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Abstract—This work is devoted to an application of the Kalman
smoother method for the detection of failure times for a system
of linear parabolic partial differential equation. For complex
processes whose evolution is described by partial differential
equations, the detection of failures is often difficult. In thermal
systems, for example, when one or more heating sources fail,
the sensors placed at a distance perceive the effect with delay.
The Kalman smoother is then applied when the classical Kalman
filter is used for the estimation of intensity of our sources. From
these estimation, it is then necessary to determine the moment of
failure and the possible restart of the heating. In the following,
the whole problematic and the method of resolution is presented.

Index Terms—Fault detection, Kalman smoother, heat source,
linear parabolic partial differential equations.

I. INTRODUCTION

Fault detection has become an attractive research topic in
the past couple of decades due to increased complexity of
industrial systems and elevated concerns about the safety of
these systems, some faults can be viewed as malfunctions of
the plant, sensor or actuators, that can lead to catastrophic
scenarios.

In the context of complex physical systems, many phe-
nomena are described by knowledge models based on partial
differential equations. In thermal sciences, for example, heat
exchange is described by Fourier’s law, which leads to a
system of parabolic partial differential equations (PDEs). In
numerous references, characteristics of inverses problems and
their numerical resolution are investigated [1] [2] [3].

Several difficulties must be mentioned. Firstly, some non-
linear PDEs are difficult to deal with but are still essential
for realistic physical situations. Secondly, the ill-posed nature
of inverse heat conduction problem makes them particularly
sensitive to measurement errors. Finally, the failures discussed
below are of the ”all-or-nothing” type and such discontinuous
switching associated with the heat transport phenomenon
places the framework of the study close to that of hybrid
systems with delay.

The Kalman filtering (KF) technique [4] is one of the most
widely used sequential algorithms, whose performance has

been widely verified in the state estimation of the different
problems. Currently, Kalman filter has been deeply investi-
gated for its application in inverse heat transfer problems. In
[5] a constructed Kalman smoothing technique to solve the
inverse estimation of radiation-conduction problem. In [6], [7],
the author develops a methodology to estimate transient heat
flux and temperature in a heat conduction problem in different
1D and 2D geometry using EKF coupled to RTS (EKS).

The application proposed in this article is an aluminium
plate on which we will find 2 heating sources and 3 tem-
perature sensors, all at a fixed location. For this type of
application, treated by Bayesian filters, we can cite Orlande’s
works [8], [9]. In this particular work [8], the authors develop
a methodology based on a Kalman filter making it possible to
estimate at each moment the intensity and the position of a
heating flux on a plate, allowing to estimate the trajectory of
a source.

This article is composed as follows. Section 2 presents a
description of the plate application and the modelling of the
associated heat equations by the finite difference method. The
3th section comes to present in a theoretical way the Kalman
filter as well as the Kalman smoother, and their use in our
application in order to estimate the intensity of our sources.
The 4th section presents how we will estimate the intensity of
the sources to estimate the instants of starting and resumption
of the sources, accompanied by numerical simulation results
for different combinations and different noises of temperature
sensor. Finally, we will conclude on the perspectives offered
by this work.

II. APPLICATION DESCRIPTION AND MODELIZATION

A. Description of the physical problem

The application offered here is an aluminum plate 1m wide,
1m long and 3mm thick. On this plate are arranged 2 heating
sources, as well as 3 temperature sensors. The 2 sources and
the 3 sensors have known positions on the plate. The heating
sources will behave erratically. Namely, these will experience
all-or-nothing failures. Thus, a source could break down (its
heat flux will then be zero) and then restart, and this several



times in a row. The problem with this application will be to
estimate the instant(s) at which one or more sources will fail,
as well as the instant(s) at which one or more sources will
restart.

