HAL
open science

Chemical constituents of Antidesma bunius aerial parts and the anti-AGEs activity of selected compounds

Hieu Nguyen-Ngoc, Mostafa Alilou, Séverine Derbré, Patricia Blanchard, Giang Nam Pham, Duc Trong Nghiem, Pascal Richomme, Hermann Stuppner, Markus Ganzera

To cite this version:

Hieu Nguyen-Ngoc, Mostafa Alilou, Séverine Derbré, Patricia Blanchard, Giang Nam Pham, et al.. Chemical constituents of Antidesma bunius aerial parts and the anti-AGEs activity of selected compounds. Phytochemistry, 2022, 202, pp.113300. 10.1016/j.phytochem.2022.113300 . hal-03786700

HAL Id: hal-03786700
https://univ-angers.hal.science/hal-03786700
Submitted on 26 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal Pre-proof

Chemical constituents of Antidesma bunius aerial parts and the anti-AGEs activity of selected compounds

Hieu Nguyen-Ngoc, Mostafa Alilou, Séverine Derbré, Patricia Blanchard, Giang Nam Pham, Duc Trong Nghiem, Pascal Richomme, Hermann Stuppner, Markus Ganzera

PII: \quad S0031-9422(22)00216-3
DOI: https://doi.org/10.1016/j.phytochem.2022.113300
Reference: PHYTO 113300

To appear in: Phytochemistry

Received Date: 8 March 2022
Revised Date: 21 June 2022
Accepted Date: 27 June 2022

Please cite this article as: Nguyen-Ngoc, H., Alilou, M., Derbré, Sé., Blanchard, P., Pham, G.N., Nghiem, D.T., Richomme, P., Stuppner, H., Ganzera, M., Chemical constituents of Antidesma bunius aerial parts and the anti-AGEs activity of selected compounds, Phytochemistry (2022), doi: https://doi.org/10.1016/ j.phytochem.2022.113300.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2022 Published by Elsevier Ltd.

Graphical abstract

Inhibition of pentosidine-like advanced glycation endproducts (AGEs) formation

Antidesma bunius (L.) Spreng

$9 \mid I C_{50}=0.7 \mathrm{mM}$

$23 \mid I C_{50}=0.2 \mathrm{mM}$

$15 \mid I C_{50}=0.15 \mathrm{mM}$

$31 \mid I C_{50}=0.1 \mathrm{mM}$

control | $I C_{50}=1.4 \mathrm{mM}$

Chemical constituents of Antidesma bunius aerial parts and the anti-AGEs activity of selected compounds

Hieu Nguyen-Ngoc ${ }^{\text {a,b }}$, Mostafa Alilou ${ }^{\text {a }}$, Séverine Derbréc ${ }^{\text {c }}$, Patricia Blanchard ${ }^{\text {c }}$, Giang Nam Pham ${ }^{\text {d }}$, Duc Trong Nghieme ${ }^{e}$, Pascal Richomme ${ }^{\mathrm{c}}$, Hermann Stuppner ${ }^{\text {a }}$, Markus Ganzera ${ }^{\mathrm{a},{ }^{*}}$
${ }^{a}$ Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82/IV, 6020 Innsbruck, Austria
${ }^{b}$ Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
${ }^{\text {c }}$ SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
${ }^{d}$ College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
${ }^{e}$ Department of Botany, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam

Corresponding Author

Markus Ganzera - Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82/IV, 6020 Innsbruck, Austria; https://orcid.org/0000-0002-7407-9060; Tel: +43-512-507-58406. Fax: +43-512-507-58499, E-mail: markus.ganzera@uibk.ac.at

Abstract

Thirty-three natural products were isolated from the aerial parts of Antidesma bunius, Euphorbiaceae, a plant used in Vietnamese traditional medicine against rheumatoid arthritis. All compounds were reported the first time for this species, and nine constituents resembled undescribed natural products, noticeably three coumarinolignans with 2,2-dimethyl-1,3dioxolane moiety, two cyclopeptides, and two furofuran-type lignans connected with a phenylpropanoid moiety. The individual structures were elucidated by combining NMR and MS data, and their configuration was established by NOESY and ECD experiments and NMR calculations. Compounds with sufficient amount were analyzed for their inhibition of advanced glycation endproducts (AGEs) formation, metabolites involved in many diseases like Alzheimer, joint diseases or diabetes. With IC_{50} values below 0.2 mM rutin and p hydroxyphenethyl trans-ferulate showed to be moderately active, both still being 10-times more active than the positive control aminoguanidine.

Keywords: Antidesma bunius, Euphorbiaceae, Cyclopeptide, Coumarinolignan, Advanced glycation endproducts

1. Introduction

Antidesma bunius (L.) Spreng. (Euphorbiaceae) is an up to 30 m tall tree, cultivated in high-precipitation areas of China and some Southeast Asian countries like Indonesia, Laos, Myanmar, Thailand, and Vietnam. In Java and the Philippines, its fruits are used as food, for preparing syrups, jams, jellies, and wine and liqueur production. The leaves are consumed as a vegetable and utilized in traditional medicine for the treatment of traumatic injury (eFloras, 2008). In Vietnam, the Dao ethnic community uses all plant parts to cure rheumatoid arthritis (Asia Foundation, 2012).

In 2016, Do et al. reported the isolation of two biflavones and three terpenoid glycosides from the methanolic extract of A. bunius leaves. The compounds displayed moderate inhibitory effects on NO production in BV2 cells and LPS-induced RAW264.7 macrophages (Trang et al., 2016). Mauldina and colleagues (2017) published a study on the bioactivity-guided isolation of natural products from A. bunius stem bark, which identified friedelin, β-sitosterol, and betulinic acid as potent α-glucosidase inhibitors (Mauldina et al., 2017). Other studies focused on pharmacological properties of A. bunius berries, indicating inhibition of the adipogenesis process and differentiation of adipocytes (Krongyut and Sutthanut, 2019), stimulation of fat metabolism in the liver (Ngamlerst et al., 2019), and a reduced formation of plaques in arteries (Tawali S et al., 2019). Besides, to the best of our knowledge, nothing else is known about the phytochemical composition of A. bunius aerial parts. Thus, in order to enable better insights into the constituents and pharmacological activity of this relevant medicinal plant, we have conducted the current investigation utilizing plant material collected in the Dao ethnic community of Ba Vi , Hanoi, Vietnam. Our efforts resulted in the isolation and identification of nine previously undescribed (1-5, 8, 16, 17, and 20) and 24 known ($\mathbf{6}, \mathbf{7}, \mathbf{9 - 1 5}, \mathbf{1 8}, \mathbf{1 9}, \mathbf{2 1 - 3 3}$) compounds. Some of the isolated compounds were then examined for their potential to inhibit the formation of advanced glycation endproducts (AGEs).

In the organism, AGEs result from the non-enzymatic reaction between simple sugars or their oxidized derivatives (i.e., 1,2-dicarbonyl compounds) with the primary amino group of certain amino acids to form a Schiff base as intermediate. It is irreversibly converted to a ketoamine, the so-called Amadori product, which can undergo further reactions involving dicarbonyl intermediates to finally give stable AGEs (Nagaraj et al., 1996; Ueno et al., 2003). The latter are inflammatory mediators involved in vascular complications of diabetes, as well as many chronic inflammatory diseases such as rheumatoid arthritis (Dariya and Nagaraju, 2020; De Groot et al., 2010). Preventing AGEs formation using natural products, herbal drugs
or food could help avoiding such disorders by stopping oxidation and/or trapping dicarbonyl species (Khan et al., 2020).

2. Results and discussion

2.1. Isolation and structural elucidation of compounds

Nine previously not reported (1-5, 8, 16, 17, and 20), along with 24 known (6, 7, 9-15, 18, 19, 21-33) compounds, could be isolated from A. bunius leaves, and the corresponding structures were elucidated through extensive analysis of 1D and 2D NMR spectroscopic, and HRESIMS data. The absolute configuration of previously undescribed compounds was established by characteristic NMR shift values, electronic circular dichroism (ECD) calculations ($\mathbf{1 - 5}$, and 8), and other techniques, including GC-MS analysis for sugar identification (20) as well as $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right) 4$-induced CD spectra ($\mathbf{1 6}$ and 17) (Fig. 1).

