prefilter and the output controllers.
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Sometimes, such non-trivial controls do not even exist for all variations of system 
matrices. Therefore, we relax the definitions of the DDP and MDDP in order to achieve 
more general results.

5.1. Weakly DDP and weakly MDDP

Definition 9. (WDDP) The uncertain max-plus linear system in (19) is called weakly 
disturbance decoupled if and only if there exists a control U belonging to an interval U such 
that the output trajectory interval, generated by the disturbances and the uncertain 
matrices, belongs to the output trajectory interval, generated by the control U. In other 
words, solving WDDP means that the following equality 

CA�BU � CA�SQ ¼ CA�BU; (20) 

holds for intervals of matrices A, B, C, S,and the disturbance interval Q.

Definition 10. (WMDDP) The max-plus linear system described in (19) is called weakly 
modified disturbance decoupled if and only if it exists a control U belonging to an interval 
U such that the output trajectories belong to the interval generated by any disturbances and 
uncertain matrices. In other words, solving WMDDP means that the following equality 

CA�BU � CA�SQ ¼ CA�SQ; (21) 

is satisfied for intervals of matrices A, B, C, S,and the disturbance interval Q.

The controllers solving the DDP and MDDP have to solve them for any arbitrary 
variations of system matrices, as well as the disturbances. On the other hand, the WDDP 
and WMDDP only requires that there exists an interval of control U which induces an 
output interval unchanged by the disturbance QðγÞ in an interval Q.

5.2. Open-loop controller interval solving WMDDP

Solving the WMDDP by an open-loop controller requires finding an optimal prefilter 
interval PWMDDP

opt ¼ ½Plopt; Puopt� such that the control interval U ¼ PQ solves the 
WMDDP. U ¼ ½Ul;Uu�, P ¼ ½Pl; Pu� and Q is interval of the disturbances. PWMDDP

opt 

ensures the following equality holds 

CA�B PWMDDP
opt � CA�S ¼ CA�S; (22) 

, CA�BPWMDDP
opt � CA�S:

The optimal prefilter interval was found in Shang, Hardouin, Lhommeau, Maia et al. 
(2016a) as 

PWMDDP
opt ¼

Δ CA�B o= CA�S ¼ PWMDDP
lopt ; PWMDDP

uopt

h i
; (23) 

where 
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PWMDDP
lopt ¼ ClA

�

l Bl o=ClA
�

l Sl ^ CuA�uBu o= CuA�uSu;

PWMDDP
uopt ¼ CuA�uBu o=CuA�uSu: (24) 

5.3. Feedback controller interval solving WMDDP

As introduced in Shang, Hardouin, Lhommeau, Maia et al. (2016a), the output feedback 
controller structure solving the WMDDP is shown in Figure 8. The output feedback 
control interval that solves the WMDDP is U ¼ FY � V ¼ FCX � V. If we define 
eH ¼ CA�eB, the controller F has to satisfy 

eH e
ε

� �

F
� ��

eH � eH; (25) 

for all eH 2 eH ¼ ½ClA
�

l
eBl;CuA�ueBu�, eBl ¼ Bl jSl½ � and eBl ¼ Bu jSu½ �.

The interval of output feedback controls F ¼ ½Fl; Fu� is 

bF ¼ H o= eH o= eH ¼ F̂lopt; F̂uopt
� �

¼ Hl o= eHl o= eHl ^Hu o= eHu o= eHu;Hu o= eHu o= eHu
� �

: (26) 

6. Simulation results

The uncertain case of the HTS assay process is considered to simulate controllers that 
preserve open-loop behavior in the presence of disturbance. The incubation time in the 
uncertain HTS process has an upper and a lower bound; it takes up to 210 s and no more 
than 235 s as shown in Figure 9.

The controllers given in Eqs (24) and (26) are computed for the HTS system. The 
optimal lower and upper bounds of the prefilter are 

Figure 8. The output feedback structure.
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PWMDDP
lopt ¼

459γð491γÞ� 431γð491γÞ� 354γð491γÞ� 126γð491γÞ� 54γð491γÞ�

104ð491γÞ� 76ð491γÞ� 490γð491γÞ� 262γð491γÞ� 190γð491γÞ�

118ð491γÞ� 90ð491γÞ� 13ð491γÞ� 276γð491γÞ� 204γð491γÞ�

332ð491γÞ� 304ð491γÞ� 227ð491γÞ� 490γð491γÞ� 418γð491γÞ�

2

6
6
4

3

7
7
5;

and 

PWMDDP
uopt ¼

484γð516γÞ� 456γð516γÞ� 379γð516γÞ� 126γð516γÞ� 54γð516γÞ�

104ð516γÞ� 76ð516γÞ� 515γð516γÞ� 262γð516γÞ� 190γð516γÞ�

118ð516γÞ� 90ð516γÞ� 13ð516γÞ� 276γð516γÞ� 204γð516γÞ�

357ð516γÞ� 329ð516γÞ� 252ð516γÞ� 515γð516γÞ� 443γð516γÞ�

2

6
6
4

3

7
7
5:

The optimal lower and upper bounds of the output feedback controller are 

F̂lopt ¼

γð491γÞ�

136γð491γÞ�

150γð491γÞ�

364γð491γÞ�

2

6
6
4

3

7
7
5;

and 

F̂uopt ¼

γð516γÞ�

136γð516γÞ�

150γð516γÞ�

389γð516γÞ�

2

6
6
4

3

7
7
5:

In Figure 10, the upper-bound prefilter, PWMDDP
uopt and the upper-bound output feed-

back controller, F̂uopt are integrated into the TEG of the HTS process. The Gantt chart of 
the process is shown in Figure 11. The states corresponding to the activities marked in the 
Gantt chart are given in Table 2. It is seen from the Gantt chart that the prefilter 
eliminates unnecessary wait time caused by the disturbance. With the prefilter, the 
completion time of each activity satisfies the just-in-time criterion.
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5 x13 x14x12 5
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x21 x22342054 x20
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x8 x9x7 181 1 x10

0
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q4

q5

Figure 9. TEG of the assay process of the uncertain case with disturbances.
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This is better seen in Tables 3 and 4. Table 3 shows the start times, release times and 
durations of each activity with and without disturbance and when the prefilter is 
included. We see, for example, that activity 2 has a duration of 516 seconds without 
prefilter. This is reduced to just 20 s, which is the minimum required time, by the 
prefilter. Table 4 shows that this is a 96% improvement. Therefore, the prefilter ensures 
a just-in-time completion time.

7. Discussion

This study has successfully obtained a max-plus algebraic model for an HTS system 
that is operated cyclically. We take further the method introduced in Brunsch and 
Raisch (2009) for obtaining an online schedule for cyclically operated HTS systems 
with disturbances by obtaining a schedule for an HTS system with disturbances and 
uncertainties. This study also presented optimal controllers that solve the DDP, and 
thereby solving the scheduling problem for an HTS system with disturbances and 
uncertainties. Whereas in Shang et al. (2016b), controllers that solve DDP for uncertain 
max-plus linear systems whose system matrices vary between intervals was introduced, 
we show that the controllers solving DDP also solve the scheduling problem in 
cyclically operated discrete event systems. The supervisory control proposed in this 
study will be useful for generating static schedules for HTS systems and other discrete 
event systems. More importantly, it can be used to generate online schedule, which is 
important for when there are disturbances or deviations from a predetermined sche-
dule during operation.

In summation, an HTS process is first modeled in max-plus algebra and a static schedule 
is developed for the process based on the model. Online scheduling was then considered by 
computing controllers that ensure an optimal schedule when there are disturbances. The 
result is extended to the uncertain case where system matrices lie in intervals. This paper 
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Figure 10. TEG model of the HTS system with integrated upper bound prefilter and the output 
controllers.
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presents the solution of the scheduling problem for HTS systems, with and without 
uncertainties, by solving different types of disturbance decoupling problems of max-plus 
linear systems. Open-loop controls and the output feedback controls solving the DDP, 
which ultimately solves an online scheduling problem, were constructed using the residua-
tion the ory and proved to be optimal schedules for the just-in-time control criterion.

8. Future research

In future research, the method employed here will be extended to other high-throughput 
processes such as High-Throughput in vitro Absorption, Distribution, Metabolism and 
Excretion (HT-ADME) and High-Throughput Mass Spectrometry (HT-MS) by model-
ing these processes as a max-plus linear systems. Of particular interest in future work will 
be HTS systems with nested cycles. The authors are working on other optimization 
models such as mixed integer programming and queueing theory to obtain additional 
results and to compare with the results obtained here.

Table 2. Activities and 
corresponding states.

Activity States

1 x1 � x6
2 x7 � x10
3 x11 � x14
4 x15 � x18
5 x19 � x22

Table 3. Comparison of activity duration without prefilter and with prefilter for k ¼ 1.
Without prefilter With prefilter

Activity Start time (s) Release time (s) Duration (s) Start time (s) Release time (s) Duration (s)

1 484 621 137 484 621 137
2 124 640 516 620 640 20
3 363 879 516 634 879 245
4 377 893 516 873 893 20
5 892 1000 108 892 1000 108

Table 4. Waiting time eliminated with prefilter.
Activity Waiting time eliminated % Time saved

1 0 0
2 496 96
3 275 52
4 496 96
5 0 0
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