So, mathematically, we define the geometric domain as Ω ⊂
R2 and each point in space has coordinates (x, y) ∈ Ω. In
what follows Ω = [−0.5, 0.5]2 is the plate of 1 m side, in this
domain is assumed to be thin enough to neglected temperature
gradients with respect to the thickness denoted by e in m. The
boundary of Ω is noted Γ. The time variable is t ∈ T = [0, tf ] .
The temperature at any point in space is noted θ(x, y, t). The
time evolution of temperature in the Ω domain is described
by the following set of equations see [10]:

∀(x, y, t) ∈ Ω× T

ρC
∂θ

∂t
− λ∆θ =

Φ− 2h (θ − θ0)

e
∀(x, y) ∈ Ω θ(x, y, 0) = θ0

∀(x, y; t) ∈ Γ× T − λ
∂θ

∂−→n
= 0

(1)

where ρC is the volumic heat (product of the specific heat
in J.kg−1.K−1 and the density in kg.m−3), λ is the ther-
mal conductivity (in W.m−1.K−1), Φ(x, y, t) is the heating
flux (in W ·m−2

)
, h the convective exchange coefficient

in W.m−2.K−1 and θ0(x, y) the ambient temperature (in
K). The conditions at the edges are of the homogeneous
Neumann type and correspond to adiabatic exchanges (a
realistic situation given the extremely thin thickness e of the
plate considered). For this application, we will consider the
following parameters:

• aluminium plate
• volumic heat :ρC = 2.421× 106 J.K−1.m−3

• thermal conductivity : λ = 178 W.m−1.K−1

• thickness : e = 2× 10−3 m
• convective transfer coefficient : h = 10 W ·m−2.K−1

• initial temperature : θ0(x, y) = 293 K
• final time : tf = 3600 s

Positions of the sources and sensors will be as follows
(represented in figure 1):

• the first source, S1 is located at point (x = 0.3; y = 0.3)
• the second source, S2 is located at point (x = −0.4; y =

−0.1)
• the first sensor, C1 is located at point (x = 0.2; y = 0)
• the second sensor, C2 is located at point (x = −0.1; y =

0.2)
• the third sensor, C3 is located at point (x = −0.1; y =

−0.2)
• the number of heating flux is equal to nheat = 2 and the

number of sensors is equal to nsensors = 3

The heat flux Φ(x, y, t) is provided by several heating
sources:

Φ(x, y, t) =

nheat∑
n=1

Φn(x, y, t) (2)

Each heating source is defined as follows:

Φn(x, y, t) = fn(x, y)gn(t)χn(t) (3)

The function fn(x, y) is the spatial support of the source
n, which follows a Gaussian distribution around the point
(xn, yn) as:

fn(x, y) = exp

(
− (x− xn)

2
+ (y − yn)

2

(5× 10−2)
2

)
(4)

Fig. 1. Positions of the 2 sources and 3 sensors on the plate.

The function gn(t) describes the heating flux provided
normally (without failure) by the source n. The heat flux for
sources 1 and 2 are plotted on figure 2.

Fig. 2. Flux g1(t) and g2(t) of the two sources



The function χn(t) describes the possible failures of the
heating source n:

χn(t) =

{
1 without fail
0 in case of default (5)

B. Approach of the problem by the finite difference method

The finite difference method see [11], [12] is one of the
many techniques to obtain numerical solutions of equation 1.
In all numerical solutions, the differential equation is replaced
by a discrete approximation [12].

We define the temperature θ = θki,j at point {x = i, y = j}
at time t = k, similarly for the heat flux in the same way,
Φ = Φk

i,j .

[
∂θ

∂t

]k
i,j

≃
θk+1
i,j − θki,j

∆t
,

[
∂2θ

∂x2

]k
i,j

≃
θki−1,j − 2θki,j + θki+1,j

∆x2[
∂2θ

∂y2

]k
i,j

≃
θki,j−1 − 2θki,j + θki,j+1

∆y2

In order to be mathematically exact, we assume that the
discretized temperature introduce a little approximation.

An explicit discretization of Equation (1) using finite dif-
ferences results in:

θk+1
i,j = α1 · θki,j + α2 · θki−1,j + α2 · θki+1,j + α3 · θki,j−1

+ α3 · θki,j+1 + α4 · Φk
i,j + α5 (6)

where the subscripts (i, j) denote the finite difference node at
xi = i∆x, i = 1, · · · , I and yj = j∆y, j = 1, · · · , J and the
superscript k denotes the time tk = k∆t, k = 1, · · · ,K, where
∆x, ∆y and ∆t are respectively the space and time steps.
αl=1,··· ,5, are constants (depending of the parameters of the
application and discretization: ∆t,∆x,∆y, h, e, ρ, C, λ, θ0).