Compound $\mathbf{1}$ was isolated as colorless oil. Its molecular formula $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{9}$ was established by a HRESIMS ion peak at $m / z 565.2424$ ($[\mathrm{M}-\mathrm{H}]^{-}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{3} 7 \mathrm{O} 9,565.2443$), corresponding to 14 indices of hydrogen deficiency. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of an ABX-spin system $[\delta \mathrm{H} 6.94(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.4 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, and $6.89(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$], two aromatic singlet protons $[\delta \mathrm{H} 7.46(1 \mathrm{H}, \mathrm{s})$ and $6.45(1 \mathrm{H}, \mathrm{s})$], two methoxy groups [$\delta_{\mathrm{H}} 3.87(3 \mathrm{H}, \mathrm{s})$ and $3.84(3 \mathrm{H}, \mathrm{s})$], and six methyl groups [$\delta_{\mathrm{H}} 1.48(6 \mathrm{H}, \mathrm{s}), 1.38$ $(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{s})$, and $0.72(3 \mathrm{H}, \mathrm{s})]$. The ${ }^{13} \mathrm{C}$ NMR revealed one esteric ($\delta \mathrm{C}$ 159.9), 14 aromatic and olefinic (in the range of $100-150 \mathrm{ppm}$), and four oxygenated signals ($\delta_{\mathrm{C}} 65.4,76.4,79.5$, and 80.3). The upfield-shifted esteric carbon at $\delta_{\mathrm{C}} 159.9$ suggested a coumarin scaffold. This prediction was supported by HMBC correlations of H-4 ($\delta_{\mathrm{H}} 7.46$)/ C$2\left(\delta_{\mathrm{C}} 159.9\right), \mathrm{C}-5\left(\delta_{\mathrm{C}} 100.0\right), \mathrm{C}-9\left(\delta_{\mathrm{C}} 137.9\right)$; H-5 ($\delta_{\mathrm{C}} 6.45$)/ C-4 ($\delta_{\mathrm{C}} 138.1$), C-9; and by a comparison with published data (Chen et al., 2004; Chen et al., 2007). A 1,1-dimethylallyl fragment was indicated by two methyls $\left[\delta_{\mathrm{H}} 1.48(6 \mathrm{H}, \mathrm{s})\right.$] and three olefinic protons $\left[\delta_{\mathrm{H}} 5.09\right.$ $(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz})$, and $6.18(1 \mathrm{H}, \mathrm{dd}, J=10.2,17.4 \mathrm{~Hz})]$. The $1,1-$ dimethylallyl moiety was determined to bind to $\mathrm{C}-3$ by an HMBC correlation from $\mathrm{H}-12$ (δ_{H} $1.48), \mathrm{H}-13\left(\delta_{\mathrm{H}} 1.48\right)$ to $\mathrm{C}-3\left(\delta_{\mathrm{C}} 132.8\right)$, while methoxylation at $\mathrm{C}-6$ was indicated by an HMBC correlation from OMe ($\delta_{\mathrm{H}} 3.84$) to C-6 ($\delta_{\mathrm{C}} 145.7$). An ABX-spin system, together with two downfield aromatic carbons at $\delta_{\mathrm{C}} 146.5$ and 146.9, and an HMBC correlation of OMe ($\delta_{\mathrm{H}} 3.87$)/ $\mathrm{C}-3^{\prime}\left(\delta_{\mathrm{C}} 146.9\right)$, was typical for the presence of a 3-methoxy-4-hydroxybenzene moiety. The structure of the side chain was elucidated based on HMBC and COSY correlations, as shown in Fig. 2. The two substructures were connected through 7-O-7' and $8-O-8^{\prime}$ etheric bonds, which
were assured by key HMBC correlations of H-7' $\delta_{\mathrm{H}} 5.22$)/C-7 ($\delta_{\mathrm{c}} 135.7$) and $\mathrm{H}^{\prime} 8^{\prime}\left(\delta_{\mathrm{H}} 4.36\right) / \mathrm{C}-$ 8 ($\delta_{\mathrm{C}} 132.0$). The coupling constant ($J=5.4 \mathrm{~Hz}$) of the two vicinal protons $\mathrm{H}-7^{\prime}$ and $\mathrm{H}-8^{\prime}$ indicated that they are trans-orientated (Bozzo et al., 2003; Chen et al., 2004). However, NOESY correlations did not allow the determination of the relative configuration at C-10'. Therefore, the planar structure of $\mathbf{1}$ was established as 2-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)propan-2-yl)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-8-(2-methylbut-3-en-2-yl)-2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one.

Compound $\mathbf{2}$ had the same molecular formula as $\mathbf{1}$, which was indicated by a deprotonated ion peak at $m / z 565.2419\left([\mathrm{M}-\mathrm{H}]^{-}\right.$, calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O}_{9}, 565.2443\right)$ in the HRESI mass spectrum. NMR data of $\mathbf{2}$ were similar to $\mathbf{1}$, except for $\mathrm{C}^{\prime} \mathbf{7}^{\prime}, 8^{\prime}$, and 10^{\prime} (Table 1). The coupling constants of $\mathrm{H}-7^{\prime}$ and $\mathrm{H}-8^{\prime}$ were 6.6 Hz , which is typical for trans-conformation of the two protons (Bozzo et al., 2003; Chen et al., 2004). Again, the relative configuration of position C-10' could not be established by NOESY. Thus, the planar structure of $\mathbf{2}$ was determined as 2-(2-((2,2-dimethyl-1,3-dioxolan-4-yl)propan-2-yl)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-8-(2-methylbut-3-en-2-yl)-2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one.

Considering the presence of a 2,2-dimethyl-1,3-dioxolane group in compounds $\mathbf{1}$ and $\mathbf{2}$, which can potentially be introduced while extraction/fractionation using acetone, an LC-MS analysis of the crude methanolic extract of A. bunius was performed for further confirmation (data not shown in detail). The obtained MS spectra in extracted ion chromatogram mode did not indicate the presence of $\mathbf{1}$ (MW: 526.58) or $\mathbf{2}$ (MW: 526.58) in the extract. Thus, it was concluded that these two compounds are artifacts. Nevertheless, also the original structures, i.e. those without the dioxolane group, were found to be previously undescribed natural products.

Both compounds shared the same planar structure, and the relative configuration of C-7' and 8^{\prime} was determined to be trans (gauche), based on the previously mentioned coupling constants (lower ${ }^{3} J$ coupling constants due to the gauche effect) and observed NOE from H-7' to $\mathrm{H}-2^{\prime}$ in 1 and 2. Moreover, these two compounds displayed different retention times on an achiral C-18 column, indicating diastereoisomers. Considering the observed mirror ECD spectra (Figure 3A), it can be concluded that the stereochemistry of C-10' has to be the same in $\mathbf{1}$ and $\mathbf{2}$, and the rest are to be mirror images of each other. To establish the relative configuration of C-10', NMR chemical shift calculation followed by DP4+ probability calculation was implemented. Briefly, geometrical optimization and NMR calculation were performed at CPCM/mPW1PW91/6-31+G(d,p)/B3LYP/6-31G(d) basis set and level of theory in chloroform on two possible isomers: $1\left(7^{\prime} R, 8^{\prime} R, 10^{\prime} R\right)$ and $2\left(7^{\prime} R, 8^{\prime} R, 10^{\prime} S\right)$. Further DP4+ probability
calculation (Grimblat et al., 2015) using experimentally obtained chemical shifts of $\mathbf{1}$ indicated the presence of isomer 1 with a probability of 100% (Fig. S1.8, Supplementary data). Subsequent simulation of the ECD spectrum at CPCM/TD-DFT/cam-B3LYP/6$31+G(d, p) / B 3 L Y P / 6-31+G(d, p) / C P C M$ basis set and level of theory in acetonitrile resulted in a spectrum matching with that of compound $\mathbf{1}$. Ultimately and based on the aforementioned data, the absolute configurations of compounds $\mathbf{1}$ and $\mathbf{2}$ were established as $7^{\prime} R, 8^{\prime} R, 10^{\prime} R$ and $7^{\prime} S, 8^{\prime} S, 10^{\prime} R$, respectively. Both compounds (including their unmodified structures) are previously unreported natural products, and they were named buniusines A and B.

The molecular formula of $\mathbf{3}$ was evidenced by a dominant HRESIMS peak at m / z $589.2433\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O} 9 \mathrm{Na}, 589.2408\right)$, and its 1D-NMR data resembled those of $\mathbf{1}$ and 2. However, a detailed analysis of the HMBC spectrum showed correlations of H-8' ($\delta_{\mathrm{H}} 4.36$)/C-7 ($\delta_{\mathrm{C}} 136.5$) and $\mathrm{H}-7^{\prime}\left(\delta_{\mathrm{H}} 5.22\right) / \mathrm{C}-8\left(\delta_{\mathrm{H}} 131.2\right)$, indicating that compound $\mathbf{3}$ is a regional isomer of $\mathbf{1}$ and $\mathbf{2}$. Moreover, LC-MS analysis again indicated that a 2,2-dimethyl-1,3dioxolane moiety was introduced during the extraction process (data not shown in detail). The conformation of $\mathrm{H}-7^{\prime}$ and $\mathrm{H}-8^{\prime}$ was determined to be trans-type (gauche) by a coupling constant of 4.8 Hz (Bozzo et al., 2003; Chen et al., 2004) and NOE correlations between $\mathrm{H}-8^{\prime}$ and $\mathrm{H}-2^{\prime}$. To establish the relative configuration of $\mathrm{C}-10^{\prime}$ similar to $\mathbf{1}$ and $\mathbf{2}$, the DP4+ probability calculation for two possible isomers (1: $7^{\prime} S, 8^{\prime} S, 10^{\prime} R$ and $2: 7^{\prime} S, 8^{\prime} S, 10^{\prime} S$) was applied. The results confirmed isomer 2 with a probability of 99.83% to be the correct stereoisomer. Furthermore, using ECD calculation, the absolute configuration of compound $\mathbf{3}$ was established as $7^{\prime} S, 8^{\prime} S, 10^{\prime} S$ (Fig. S3.8, Supplementary Data). Collectively, the structure of $\mathbf{3}$ was deduced as ($2 S, 3 S$)-3-(2-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)propan-2-yl)-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-8-(2-methylbut-3-en-2-yl)-2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one, a compound named buniusine C .

Buniusines A-C (1-3) belong to the class of coumarinolignans, which can be found in other Antidesma species, such as antidesmanins A-D in A. pentandrum root (Chen et al., 2004). The characteristic features of these natural products are a coumarin core connected with a phenylpropanoid moiety via two ether bonds. In addition, an 1,1-dimethylallyl moiety is often linked with C-3 of the coumarin core (Chen et al., 2007). Chen and colleagues (2004) reported the isolation and identification of two racemic mixtures of similar structures, antidesmanins C and D. However, due to small quantities of isolated compounds, their exact chemical structure could not be confirmed (Chen et al., 2004). In our study, compounds $\mathbf{1 - 3}$ might have been modified by acetone during the fractionation procedure. However, these changes permitted the
isolation of individual isomers on a conventional C-18 column, whose absolute configuration was then determined on the basis of ECD and NMR calculations.

Compound $\mathbf{4}$ was isolated as a yellowish amorphous powder. Its molecular formula could be established by a deprotonated ion peak at $m / z 531.3018$ ([M-H] , calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}$, 531.2977) in the HRESI mass spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum showed multiple signals in the aromatic range ($\delta \mathrm{H} 6.5-7.5 \mathrm{ppm}$), one N -methyl group [$\delta_{\mathrm{H}} 2.22(3 \mathrm{H}, \mathrm{s})$], and four doublet methyl groups $\left[\delta_{\mathrm{H}} 0.68(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.73(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})\right.$, and 1.14 $(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})]$. Three carbon signals in the range of $\delta_{\mathrm{C}} 165-175 \mathrm{ppm}$ were found; knowing that also four nitrogen atoms are present, this indicated three amide functionalities in the molecule. 1D and 2D NMR data analysis along with a comparison to literature values (Lomchoey et al., 2018) assigned these nitrogens to p-oxystyrylamine, 2-hydroxyleucine, phenylalanine, and 4-benzyl-3-methyl-5-oxoimidazolidine moieties, which strongly suggested the cyclopeptide alkaloid scaffold of 4 . p-Oxystyrylamine was identified by HMBC correlations from $\mathrm{H}-1$ ($\delta_{\mathrm{H}} 6.40$) to $\mathrm{C}-13 / 14 / 15$ ($\delta_{\mathrm{C}} 131.6,132.0$, and 130.6, respectively) and from H-13 ($\delta_{\mathrm{H}} 7.04$) and $\mathrm{H}-15\left(\delta_{\mathrm{H}} 7.03\right)$ to $\mathrm{C}-11$. The presence of 2-hydroxyleucine and phenylalanine was confirmed by spin system H-6/H-5/H-17/H-18(H-19)/H-20 and $\mathrm{H}-8 / \mathrm{H}-9 / \mathrm{H}-$ $21(\mathrm{H}-22) / \mathrm{H}-23$, as well as HMBC correlations of H-5 ($\delta_{\mathrm{H}} 4.04$)/C-4 ($\delta_{\mathrm{C}} 167.4$), $\mathrm{H}-6\left(\delta_{\mathrm{H}} 5.44\right) / \mathrm{C}-$ 7 ($\delta_{\mathrm{C}} 168.3$), and H-9 ($\delta_{\mathrm{H}} 4.85$)/C-7. As for the 4-benzyl-3-methyl-5-oxoimidazolidine moiety, COSY coupling networks of $\mathrm{H}-26 / \mathrm{H}-27$ and $\mathrm{H}-31 / \mathrm{H}-32 / \mathrm{H}-33 / \mathrm{H}-34 / \mathrm{H}-35$, along with a series of HMBC correlations of H-28 ($\delta_{\mathrm{H}} 3.25$ and 4.07)/C-25 ($\delta_{\mathrm{C}} 172.4$), C-26 ($\delta_{\mathrm{C}} 67.5$); N-Me (δ_{H} 2.22)/ C-26, C-28 ($\delta_{\mathrm{C}} 68.4$); and $\mathrm{H}-29$ ($\delta_{\mathrm{H}} 2.94$ and 3.11)/C-30, C-31 ($\delta_{\mathrm{C}} 137.2$ and 130.2) confirmed its presence in 4 . The HMBC correlations of H-9 ($\delta_{\mathrm{H}} 4.85$)/C-11 ($\delta \mathrm{c} 156.1$); H-5 (δ_{H} 4.04)/C-7 ($\delta_{\mathrm{C}} 168.3$); H-8 ($\delta_{\mathrm{H}} 4.55$)/C-25 ($\delta_{\mathrm{C}} 172.4$), C-28 ($\delta_{\mathrm{C}} 68.4$) indicated the connection of the four substructures, resulting in the planar structure of $\mathbf{4}$ as shown. Conformation of the double bond was Z because of the coupling constants of $\mathrm{H}-1$ and $\mathrm{H}-2(J=9.6 \mathrm{~Hz})$. The relative erythro configuration of C-8 and C-9 was deduced from a ${ }^{3} \mathrm{~J}_{8,9}$ value of 7.8 Hz (Lomchoey et al., 2018). The NOESY spectrum displayed correlations between H-6 (NH) and H-8; H-6 and $\mathrm{H}-17$ (but no correlations between H-6 and H-5); H-26 and H-18; a strong correlation between $\mathrm{H}-9$ and $\mathrm{H}-28 \mathrm{~b}$ ($\delta_{\mathrm{H}} 4.07$) and a weak correlation with $\mathrm{H}-28 \mathrm{a}$ ($\delta_{\mathrm{H}} 3.25$); and $\mathrm{H}-28$ and $\mathrm{H}-9$, conclusively resulting in deciphering the relative configuration of this structure as $5 * S, 8 * S, 9 * S, 26^{*} S$. Further calculation of the ECD spectrum indicated the absolute configuration of $\mathbf{4}$ as $5 S, 8 S, 9 S, 26 S$. From all deductions shown above, the structure of $\mathbf{4}$ was finally determined as (3S,4S,7S,Z)-4-((S)-4-benzyl-3-methyl-5-oxoimidazolidin-1-yl)-7-
isobutyl-3-isopropyl-2-oxa-6,9-diaza-1(1,4)-benzenacycloundecaphan-10-ene-5,8-dione, previously undescribed natural product named buniusamide A.

Based on an HRESIMS signal at m / z 619.2909, the molecular formula of $\mathbf{5}$ was determined to be $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5}$ ($[\mathrm{M}-\mathrm{H}]$-, calcd for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5}, 619.2926$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this compound showed similarities to those of 4 (Table 2), indicating the same cyclopeptide scaffold. However, the ${ }^{13} \mathrm{C}$ NMR spectrum revealed four carbon signals in the range of $\delta_{\mathrm{C}} 165-170 \mathrm{ppm}$, suggesting the molecule contains four amide groups. The presence of a p-oxystyrylamine moiety was assured by COSY coupling chains of $\mathrm{H}-15 / \mathrm{H} 16 ; \mathrm{H}-12 / \mathrm{H}-13$; and $\mathrm{H}-1 / \mathrm{H}-2 / \mathrm{H}-3$, as well as HMBC correlations from $\mathrm{H}-1 / \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-15$ and from $\mathrm{H}-2 / \mathrm{C}-$ 4. A 2-hydroxyphenylalanine moiety was determined by characteristic COSY coupling networks of $\mathrm{H}-21 / \mathrm{H}-22 / \mathrm{H}-23 / \mathrm{H}-24 / \mathrm{H}-25$ and $\mathrm{H}-9 / \mathrm{H}-8 / \mathrm{H}-26$, as well as key HMBC correlations from H-9 ($\delta_{\mathrm{H}} 5.93$)/C-20 ($\delta_{\mathrm{C}} 137.5$), C-21 ($\delta_{\mathrm{C}} 128.4$), C-25 ($\delta_{\mathrm{C}} 128.4$); and H-8 ($\delta_{\mathrm{H}} 4.74$)/C-7 (δ c 170.6). A proline moiety was indicated by a coupling chain $\mathrm{H}-17 / \mathrm{H}-18 / \mathrm{H}-19 / \mathrm{H}-5$ in the COSY spectrum and an HMBC correlation from H-5 ($\delta_{\mathrm{H}} 3.85$) to C-4 ($\delta_{\mathrm{C}} 166.5$). In addition to that, phenylalanine was also identified by two COSY coupling networks of $\mathrm{H}-31 / \mathrm{H}-32 / \mathrm{H}-33 / \mathrm{H}-$ $34 / \mathrm{H}-35$ and $\mathrm{H}-29 / \mathrm{H}-30 / \mathrm{H}-36$, as well as an HMBC correlation of $\mathrm{H}-36\left(\delta_{\mathrm{H}} 5.80\right) / \mathrm{C}-27\left(\delta_{\mathrm{C}}\right.$ 170.9). These substructures could be connected by key HMBC correlations of $\mathrm{H}-2$ ($\delta_{\mathrm{H}} 6.74$), H-5 ($\delta_{\mathrm{H}} 3.85$)/С-4 ($\delta_{\mathrm{C}} 166.5$); H-5/С-7 ($\delta_{\mathrm{C}} 170.6$); H-9 ($\delta_{\mathrm{H}} 5.93$)/C-11 ($\delta_{\mathrm{C}} 155.5$); and H-8 (δ_{H} 4.74)/C-27 ($\delta_{\mathrm{C}} 170.9$). Furthermore, a pentanamide moiety was identified by a COSY correlation chain $[\mathrm{H}-41 / \mathrm{H}-40(\mathrm{H}-42) / \mathrm{H}-39 / \mathrm{H}-38]$ and a typical HMBC crosspeak of $\mathrm{H}-38$ (δ_{H} $5.64) / \mathrm{C}-37$ ($\delta_{\mathrm{C}} 166.5$). This moiety was linked to C-28, as evidenced by an HMBC crosspeak of H-28 ($\delta_{\mathrm{H}} 4.54$)/C-37 ($\delta_{\mathrm{C}} 166.5$). The double bond at C-38/C-39 had E type conformation (J $=15.0 \mathrm{~Hz}$), whereas the relative configuration of 2-hydroxyphenylalanine was trans because of a coupling constant of $J=7.2 \mathrm{~Hz}$ (Caro et al., 2012). The NOESY spectrum was not helpful to deduce the relative configuration of other chiral centers at positions C-5 and C-28. Hence, DP4+ probability calculation was applied to reveal the relative configuration of $\mathbf{5}$. The geometrical optimization followed by NMR chemical shift calculation was performed at CPCM/mPW1PW91/6-31+G(d,p)//B3LYP/6-31G(d) in chloroform for four possible diastereoisomers (isomer 1: $5 R, 8 S, 9 S, 28 S$, isomer 2: $5 S, 8 S, 9 S, 28 R$, isomer 3: $5 R, 8 S, 9 S, 28 R$, and isomer $4: 5 S, 8 S, 9 S, 28 S$), keeping in mind that the relative configuration of C-8 and C-9 is fixed $\left(8^{*} S, 9 * S\right)$. Further computation of DP4+ probability concluded isomer $2(5 S, 8 S, 9 S, 28 R)$ with a probability of 96.59% to be the correct stereoisomer (Fig. S5.8, Supplementary Data). The calculated ECD spectrum revealed to be opposite of the experimental one obtained in acetonitrile (Fig. 3E). Therefore, the structure of $\mathbf{5}$ was ultimately determined as $(E)-N-((S)-1-$
((($\left.1^{2} R, 8 R, 9 R, Z\right)$-2,10-dioxo-8-phenyl-7-oxa-3-aza-1(2,1)-pyrrolidina-6(1,4)-benzenacyclodecaphan-4-en-9-yl)amino)-1-oxo-3-phenylpropan-2-yl)-4-methylpent-2enamide, a novel compound named buniusamide B.