The stability of the scheme (6) is due to Courant, Friedrichs,
and Lewy condition (see [13]). This condition is necessary for
the numerical scheme to produce a consistent solution when
solving (6) numerically.

For computation facilities, we rewrite our problem in the
form of a state evolution model by reordering sequentially all
the nodes (i, j) with the index m = 1, ...,M , where M =
I × J , giving:

θk+1 = A · θk +B ·Gk +H (7)

Matrix A will be a square matrix coding the linear combina-
tion of θ terms with the different corresponding αl coefficient.

The heat flux are assumed to be known at each time k:

Gk =

∣∣∣∣∣gk1gk2
and their positions as well, allowing to have a flux vector on
the whole domain: Φk

α4 · Φk = B ·Gk

The matrix B [I × J, nheat ] contains the spatial support of
the source fn, coding the positions of the gaussian distribution
around the point (xn, yn) .

At a given frequency, we measure the temperature at certain
points, these real measurements (thus subjected to an uncer-
tainty / error of measurement) will be named θkobs:

θkobs =

∣∣∣∣∣
θkC1

θkC2

θkC3

with θkCh
, h = 1, 2, 3 the scalar value given by the sensor

Ch at time k. Logically, these observations reflect the real
temperatures of the plate, so we can write:

θkobs = C · θk

The matrix C is a matrix composed of 0, except in h (3
in our case) element coding the positions of the sensors (the
column gives the position of the sensor). For example:

C =

 0 1 · · · 0 0 0 · · · 0 0 0
0 0 · · · 0 0 1 · · · 0 0 0
0 0 · · · 0 0 0 · · · 0 1 0


H a vector of length M with all elements equal to α5.
Our application is modeled as a state representation of a

discrete time invariant linear system:{
θk+1 = A · θk +B ·Gk +H

θk
obs = C · θk

(8)

It is assumed that a failure of source 1 occurred at
t = 1500s. The evolution of the temperatures at the three
sensors C1, C2, C3 are shown in figure 3 , assuming that the
observations are subject to a Gaussian noise of mean zero and
standard deviation σ = 1◦C.

Fig. 3. Temperatures: without failure and without noise (continuous) and with
failure and noise (points)



III. KALMAN FILTER AND SMOOTHER

The Kalman filter (see [4], [14], [15]) is used in a wide
range of technological fields, very used in applications of
control theory (speed/position estimation in particular), based
on a system modeled as a state representation (continuous or
discrete time).

For the application of the Kalman filter, we assumed that
the evolution and observation models of a state vector X
(containing the variables to be dynamically estimated) are
linear. Also, we assume that the noises in such models are
Gaussian, with known means and covariances, and they are
additive. Also, the evolution and observation models can be
written, respectively, as follows:

Xk+1 = Fk+1Xk + Sk+1 + vk (9)
Zk = HkXk + nk (10)

where F and H are known matrices for the linear evolutions
of state X and observation Z, respectively, and S is a known
vector for the state evolution model. Under the assumption
that Q and R are gaussians, X is also a gaussian with
computable mean µ and covariance Σ. Assuming that the
noises v and n have zero mean and covariance matrices Q
and R, respectively, the prediction and update steps of the
Kalman filter, for each k = 1, · · · , τ , where τ = tf/∆tobs are
given by:

Inputs: µk, Σk for each k = 1, · · · , τ computed by the
Kalman filter algorithm.