Compound $\mathbf{8}$ showed a dominant deprotonated ion peak [M-H] at $\mathrm{m} / \mathrm{z} 334.2007$ (cacld for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}, 334.2024$) in the HRESI mass spectrum, which, together with the ${ }^{13} \mathrm{C}$ NMR data, indicated the molecular formula $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4} .{ }^{1} \mathrm{H}$ NMR and HSQC spectra displayed signals assignable to amine $\left[\delta_{\mathrm{H}} 8.79(1 \mathrm{H}, \mathrm{s})\right]$, hydroxy $\left[\delta_{\mathrm{H}} 6.86(1 \mathrm{H}, \mathrm{s})\right]$, methoxy $\left[\delta_{\mathrm{H}} 3.95(3 \mathrm{H}\right.$, s)], and terminal methyl $\left[\delta_{\mathrm{H}} 0.87(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz})\right]$ groups, as well as a methylene chain $[\delta \mathrm{H}$ 1.21-1.44 (m)]. The ${ }^{13} \mathrm{C}$ NMR spectrum showed characteristic resonances of an aliphatic ketone ($\delta_{\mathrm{C}} 193.6$), a conjugated ketone ($\delta_{\mathrm{C}} 175.2$), four olefinic carbons ($\delta_{\mathrm{C}} 148.5,139.3,137.3$, and 131.2), an oxygenated carbon ($\delta_{\mathrm{C}} 72.7$), a methoxy ($\delta_{\mathrm{C}} 59.8$), and an aliphatic chain ($\delta_{\mathrm{C}} 14.2-$ 38.1). Overall, 1D NMR data of $\mathbf{8}$ resembled that of antidesmone (9) (Bringmann et al., 2000a; Bringmann et al., 2000b), except for the presence of a carbon signal at $\delta \mathrm{c} 72.7$. The position of this oxygenated carbon was located by HMBC correlations of H-11/C-5 ($\delta_{\mathrm{C}} 72.7$), C-6 (δ_{C} 32.4), C-10 ($\delta_{\mathrm{C}} 137.5$). Other key HMBC correlations for an antidesmone backbone were also found, specifically OMe ($\delta_{\mathrm{H}} 3.95$)/C-3 ($\delta_{\mathrm{C}} 148.5$), and 2-Me ($\delta_{\mathrm{H}} 2.38$)/C-2 ($\delta_{\mathrm{C}} 139.3$), $\mathrm{C}-3\left(\delta_{\mathrm{C}}\right.$ 148.5). NOESY crosspeaks of $2-\mathrm{Me}\left(\delta_{\mathrm{H}} 2.38\right) / \mathrm{OMe}\left(\delta_{\mathrm{H}} 3.95\right)$ and $\mathrm{NH}\left(\delta_{\mathrm{H}} 8.79\right)$ supported the proposed planar structure. The absolute configuration at position C-5 was established to be S by ECD calculation with TD-DFT/cam-B3LYP/6-31G+(d,p)/CPCM (acetonitrile) functions (Fig. 3F). Collectively, the structure of $\mathbf{8}$ was elucidated as (S)-5-hydroxyantidesmone.

Compound 16 was isolated as white amorphous powder, its molecular formula $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{14}$ established due to an m / z signal at 759.2651 ([M-H] ${ }^{-}$, cacld for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{14}, 759.2658$). The ${ }^{13} \mathrm{C}$ NMR spectrum displayed 37 resonances, including one ester carbon, eight oxygenated aromatic carbons, sixteen aromatic carbons, nine oxygenated carbons, and three methoxy groups. With the HSQC spectrum and molecular formula it can be deduced that there was a symmetrical aromatic ring in the molecule. The COSY spectrum showed six coupling networks, specifically Н-7/H-8[H-8'(H-9')/Н-7']/H-9; Н-5'/H-6'; Н-5"/Н-6"; Н-7"/H-8"/H-9"; Н-7"'/H-8"'; and H$5^{\prime \prime \prime} / \mathrm{H}-6^{\prime \prime \prime} . \mathrm{HMBC}$ correlations from H-7 ($\delta_{\mathrm{H}} 4.74$) to C-1 ($\delta_{\mathrm{C}} 137.9$), C-2 ($\delta_{\mathrm{C}} 103.0$); and from $\mathrm{H}-7^{\prime}\left(\delta_{\mathrm{H}} 4.76\right)$ to $\mathrm{C}-1^{\prime}\left(\delta_{\mathrm{C}} 132.9\right), \mathrm{C}-2^{\prime}\left(\delta_{\mathrm{C}} 108.8\right), \mathrm{C}-6^{\prime}\left(\delta_{\mathrm{C}} 119.1\right)$, as well as a comparison with reported ${ }^{13} \mathrm{C}$ NMR data from literature provided evidences for a medioresinol moiety (Xiong et al., 2011). A phenylpropanoid moiety was evidenced by a series of HMBC correlations of H$7^{\prime \prime}\left(\delta_{\mathrm{H}} 4.89\right) / \mathrm{C}-1^{\prime \prime}\left(\delta_{\mathrm{C}} 130.9\right), \mathrm{C}-2^{\prime \prime}\left(\delta_{\mathrm{C}} 108.6\right), \mathrm{C}-6^{\prime \prime}\left(\delta_{\mathrm{C}} 119.0\right)$. In addition, couplings of $\mathrm{H}-7^{\prime \prime \prime}$ $\left(\delta_{\mathrm{H}} 7.51\right) / \mathrm{C}-1{ }^{\prime \prime \prime}\left(\delta_{\mathrm{C}} 127.2\right), \mathrm{C}-2^{\prime \prime \prime}\left(\delta_{\mathrm{C}} 109.4\right), \mathrm{C}-6^{\prime \prime \prime}\left(\delta_{\mathrm{C}} 123.2\right)$, and $\mathrm{C}-9{ }^{\prime \prime \prime}\left(\delta_{\mathrm{C}} 167.2\right)$ indicated the
presence of ferulic acid. The connection of these substructures was determined by crosspeaks of $\mathrm{H}-8^{\prime \prime}\left(\delta_{\mathrm{H}} 4.56\right) / \mathrm{C}-4$ ($\delta_{\mathrm{C}} 134.1$) and $\mathrm{H}-9{ }^{\prime \prime}\left(\delta_{\mathrm{H}} 4.33\right.$ and 4.46$) / \mathrm{C}-9^{\prime \prime \prime}\left(\delta_{\mathrm{C}} 167.2\right)$. HMBC correlations also facilitated location of the methoxyl groups as $3,5-\mathrm{OMe}\left(\delta_{\mathrm{H}} 3.87\right) / \mathrm{C}-3,5$ (δ_{C} 153.8); $3^{\prime}-\mathrm{OMe}\left(\delta_{\mathrm{H}} 3.91\right) / \mathrm{C}-3^{\prime}\left(\delta_{\mathrm{C}} 146.9\right) ; 3^{\prime \prime}-\mathrm{OMe}\left(\delta_{\mathrm{H}} 3.92\right) / \mathrm{C}-3^{\prime \prime}\left(\delta_{\mathrm{C}} 146.9\right)$; and $3^{\prime \prime \prime}-\mathrm{OMe}\left(\delta_{\mathrm{H}}\right.$ $3.89) / \mathrm{C}-3^{\prime \prime \prime}\left(\delta_{\mathrm{C}} 146.8\right)$. Relative configuration of the medioresinol moiety was established by coupling constants of ${ }^{3} J_{7,8}$ and ${ }^{3} J_{7^{\prime}, 8^{\prime}}(4.8 \mathrm{~Hz})$, as well as empirical rules of $\Delta \delta_{\mathrm{H}-9, \mathrm{H}-9^{\prime}}$ (experimental data: 0.35 and 0.39 ppm ; reference data: $\Delta \delta \delta_{\mathrm{H}-9, \mathrm{H}-9^{\prime} \text { for } \mathrm{H}-7 / \mathrm{H}-8 \text { trans, } \mathrm{H}-7^{\prime} / \mathrm{H}-8^{\prime} .}$ trans $0.30-0.40 \mathrm{ppm} ; \Delta \delta_{\mathrm{H}-9, \mathrm{H}-9^{\prime}}$ for $\mathrm{H}-7 / \mathrm{H}-8$ cis, $\mathrm{H}-7^{\prime} / \mathrm{H}-8^{\prime}$ cis $<0.20 \mathrm{ppm}$) (Shao et al., 2018). The relative configuration of positions $\mathrm{C}-7^{\prime \prime}$ and $\mathrm{C}-8^{\prime \prime}$ of the phenylpropanoid moiety was of erythro type as evidenced by a small coupling constant of 3.6 Hz (Xiong et al., 2011), whereas configuration of the double bond between C- $7^{\prime \prime \prime}$ and C- $8^{\prime \prime \prime}$ was of E-type ($J=15.6 \mathrm{~Hz}$). The medioresinol moiety was configured $\left(7 R, 7^{\prime} R, 8 S, 8^{\prime} S\right)$ due to a negative Cotton effect at 207 nm in the CD spectrum, which was comparable to that of $(-)$-acortatarinowin F and $(-)$-eudesmin (Lu et al., 2015). The 7 " R configuration was evidenced by a negative Cotton effect at 345 nm (the E band) in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right) 4$-induced CD spectrum of 16 (Fig. S7.7, Supplementary data) (Gerards and Snatzke, 1990; Xiong et al., 2011). Taking all observations together, the structure of $\mathbf{1 6}$ was established as ($7 R, 7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S$)- $9^{\prime \prime}$-feruloyl-4', $4^{\prime \prime}$-dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5$ -tetramethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy-4, $8^{\prime \prime}$-oxy- $8,8^{\prime}$-sesquineolignan- $7^{\prime \prime}$-ol.

Compound $\mathbf{1 7}$ had the same molecular formula as $\mathbf{1 6}\left(\mathrm{m} / \mathrm{z} 759.2636\right.$, [M-H] ${ }^{-}$, cacld for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{14}, 759.2658$). Also, 1D and 2D NMR data were in good agreement, suggesting that both compounds share the same lignan scaffold (Table 3). However, the coupling constant ${ }^{3} J_{7^{\prime \prime}, 8^{\prime \prime}}$ $(8.4 \mathrm{~Hz})$ indicated that compound $\mathbf{1 7}$ was the threo isomer of $\mathbf{1 6}$. The relative configuration of the medioresinol moiety was established by coupling constants of ${ }^{3} J_{7,8}$ and ${ }^{3} J_{7^{\prime}, 8^{\prime}}(4.8 \mathrm{~Hz})$, as well as by empirical rules of $\Delta \delta_{\mathrm{H}-9, \mathrm{H}-9^{\prime}}$ data (experimental data: 0.36 and 0.37 ppm ; reference data: $\Delta \delta_{\mathrm{H}-9, \mathrm{H}-9^{\prime}}$ for $\mathrm{H}-7 / \mathrm{H}-8$ trans, $\mathrm{H}-7^{\prime} / \mathrm{H}-8^{\prime}$ trans $0.30-0.40 \mathrm{ppm} ; ~ \Delta \delta_{\mathrm{H}-9, \mathrm{H}-9^{\prime}}$ for $\mathrm{H}-7 / \mathrm{H}-8$ cis, $\mathrm{H}-$ $7^{\prime} / \mathrm{H}-8^{\prime}$ cis $<0.20 \mathrm{ppm}$) (Shao et al., 2018). A positive Cotton effect at 209 nm indicated the ($7 S, 7^{\prime} S, 8 R, 8^{\prime} R$) configuration of the medioresinol moiety, which was opposite to that of 16 . The $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum method was applied to determine absolute configuration at position C-7". The observed positive Cotton effect at 351 nm (E band), which again was opposite to 16, indicated $7^{\prime \prime} S$ configuration (Fig. S8.7, Supplementary data). Collectively, the structure of $\mathbf{1 7}$ was ($7 S, 7^{\prime} S, 7^{\prime \prime} S, 8 R, 8^{\prime} R, 8^{\prime \prime} S$)- $9^{\prime \prime}$-feruloyl-4', $4^{\prime \prime}$-dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5$ -tetramethoxy-7,9':7',9-diepoxy-4, $8^{\prime \prime}$-oxy-8, 8^{\prime}-sesquineolignan- $7^{\prime \prime}$-ol.

The molecular formula of $\mathbf{2 0}$ was established as $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{18}$ by a HRESIMS signal at m / z 649.1051 ($[\mathrm{M}-\mathrm{H}]^{-}$, cacld for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{18}$, 649.1046). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this compound displayed characteristic signals for a sugar moiety $\left[\delta_{\mathrm{H}} 5.92(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{dd}, J=\right.$ $8.4,9.6 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.41(1 \mathrm{H}, \mathrm{dd}, J=5.4$, $\left.12.0 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{dd}, J=1.8,12.0 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 94.1,74.2,76.1,71.7,76.6,64.6\right]$ and galloyl residues $\left[\delta_{\mathrm{H}} 7.01(2 \mathrm{H}, \mathrm{s}), 7.05(2 \mathrm{H}, \mathrm{s}), 7.22(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}) ; \delta_{\mathrm{c}}\right.$ 168.1, 167.6, 166.5]. Overall, shift values were very similar to $1,2,6$-tri- O-galloyl- β-dglucopyranose (Owen et al., 2003), except for split proton signals $[\delta \mathrm{H} 7.22(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $7.23(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})]$ and an additional methoxy group $\left[\delta_{\mathrm{H}} 3.89(3 \mathrm{H}, \mathrm{s})\right]$. Position of the latter was located by a HMBC cross-peak to C-3"'. The sugar was determined to be β-dglucopyranose by a large coupling constant of the anomeric proton $\left[\delta_{\mathrm{H}} 5.92(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})\right.$], by NOESY correlations, and by comparing NMR data with the literature (Owen et al., 2003). GC-MS analysis of the hydrolysis product in comparison to authentic sugars also supported this conclusion. Therefore, the structure of 20 was determined as 1,2-di- O-galloyl-6-(3-methoxygalloyl)- $O-\beta$-d-glucopyranose.

The known compounds were identified as frangufoline (6) (Han et al., 1990), sanjoinenine (7) (Han et al., 1990), antidesmone (9) (Bringmann et al., 2000b), 17-O-(β-dglucopyranosyl)antidesmone (10) (Buske et al., 2001), waltherione F (11 (Cretton et al., 2014), aristolochic acid A (12) (Cai and Cai, 2010), α-linolenic acid (13) (Lee et al., 2016), linoleic acid (14) (Lee et al., 2016), p-hydroxyphenylethyl trans-ferulate (15) (Darwish and Reinecke, 2003), 5'-demethoxycarolignan Z (18) (Bouzergoune et al., 2016), syringaresinol (19) (An et al., 2016), 1,3,6-tri- O-galloyl- β-d-glucopyranose (21) (Yoshida et al., 1984), 1,2,4,6-tetra- O -galloyl- β-d-glucopyranose (22) (Tanaka et al., 1985), acetonylgranatin B (23) (Tanaka et al., 1992), acetonylhelioscopinin A (24) (Tanaka et al., 1992), acetonylterchebin (25) (Tanaka et al., 1992), acetonylcarpinusin (26) (Tanaka et al., 1992), 1-O- β-d-(2,4-dihydroxy-6-methoxyphenyl)-6-O-(4-hydroxy-3,5-dimethoxybenzoyl)-glucopyranose (27) (Bicker et al., 2009), 4-hydroxy-2-methoxyphenyl-6-O-syringoyl- β-d-glucopyranoside (28) (Hiltunen et al., 2006), mangiferin (29) (Martin et al., 2008), quercitrin (30) (Abdullaeva et al., 2016), rutin (31) (Kiyekbayeva et al., 2018), pectolinarin (32) (Peng, 2011), and vitexin (33) (Torres-Tapia et al., 2013) by comparing their NMR spectroscopic data with those reported in literature.

2.2. The anti-advanced glycation endproducts (AGE) activity of isolated compounds

As they were available in sufficient amount, fourteen of the isolated natural products were investigated for their anti-AGEs activity. The substances were evaluated in a concentration
range of $1 \mu \mathrm{M}$ to 3 mM in comparison with the positive control (aminoguanidine: IC50 1.4 mM). Among them, ellagitannins 23-26, the phenylpropanoid 15, and the quercetin glycosides 30-31 exhibited moderate inhibition of AGEs formation (Table 4). Rutin (31, $\mathrm{IC}_{50} 100 \mu \mathrm{M}$) has already been described as an AGEs inhibitor (Séro et al., 2013). Among the now tested compounds, p-hydroxyphenylethyl trans-ferulate (15), with two additional phenolic groups, was the second most potent inhibitor ($\mathrm{IC}_{50} 150 \mu \mathrm{M}$), still being ten times more active than the positive control. Also, the ellagitannins with IC50 values of $200 \mu \mathrm{M}$ emerged as potential antiAGEs, possibly due to many reducing phenolic groups in their structure. Indeed, using the same assay, many antioxidant polyphenols inhibited AGEs formation, most likely through their antioxidant potential (Rouger et al., 2015). As AGE formation is involved in many ailments, including joint diseases (Séro et al., 2013), this bioactivity might contribute to the traditional use of A. bunius against rheumatoid arthritis.

3. Conclusions

Phytochemical investigations on the aerial parts of Antidesma bunius led to the isolation and identification of 33 compounds, including nine previously undescribed compounds. Their planar chemical structures and absolute configurations were determined by a combination of ECD simulation, NMR calculation, and other chemical modification methods. The results revealed that A. bunius aerial parts contain unusual natural compound classes, such as cyclopeptides and coumarinolignans. The advanced glycation endproducts (AGE) inhibition bioassay was employed to evaluate bioactivity of some of the isolated compounds, in which rutin and p-hydroxyphenethyl trans-ferulate were the most active compounds with IC_{50} below 0.2 mM .
A. bunius is a popular medicinal plant in Asia, and the present study indicated that it is a source of structurally uncommon compounds, so that it definitely deserves more scientific attention in the future.

4. Experimental

4.1. General experimental procedures

Optical rotations were measured on a J-715 spectropolarimeter (Jasco, Japan) in a 10.0 cm tube, using the suitable solvent for each compound $\left(\mathrm{MeOH}\right.$ or $\left.\mathrm{CHCl}_{3}\right)$. IR spectra were
recorded on an Alpha FTIR spectrometer (Bruker), and ECD spectra on a J-1500 spectropolarimeter (JASCO, Japan). NMR experiments were carried out on an Avance II (600 MHz , Bruker, USA) using tetramethylsilane (TMS) as internal standard (Euriso-Top, France). HRESIMS spectra were recorded on a micrOTOF-Q II (Bruker) operated by Hystar software. For fractionation a Reveleris ${ }^{\circledR}$ system (Buchi, Switzerland) with detection wavelengths always set to 205, 254, and 280 nm , or open columns filled with silica-gel, RP-18 material or Sephadex LH-20 (Sigma-Aldrich, USA) were used. Final purifications were sometimes conducted on a semi-preparative Dionex HPLC system, equipped with a P580 pump, ASI 100 automated sample injector, UVD 170 U detector, and Gilson Ambimed 206 fraction collector, using a Phenomenex Synergi 4u MAX-RP 80A column ($250 \times 10 \mathrm{~mm}, 4 \mu \mathrm{~m}$ particle size). The flow rate was always set at $2.00 \mathrm{~mL} / \mathrm{min}$. All solvents required for extraction and isolation were purchased from VWR (Austria). Ultrapure water was produced by a Sartorius arium 611 UV system (Germany).

4.2. Plant material

Antidesma bunius (L.) Spreng. (Euphorbiaceae) aerial parts were collected in Ba Vi , Hanoi, Vietnam (GPS: $21^{\circ} 03^{\prime} 60.0^{\prime \prime} \mathrm{N}, 105^{\circ} 20^{\prime} 3.0^{\prime \prime} \mathrm{E}$) in January 2018. The sample was authenticated by M.Sc. Duc Trong Nghiem from the Department of Botany, Hanoi University of Pharmacy, Hanoi, Vietnam. A voucher specimen (2018/01-AB) is deposited at the Institute of Pharmacy/ Pharmacognosy, University of Innsbruck, Innsbruck, Austria.

4.3. Extraction and isolation

The dried and powdered aerial parts of A. bunius (0.9 kg) were extracted with MeOH (2 $\mathrm{L} \times 3$ times $\times 2 \mathrm{~h}$) in an ultrasonic bath, and the combined extracts were evaporated under reduced pressure to obtain 80.3 g of green residue. The crude extract was suspended in distilled water (1 L), and then partitioned with EtOAc and $n-\mathrm{BuOH}$ (each $1 \mathrm{~L} \times 3$ times). The organic solvent layers were evaporated in vacuo to obtain respective portions.