1) Initialize: µ̂0|0 and Σ0|0.
2) For k = 1, 2, ..., τ :

Prediction :

µ̂k|k−1 = Fkµ̂k−1|k−1 + Sk (11)

Σ̂k|k−1 = FkΣ̂k−1|k−1F
T
k +Qk (12)

Update :

Kk = Σ̂k|k−1H
T
k

(
HkΣ̂k|k−1H

T
k +Rk

)−1

(13)

µ̂k|k = µ̂k|k−1 +Kk

(
Zk −Hkµ̂k|k−1

)
(14)

Σ̂k|k = (I−KkHk) Σ̂k|k−1 (15)

where Kk is the so-called Kalman’s gain matrix, and Zk

is the observation vector at instant k. We recall that in our
application, temperatures are not observed at each instant (just
every 9 seconds), and so in the case of no observation at instant
k, then µ̂k|k = µ̂k|k−1.

In order to estimate the different instants of failure and
recovery of the sources, we will assume that we study this
application offline. In this case, a better estimation of the
state vector could be obtained by the Kalman smoother (see
[16]) also known under the name Rauch-Tung-Striebel (RTS)
smoother [17]. For this algorithm, we suppose that we have
already applied the Kalman filter, the backward steps are
described as follows:

Inputs: µ̂τ |τ , Σ̂τ |τ

1) For k = τ − 1, τ − 2, · · · , 1:

Pk = Σ̂k|kF
T
k Σ̂

−1

k+1|k

µ̂k|τ = µ̂k|k +Pk(µk+1|τ − µ̂k+1|k)

Σ̂k|τ = Σ̂k|k +Pk(Σk+1|τ − Σ̂k+1|k)C
T
k

For our problem, with the fact that our A, B and C matrices
are constant over the time, we can rewrite our equation (8) as
follows : {

θk+1 = A · θk +B ·Gk +H +wk

θk
obs = C · θk + vk

(16)

In what follows, we want to estimate, not only θk, but
especially the input Gk (we can easily arrange the constant),
vk and wk will allow to take into account respectively the
sensor noises and the model noises.

In order to estimate the input vector Gk, one approach is to
redesign the Kalman filter so that the input vector is included
in the state vector ( [8], [18]):{

θk+1 = A · θk +B ·Gk +H +wk

θk
obs = C · θk + vk

(17)

⇓
[

θk+1

Gk+1

]
= A′ ·

[
θk

Gk

]
+H ′ +w′

k

θk
obs = C ′ ·

[
θk

Gk

]
+ vk

(18)

with

A′ =

[
A B
0 I

]
and C ′ =

[
C 0

]
(19)

For vk, it can be defined as a multivariate Gaussian variable
(of dimension 3), with zero mean and variance-covariance
matrix depending on the sensors

µv =

∣∣∣∣∣ 0
0
0

Σv =

 σ2
C1

0 0
0 σ2

C2
0

0 0 σ2
C3


For wk, we can define it as a multivariate Gaussian variable

(of dimension θ by adding the dimension G), with mean zero
and the following variance matrix:

µw =

∣∣∣∣∣
0

0

...
0

0



Σw =



σ2
θ1,1

0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 σ2
θi,j

0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0 σ2
θI,J

0 0

0 0 0 0 0 σ2
g1 0

0 0 0 0 0 0 σ2
g2


(20)

The application of this Kalman smoother algorithm, allows
us to obtain ĝk1 and ĝk2 , respectively the estimate of g1 and g2
for each instant k. Now that we have ĝk1 and ĝk2 , we finally
have to estimate the instants of failure and restart of each
source: χk

1 and χk
2 (see equation (5)).

IV. FAILURE INSTANT ESTIMATION AND NUMERICAL
SIMULATIONS

A. Failure and restart instants estimation

In order to estimate the failure instant tfail, as well as the
restart instant (trest, we will foremost estimate the vectors
χk
1 and χk

2 . We will assume that the source failures are
independent events, and so we can treat each source separately.
We exploit the fact that we know the theoretical signal of
each gn(t) without failure (see Figure 2). By constructing all
possible χn vectors (with a failure instant tfail and a restart
instant trest), we will be able to compare the square error of
ĝn with all the gn(t)× χcand. The one with the lowest error
will be chosen, giving its instants of failure and restart.