The EtOAc-soluble extract (22.3 g) was fractionated on a silica gel column ($8 \times 15 \mathrm{~cm}$, 40-63 $\mu \mathrm{m}$), eluting with a gradient of petroleum ether (PE) and acetone (from 20:1 to 0:1), which resulted in 16 fractions (ABE 1-16). Fraction ABE 4 (1.5 g) was further purified on a normal-phase silica gel flash column (40 g NP cartridge, $0-50 \mathrm{~min}$: $0-10 \%$ acetone in PE, $50-$ $90 \mathrm{~min}: 10-20 \%$ acetone in PE, flow rate $8 \mathrm{~mL} / \mathrm{min}$), to obtain subfractions ABE 4.1-3. Fraction ABE 4.1 was subjected to a C_{18} flash column (12 g RP cartridge, $0-50 \mathrm{~min}: ~ 60-85 \% \mathrm{MeOH}$, $50-85 \mathrm{~min}: 85-90 \% \mathrm{MeOH}$, flow rate $10 \mathrm{~mL} / \mathrm{min}$) to yield compounds $\mathbf{1 3}(11.0 \mathrm{mg})$ and $\mathbf{1 4}$ $(41.6 \mathrm{mg})$. Fraction ABE $10(0.3 \mathrm{~g})$ was also further fractionated using a $12 \mathrm{~g} \mathrm{C} \mathrm{C}_{18}$ cartridge ($0-$
$40 \mathrm{~min}: 80-100 \% \mathrm{MeOH}, 40-65 \mathrm{~min}: 100 \% \mathrm{MeOH}$, flow rate $7 \mathrm{~mL} / \mathrm{min}$) to obtain subfractions ABE 10.1-4. Preparative HPLC was employed to purify subfractions ABE 10.3 ($52 \mathrm{mg}, 0-30$ min: $\left.55-70 \% \mathrm{CH}_{3} \mathrm{CN}\right)$ and $10.4\left(44 \mathrm{mg}, 0-35 \mathrm{~min}: 65-80 \% \mathrm{CH}_{3} \mathrm{CN}\right)$ to yield in compounds $\mathbf{8}$ $(1.4 \mathrm{mg})$ and $\mathbf{1 1}(4.0 \mathrm{mg})$, respectively. Fraction ABE $11(0.5 \mathrm{~g})$ was separated by flash chromatography ($12 \mathrm{~g} \mathrm{C}_{18}$ cartridge, $0-40 \mathrm{~min}: 30-60 \% \mathrm{MeOH}, 40-85 \mathrm{~min}: 60-85 \% \mathrm{MeOH}, 85-$ $105 \mathrm{~min}: 85-90 \% \mathrm{MeOH}$, flow rate $8 \mathrm{~mL} / \mathrm{min}$) to afford subfractions ABE 11.1-4. Fraction ABE 11.3 (75 mg), which revealed four major peaks in the HPLC chromatogram, was purified by preparative HPLC , using $65 \% \mathrm{CH}_{3} \mathrm{CN}$ as eluent, to obtain compounds $\mathbf{1}$ (2.1 mg), $\mathbf{2}$ (1.5 $\mathrm{mg}), \mathbf{3}(1.2 \mathrm{mg})$, and $9(1.5 \mathrm{mg})$. Fraction $\operatorname{ABE} 12(0.6 \mathrm{~g})$ was first fractionated on a flash column (12 g RP cartridge, $0-40 \mathrm{~min}: 40-70 \% \mathrm{MeOH}, 40-80 \mathrm{~min}: 70-100 \% \mathrm{MeOH}$, flow rate $8 \mathrm{~mL} / \mathrm{min})$. Fraction ABE $12.3(0.3 \mathrm{~g})$ was selected for further purification using size-exclusion chromatography (Sephadex LH-20, MeOH as eluent, $1 \times 35 \mathrm{~cm}$), resulting in subfractions ABE 12.3.1-6. By preparative HPLC, compounds $\mathbf{4}(1.5 \mathrm{mg}), \mathbf{5}(1.6 \mathrm{mg})$, and $7(2.4 \mathrm{mg})$ from ABE 12.3.3 ($63 \mathrm{mg}, 0-40 \mathrm{~min}: 55-85 \% \mathrm{CH}_{3} \mathrm{CN}$), as well as compound $\mathbf{1 2}(2.3 \mathrm{mg}$) from ABE 12.3.6 ($32 \mathrm{mg}, 0-30 \mathrm{~min}: 45-56 \% \mathrm{CH}_{3} \mathrm{CN}$) could be obtained. Another fraction, ABE $14(1.2 \mathrm{~g}$), was separated on a RP-C18 flash column (12 g RP cartridge, $0-40 \mathrm{~min}$: $30-65 \% \mathrm{MeOH}, 40-60 \mathrm{~min}$: $65-80 \% \mathrm{MeOH}$, flow rate $8 \mathrm{~mL} / \mathrm{min}$) to obtain seven subfractions (ABE 14.1-7). Subfraction ABE $14.4(85 \mathrm{mg})$ was purified by preparative HPLC ($0-24 \mathrm{~min}: 30-40 \% \mathrm{CH}_{3} \mathrm{CN}$) to yield compounds $15(24.7 \mathrm{mg})$ and $19(2.8 \mathrm{mg})$. In the acetone solution of ABE 14.7 a white precipitate appeared. It was removed by centrifugation and washed with cold acetone to obtain compound $6(5.0 \mathrm{mg})$; the remaining solution was subjected to a Sephadex LH-20 column ($1 \times$ $35 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$: acetone $=85: 15$ as eluent). Out of the seven subfractions collected, compounds $16(2.1 \mathrm{mg})$ and $17(1.6 \mathrm{mg})$ were isolated by prep. HPLC ($0-40 \mathrm{~min}$: isocratic $40 \% \mathrm{CH}_{3} \mathrm{CN}$) from ABE 14.7.5 (48 mg); subfraction ABE14.7.7 $(55 \mathrm{mg})$ yielded compound 18 ($0-30 \mathrm{~min}$: $\left.47-56 \% \mathrm{CH}_{3} \mathrm{CN}\right)$. Next, ABE $16(4.2 \mathrm{~g})$ was fractionated by Reveleris flash chromatography (80 g RP cartridge, $0-30 \mathrm{~min}: 5-30 \% \mathrm{MeOH}, 30-110 \mathrm{~min}: 30-80 \% \mathrm{MeOH}$, flow rate $15 \mathrm{~mL} / \mathrm{min}$) into subfractions ABE 16.1-8. ABE 16.3 (1.3 g) was further separated on a Sephadex LH-20 column ($1 \times 35 \mathrm{~cm}, \mathrm{MeOH}$) into seven subfractions (ABE 16.3.1-7). Based on HPLC analysis, ABE 16.3.5 and ABE 16.3.7 were chosen for further purification. Subfraction ABE 16.3.5 (0.3 g) was subjected to a smaller RP-C18 flash column (12 g RP cartridge, $0-50 \mathrm{~min}: 10-20 \% \mathrm{ACN}$, $50-70 \mathrm{~min}: 20-25 \% \mathrm{MeOH}$, flow rate $7 \mathrm{~mL} / \mathrm{min}$) to obtain compound $21(6.7 \mathrm{mg})$, and fraction ABE 16.3.5.4 $(60 \mathrm{mg})$ was purified by preparative HPLC $\left(0-35 \mathrm{~min}: 15-24 \% \mathrm{CH}_{3} \mathrm{CN}\right)$ to yield compounds $20(3.1 \mathrm{mg})$ and $24(3.1 \mathrm{mg})$. Subfraction ABE $16.3 .7(0.3 \mathrm{~g})$ was first resolved by flash chromatography (12 g RP cartridge, $0-50 \mathrm{~min}: 10-20 \% \mathrm{CH}_{3} \mathrm{CN}, 50-70 \mathrm{~min}: 20-22 \%$
$\mathrm{CH}_{3} \mathrm{CN}$, flow rate $7 \mathrm{~mL} / \mathrm{min}$), before being subjected to preparative HPLC ($0-35 \mathrm{~min}: 18-23 \%$ $\mathrm{CH}_{3} \mathrm{CN}$), to afford compounds $22(2.1 \mathrm{mg}), 23(3.8 \mathrm{mg})$, and $26(5.0 \mathrm{mg})$. Additionally, fractions ABE $16.4(0.3 \mathrm{~g})$ and ABE $16.5(0.4 \mathrm{~g})$ were purified by Sephadex LH-20 $(1 \times 35 \mathrm{~cm}$, MeOH as eluent) to obtain compounds $\mathbf{2 5}(29.7 \mathrm{mg})$ and $\mathbf{2 7}(14.5 \mathrm{mg})$, as well as compound $\mathbf{3 0}$ (6.1 mg).

The n - BuOH soluble part (19.6 g) was initially fractionated on an open silica gel column ($8 \times 15 \mathrm{~cm}, 40-63 \mu \mathrm{~m}$), using stepwise gradient elution with EtOAc and MeOH (ratio from 20:1 to $0: 1$) to obtain 10 fractions (ABB 1-10). Fraction ABB 3 (1.2 g) was separated by flash chromatography (12 g RP cartridge, $0-50 \mathrm{~min}: 10-50 \% \mathrm{MeOH}, 50-90 \mathrm{~min}: 50-75 \% \mathrm{MeOH}$, flow rate $10 \mathrm{~mL} / \mathrm{min}$), and then compound $28(2.9 \mathrm{mg})$ purified using Sephadex LH-20 material $(1 \times 35 \mathrm{~cm}$ column, MeOH$)$. Fraction ABB $5(1.5 \mathrm{~g})$ was first divided into 11 subfractions (ABB 5.1-11) on a C_{18} Reveleris column (12 g RP cartridge, $0-50 \mathrm{~min}: 10-50 \% \mathrm{MeOH}, 50-85$ min: $50-80 \% \mathrm{MeOH}$, flow rate $10 \mathrm{~mL} / \mathrm{min})$. Subfraction ABB $5.7(0.5 \mathrm{~g})$ was submitted to a Sephadex LH-20 column $(1 \times 35 \mathrm{~cm}, \mathrm{MeOH})$ to obtain five further fractions (ABB 5.7.1-5). In the methanolic solution of ABB 5.7.4, white crystals formed at the bottom of vial. They were filtered and washed with cold MeOH to yield compound 29 (2.1 mg). Subfraction ABB 5.8 was purified by Sephadex LH-20 column chromatography ($1 \times 35 \mathrm{~cm}, \mathrm{MeOH}$), before compound $33(1.6 \mathrm{mg})$ could be isolated by preparative HPLC ($0-30 \mathrm{~min}: 15-24 \% \mathrm{CH}_{3} \mathrm{CN}$). Subfraction ABB $5.11(0.1 \mathrm{~g})$ was also purified using preparative HPLC ($0-30 \mathrm{~min}: 25-34 \% \mathrm{CH}_{3} \mathrm{CN}$) to obtain compound $32(1.6 \mathrm{mg})$. Another fraction, ABB $7(1.2 \mathrm{~g})$, was initially fractionated by flash chromatography (12 g RP cartridge, $0-50 \mathrm{~min}: 10-50 \% \mathrm{MeOH}, 50-90 \mathrm{~min}: 50-80 \%$ MeOH , flow rate $10 \mathrm{~mL} / \mathrm{min}$), then on Sephadex LH-20 material ($1 \times 35 \mathrm{~cm}, \mathrm{MeOH}$), and finally subjected to preparative $\operatorname{HPLC}\left(0-31 \mathrm{~min}: 13-22 \% \mathrm{CH}_{3} \mathrm{CN}\right)$, resulting in the isolation of compound $\mathbf{3 1}(2.3 \mathrm{mg})$. The same approach was utilised to isolate compound $\mathbf{1 0}(6.2 \mathrm{mg})$ from fraction ABB $8(1.3 \mathrm{~g})$, however using a slightly modified HPLC gradient ($0-35 \mathrm{~min}$: 20$30 \% \mathrm{CH}_{3} \mathrm{CN}$).