Thus, for each source, we can use the following algorithm:
1) Construct all χcand vectors, the candidate vectors with

tfail = 1, 2, · · · , τ and trest = 1, 2, · · · , τ
2) For each χcand, compute gn(t)× χcand

3) For each χcand, compute Square Error (SE) between
gn(t)× χcand and ĝn

4) Select the χcand minimizing SE

B. Example

We propose to illustrate the proposed methodology with the
example of a failure on the first source at t = 1000s and a
restart at t = 2500s, for a monitoring of 1 hour (3600s).
Parameters are the following ∆x = ∆y = 0.05m, ∆t = 1s,
∆tobs = 9s. The sources follow the same as described in
figure 2.

First of all, we can plot the measurements (see figure 4).
Once we have the measurements, we can apply the Kalman
filter then the Kalman smoother. We obtained, for g1(k), the
signals of figure 5. With the g1 estimated by Kalman smoother,
we can apply the search strategy described in the previous
subsection. Figure 6 shows the different g1: theoretical (failure
free), real (the theoretical with failure), the smoother estimate,
and the best computed candidate. It can be seen that in
this example, estimated instants of failure and restart are the
following: tfail = 996s and trest = 2533s.

Fig. 4. Temperatures from sensors

Fig. 5. g1 estimated by Kalman filter and Kalman smoother

Fig. 6. Best g1 candidate gives tfail = 996 and trest = 2533



Now that the methodology has been described and that an
example has been given, we could give some performances
results in different configurations.

C. Results

In order to demonstrate the relevance of the proposed
approach, different configurations has been simulated. Data
have been taken from a Comsol simulation and analyzed
with Matlab by our described methodology (preventing inverse
crime). Discretization parameters are taken as ∆t = 1s,
∆x = ∆y = 0.05m. As on a real system, the measurements at
the three sensors are subject to an uncertainty described by a
Gaussian noise of zero mean and different standard deviations
σ are taken into account. So, results are given for 3 different
level of noise: σ = 0.1◦, σ = 0.5◦ and σ = 1◦. So, in order
to see the impact of such a parameter, for each configuration,
we give results in term of mean and standard deviation (in
brackets) on 30 simulations.

The first configuration is the simulation of a failure of the
first source at t = 1500s. Results are given in the table I. We
could clearly see that our approach gives good estimates of
the failure instant, but, as expected, the greater the noise of
the sensors, the worse the performance.

TABLE I
IDENTIFICATION OF FAILURE FOR DIFFERENT NOISE LEVELS

Failure t1fail ,1
σ = 0.1◦C 1500.03(1.426)
σ = 0.5◦C 1499.57(6.961)
σ = 1◦C 1501.30(13.63)

The second configuration is the simulation of a failure of
the first source at t = 1000s and a recovery at t = 2500s.
Results are given in the table II.

TABLE II
IDENTIFICATION OF FAILURE AND RESTART TIMES FOR DIFFERENT NOISE

LEVELS

Failure t1fail ,1 Restart t1rest,1
σ = 0.1◦C 1011.63(1.79) 2514.60(2.27)
σ = 0.5◦C 1013.43(8.29) 2513.27(10.87)
σ = 1◦C 1009.67(16.49) 2518.03(19.74)

In the last configuration, the goal is to demonstrate that
source separation is possible. So, failures on the 2 sources are
simulated at 2 different instants: we consider a failure of the
first source at t = 1000s and a failure instant of the second
source at t = 2000s. Results are given in the table III.

TABLE III
IDENTIFICATION OF FAILURE TIMES FOR THE TWO SOURCES FOR

DIFFERENT NOISE LEVELS

Failure t1fail ,1 Failure t1fail ,2
σ = 0.1◦C 1011.87(1.61) 2010.03(0.81)
σ = 0.5◦C 1009.67(8.78) 2009.63(3.69)
σ = 1◦C 1021.60(18.51) 2013.67(4.69)

V. CONCLUSION

In this article, we have proposed a methodology allowing
to estimate failure and restart of heat sources. This is done by
the application of a Kalman smoother and a search strategy
into different candidate signals of the source. Considering the
fact that we monitor temperature with only 3 sensors distant of
the sources, the approach gives very good results. Evidently,
next work will be to take into account that heat sources could
move on the plate.
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