4.3.1. Buniusine A (1)

White amorphous powder; $[\alpha]_{D}^{20}+81.0\left(c 0.05, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \varepsilon) 228$ (4.42), 321 (4.05) nm; ECD $\left(\mathrm{CH}_{3} \mathrm{CN}\right) ~ \lambda \max (\Delta \varepsilon) 192$ (+6.21), 210 (-2.11), 221 (-4.82), 249 (+3.88), 279 (-2.71), 326 (+6.66); IR $v_{\max } 3414,2927,1712,1397,1121,1033,734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; HRESIMS $m / z 565.2424[\mathrm{M}-\mathrm{H}]{ }^{-}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O} 9$, 565.2443).

4.3.2. Buniusine B (2)

White amorphous powder; $[\alpha]_{D}^{20}-11.3\left(c 0.08, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \varepsilon) 228$ (4.21), 323 (3.82) nm; ECD $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda \max (\Delta \varepsilon) 206(+3.76), 215(+1.90), 246(-3.59), 281$ (+3.28), 325 (-3.83); IR $v_{\max } 3434$, 3393, 2927, 2822, 1397, 1139, 1064, $734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; HRESIMS $m / z 565.2419[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{calcd}\right.$ for $\left.\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{O}_{9}, 565.2443\right)$.

4.3.3. Buniusine C (3)

White amorphous powder; $[\alpha]_{D}^{20}-19.5\left(c 0.06, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \varepsilon) 227$ (4.21), 323 (3.81) nm; ECD $\left(\mathrm{CH}_{3} \mathrm{CN}\right) ~ \lambda \max (\Delta \varepsilon) 206(+4.04), 214(+6.67), 238(-3.61), 309(-$ 5.20); IR $v_{\max } 3393,2925,1710,1397,1137,1065,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; HRESIMS $m / z 589.2433[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O} 9 \mathrm{Na}, 589.2408$).

4.3.4. Buniusamide A (4)

Yellowish amorphous powder; $[\alpha]_{D}^{20}-188.9\left(c 0.08, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \varepsilon)$ 228 (4.52); $\mathrm{ECD}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda \max (\Delta \varepsilon) 200(-16.62), 212(+9.06), 243$ (-26.38); IR $v_{\max } 3391$, 3292, 3052, 3032, 1673, 1451, 1183, 732, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 2; HRESIMS $m / z 531.3018[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4}, 531.2977$).

4.3.5. Buniusamide B (5)

White amorphous powder; $[\alpha]_{D}^{20}-61.0\left(c \quad 0.08, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \varepsilon) 227$ (4.42); ECD $\left(\mathrm{CH}_{3} \mathrm{CN}\right) ~ \lambda \max (\Delta \varepsilon) 203$ (-5.44), 217 (+7.09), 239 (-45.73); IR $v_{\max } 3391,3291$, 2958, 2926, 1656, 1621, 1599, 1417, 1227, 732, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 2; HRESIMS $m / z 619.2909[M-H]^{-}$(calcd for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5}, 619.2926$).
4.3.6. 5S-hydroxyantidesmone (8)

White amorphous powder; $[\alpha]_{D}^{20}+8.1\left(c \quad 0.07, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\log \varepsilon) 247$ (4.16), 336 (3.47) nm; ECD $\left(\mathrm{CH}_{3} \mathrm{CN}\right) ~ \lambda \max (\Delta \varepsilon) 211(+12.50), 232(-23.93), 316(-10.71), 353$ (+24.53), 367 (+24.80); IR $v_{\max } 3217,2923,2853,1698,1611,1548,1271,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 2.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 2.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 2.59(1 \mathrm{H}, \mathrm{ddd}, J=4.2,15.0$, $18.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 2.76 (1 H, ddd, $J=3.0,4.2,18.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}$), 1.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}$), 2.12 ($1 \mathrm{H}, \mathrm{m}$, H-11b), 1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$), 1.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}$), 1.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$), 1.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), $1.29(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 1.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 1.28(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 0.87(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}-18)$, $3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 8.79(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta_{\mathrm{c}} 139.3$ (C-2), 148.5 (C-3), 175.2 (C-4), 72.7 (C-5), 32.4 (C-6), 34.3 (C-7), 193.6 (C-8), 131.2 (C-9),
137.5 (C-10), 38.1 (C-11), 23.9 (C-12), 30.2 (C-13), 29.7 (C-14), 29.4 (C-15), 32.0 (C-16), 22.8 (C-17), 14.2 (C-18), 14.9 (2-Me), 59.8 (3-OMe); HRESIMS m/z [M-H] 334.2007 (calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}, 334.2024\right)$.
4.3.7. (7R, $\left.7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-9^{\prime \prime}-$-feruloyl-4',4"-dihydroxy-3,3',3",5-tetramethoxy-7,9':7',9-diepoxy-4,8"-oxy-8, 8'-sesquineolignan-7"-ol (16)

White amorphous powder; $[\alpha]_{D}^{20}+1.2\left(c 0.05, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \varepsilon) 228$ (4.56), 286 (4.27), 320 (4.28) nm; IR $v_{\max } 3444,2926,2853,1700,1634,1514,1267 \mathrm{~cm}^{-1} ;$ ECD $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda \max (\Delta \varepsilon) 208(-1.44), 220(+1.19), 230(-1.23), 245(+4.50), 292(+2.74), 324$ (+2.50); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 3; HRESIMS $m / z 759.2651[\mathrm{M}-\mathrm{H}]{ }^{-}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{14}, 759.2658$).
4.3.8. (7S, 7'S, $7^{\prime \prime} S, 8 R, 8^{\prime} R, 8^{\prime \prime S}$)-9"-feruloyl-4',4"-dihydroxy-3,3',3",5-tetramethoxy-7,9':7',9-diepoxy-4, $8^{\prime \prime}$-oxy- $8,8^{\prime}$-sesquineolignan- 7 "-ol (17)

White amorphous powder; $[\alpha]_{D}^{20}+2.5\left(c 0.08, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\log \varepsilon) 228$ (4.56), 285 (4.29), 320 (4.31) nm; IR $v_{\max } 3445,2929,2853,1702,1633,1592,1265,1123$, 1055, 733, $701 \mathrm{~cm}^{-1} ; \operatorname{ECD}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda \max (\Delta \varepsilon) 209(+3.83), 231(+0.36) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 3; HRESIMS $m / z 759.2636[M-H]^{-}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{14}, 759.2658$).

4.3.9. 1,2-di-O-galloyl-6-(3-methoxygalloyl)-O- β-d-glucopyranose (20)

Brownish gum; $[\alpha]_{D}^{20}-52.4(c 0.05, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 218$ (4.61), 277 (4.24) nm; IR $v_{\max } 3252$ (br), 2947, 2840, 1700, 1606, 1317, 1194, 1005, $760 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{MeOH}-d_{4}, 600 \mathrm{MHz}\right) \delta_{\mathrm{H}} 5.92(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-1), 5.22(1 \mathrm{H}, \mathrm{dd}, J=8.4,9.6 \mathrm{~Hz}, \mathrm{H}-2), 3.82$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $3.62(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}, \mathrm{H}-4), 3.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.41(1 \mathrm{H}, \mathrm{dd}, J=5.4,12.0 \mathrm{~Hz}$, H-6a), 4.67 ($1 \mathrm{H}, \mathrm{dd}, J=1.8,12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 7.01 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 7.05 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$), 7.22 ($1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}$), $7.23\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime \prime}\right), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; ${ }^{13} \mathrm{C}$ NMR (MeOH$\left.d_{4}, 150 \mathrm{MHz}\right) \delta_{\mathrm{C}} 94.1(\mathrm{C}-1), 74.2(\mathrm{C}-2), 76.1(\mathrm{C}-3), 71.7(\mathrm{C}-4), 76.6(\mathrm{C}-5), 64.6(\mathrm{C}-6), 120.0$ (C-1'), 110.5 (C-2', 6^{\prime}), 146.5 (C-3', 5^{\prime}), 140.6 (C-4'), 166.5 (C-7'), 121.1 (C-1"), 110.4 (C-2"', $\left.6^{\prime \prime}\right), 146.4$ (C-3"', $\left.5^{\prime \prime}\right), 140.0$ (C-4"), 167.6 (C-7"), 121.3 (C-1"), 106.3 (C-2"'), 149.2 (C-3"'), 140.7 (C-4"'), 146.3 (C-5"'), 112.0 (C-6"'), 168.1 (C-7"'), 56.7 (OMe); HRESIMS $m / z 649.1051$ [M-H] (calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{18}, 649.1046$).

4.4. Acid hydrolysis and GC/MS

Compound $20(2.0 \mathrm{mg})$ and 1 mL HCl 1 N in MeOH were stirred for 3 h at $60^{\circ} \mathrm{C}$ in a sand bath. The reaction mixture was neutralized with sodium bicarbonate and partitioned with

EtOAc (3 times $\times 1 \mathrm{~mL}$); the water layer was dried to obtain 0.7 mg of sugar fraction for analysis.

The sugar fraction was derivatized with l-cysteine methyl ester hydrochloride (1.5 mg in $200 \mu \mathrm{~L}$ pyridine, $60^{\circ} \mathrm{C}, 1 \mathrm{~h}$), subsequently silylated with BSTFA and TMCS ($99: 1, \mathrm{v} / \mathrm{v}$) $\left(200 \mu \mathrm{~L}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$, and then analyzed by GC-MS. Reference compounds d-glucose ($t_{\mathrm{R}}=$ 77.31 min) and l -glucose ($\mathrm{t}=77.59 \mathrm{~min}$) were derivatized and analyzed using the same protocol. D-glucose was detected in 20. GC-MS analyses were carried out on an Agilent 5975C Series GC/MSD System comprising a 7693 autosampler, a Triple AxisDetector (MS), and a 7890A GC. An Agilent HP-5MS column ($30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$) was used for analysis, the other settings were as follows: temperature gradient: $70^{\circ} \mathrm{C}$ for 2 min , then $2^{\circ} \mathrm{C} / \mathrm{min}$ to $150^{\circ} \mathrm{C}$ (hold $150^{\circ} \mathrm{C}$ for 2 min), then $5^{\circ} \mathrm{C} / \mathrm{min}$ to $220^{\circ} \mathrm{C}$ (hold $220^{\circ} \mathrm{C}$ for 15 min), then $15^{\circ} \mathrm{C} / \mathrm{min}$ to $300^{\circ} \mathrm{C}$ (hold $300^{\circ} \mathrm{C}$ for 10 min); total run time: 88 min ; injection volume: $1 \mu \mathrm{~L}$; split ratio $10: 1$; carrier gas: helium; flow rate: $7.5 \mathrm{~mL} / \mathrm{min}$.

4.5. Calculation of ECD spectra

The 3D structure of selected compounds was subjected to MacroModel 9.1 (Schrödinger. LLC, USA) to perform conformational analysis (parameters: MMFF force field; gas phase; maximum iterations: 10,000 ; maximum number of steps: 10,000 ; energy window: $5 \mathrm{kcal} / \mathrm{mol}$). Conformers occurring in an energy window of $5 \mathrm{kcal} / \mathrm{mol}$ were subjected to geometry optimization and energy calculation using first DFT/B3LYP/6-31G (d) in the gas phase and then DFT/B3LYP/6-31G+(d,p)/CPCM in acetonitrile with Gaussian 16 (M. J. Frisch et al., 2016). No imaginary frequencies were observed for the optimized structures. Calculation of excitation energy (nm), rotatory strength, dipole velocity (R_{vel}) and dipole length ($R_{\text {len }}$) were performed by TD-DFT/cam-B3LYP/6-31G+(d,p)/CPCM (acetonitrile) for $\mathbf{1 - 3}$ and $\mathbf{8}$, and TD-DFT/B3LYP/6-31G+(d,p)/CPCM (acetonitrile) for $\mathbf{4}$ and 5. ECD curves were extracted by SpecDis v.1.7 software with a half-band of 0.2-0.3 eV (Bruhn et al., 2017). The Boltzmannaveraged ECD spectra were shifted $\pm 25 \mathrm{~nm}$ in the UV range, and then compared with the experimental results.

4.6. Calculation of NMR chemical shifts and DP4+ probability analysis

Diastereomers of $\mathbf{1 , 2}$ and $\mathbf{5}$ were subjected to conformational analysis in the gas phase (as mentioned in section 4.5). The conformers occurring in the energy window of $5 \mathrm{kcal} / \mathrm{mol}$ were subjected to geometry optimization using DFT/B3LYP/6-31G(d) in the gas phase with Gaussian 16. NMR chemical shift calculations were performed using GIAO/mPW1PW91/6-
$31 \mathrm{G}+(\mathrm{d}, \mathrm{p}) / \mathrm{CPCM} /$ chloroform, shielding tensors of all conformers were Boltzmann averaged and used for DP4+ probability calculation using the excel file provided by Grimblat's group (Grimblat et al., 2015).

4.7. AGEs inhibition assay

Inhibition of pentosidine-like AGEs formation was measured according to a previously published protocol (Séro et al., 2013). In short, depending on available sample material, stock solutions (SS) were prepared in DMSO at concentrations of 10 or 30 mM , respectively. These SS were then diluted with 50 mM phosphate buffer ($\mathrm{pH}: 7.4$) yielding working solutions (WS) at a concentration range of 10^{-5} to $3.10^{-2} \mathrm{~mol} / \mathrm{L}$. Ten microliter of each WS were deposited in 96 black well bottom plates (Fisher Scientific, Illkirch, France) and mixed with $90 \mu \mathrm{~L}$ of a solution containing BSA ($11 \mathrm{mg} / \mathrm{L}$), d-ribose $\left(0.55 \mathrm{M}\right.$), and phosphate buffer (50 mM , NaN_{3} $0.02 \%, \mathrm{pH} 7.4)$. Plates were then incubated for 24 h at $37^{\circ} \mathrm{C}$ before measuring their fluorescence ($\lambda_{\text {exc: }} 335 \mathrm{~nm}$, $\lambda_{\text {em }}: 385 \mathrm{~nm}$) using an Infinite M200 plate reader (Tecan, Lyon, France). Fluorescence resulting from the incubation, under the same BSA (final concentration: 10 $\mathrm{mg} / \mathrm{mL}$) and tested compound (10^{-6} to $3.10^{-3} \mathrm{~mol} / \mathrm{L}$) concentrations, was subtracted for each measurement. The control, i.e. no inhibition of AGEs formation, consisted of BSA ($10 \mathrm{mg} / \mathrm{mL}$) and D-ribose (0.5 M). Results (table 1) are expressed as $\mathrm{IC}_{50}(\mathrm{mM})$ and compared with aminoguanidine (positive control). Samples exhibiting an IC_{50} of more than 1 mM were considered inactive. Dimethyl sulfoxide served as negative control and was processed the same way as the WS.

Declaration of competing interest

The authors declare no competing financial interest.

Acknowledgments

This study was part of the project "China-TCM cluster" and financially supported by the Austrian Federal Ministry of Health and the Austrian Federal Ministry of Science, Research and Economy (BMWFW-402.000/0016-WF/V/6/2016).

Appendix A. Supplementary data

Supplementary data (including 1D and 2D-NMR spectra, HRESIMS, and DP4+ probability analyses of previously undescribed compounds) to this article can be found online.

References

Abdullaeva, R. K., Bobakulov, K. M., Nishanbaev, C. Z., Sham'yanov, I. D., Abdullaev, N. D., 2016. Flavonoids and other constituents from the aerial part of Anaphalis racemifera. Chem. Nat. Compd. 52, 503-504. https://doi.org/10.1007/s10600-016-1688-2.

An, J. P., Ha, T. K., Kim, J., Cho, T. O., Oh, W. K., 2016. Protein tyrosine phosphatase 1B inhibitors from the stems of Akebia quinata. Molecules 21. https://doi.org/10.3390/molecules21081091.

Asia Foundation, 2012. Guide to medicinal plants of Daos in Ba Vi , https://asiafoundation.org/resources/pdfs/MedicinalPlantIndexoftheDaosinBaVi.pdf

Bicker, J., Petereit, F., Hensel, A., 2009. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L. Fitoterapia 80, 483-495. https://doi.org/10.1016/j.fitote.2009.08.015.

Bouzergoune, F., Ciavatta, M. L., Bitam, F., Carbone, M., Aberkane, M. C., Gavagnin, M., 2016. Phytochemical study of Eryngium triquetrum: Isolation of polyacetylenes and lignans. Planta Med. 82, 1438-1445. https://doi.org/10.1055/s-0042-110316.

Bozzo, C., Pujol, M. D., Solans, X., Font-Bardia, M., 2003. A new synthesis of 3-hydroxy-2,3-dihydro-1,4-benzodioxin-2-carboxamides and 3-aminomethylene-1,4-benzodioxin-2(3H)-one derivatives. Tetrahedron 59, 1227-1236. https://doi.org/10.1016/S0040-4020(03)00025-5.

Bringmann, G., Rischer, H., Wohlfarth, M., Schlauer, J., 2000a. Biosynthesis of antidesmone in cell cultures of Antidesma membranaceum (Euphorbiaceae): An unprecedented class of glycine-derived alkaloids. J. Am. Chem. Soc. 122, 9905-9910. https://doi.org/10.1021/ja001391k.

Bringmann, G., Schlauer, J., Rischer, H., Wohlfarth, M., Mühlbacher, J., Buske, A., Porzel, A., Schmidt, J., Adam, G., 2000b. Revised structure of antidesmone, an unusual alkaloid from tropical Antidesma plants (Euphorbiaceae). Tetrahedron 56, 3691-3695. https://doi.org/10.1016/S0040-4020(00)00289-1.

Bruhn, T., Schaumlöffel, A., Hemberger, Y., Pecitelli, G., 2017. SpecDis, Version 1.70. Berlin, Germany.

Buske, A., Schmidt, J., Porzel, A., Adam, G., 2001. Alkaloidal, megastigmane and lignan glucosides from Antidesma membranaceum (Euphorbiaceae). European J. Org. Chem. 18, 3537-3543. https://doi.org/10.1002/1099-0690(200109)2001:18\<3537::AID-EJOC3537\>3.0.CO;2-A.

Cai, Y., Cai, T.-G., 2010. Two new aristolochic acid derivatives from the roots of Aristolochia fangchi and their cytotoxicities. Chem. Pharm. Bull 58, 1093-1095. https://doi.org/10.1248/cpb.58.1093.

Caro, M. S. B., de Oliveira, L. H., Ilha, V., Burrow, R. A., Dalcol, I. I., Morel, A. F., 2012. Absolute configuration of franganine. J. Nat. Prod. 75, 1220-1222. https://doi.org/10.1021/np300206x.

Chen, Y.-C., Cheng, M.-J., Lee, S.-J., Dixit, A. K., Ishikawa, T., Tsai, I.-L., Chen, I.-S., 2004. Coumarinolignans from the root of Formosan Antidesma pentandrum var. barbatum. Helv. Chim. Acta. 87, 2805-2811. https://doi.org/10.1002/hlca.200490251.

Chen, Y.-C., Cheng, M.-J., Lee, S.-J., Tsai, I.-L., Chen, I.-S., 2007. Chemical constituents from the root of Antidesma pentandrum var. barbatum. J. Chin. Chem. Soc. 54, 1325-1332. https://doi.org/10.1002/jccs.200700187.

Cretton, S., Breant, L., Pourrez, L., Ambuehl, C., Marcourt, L., Ebrahimi, S. N., Hamburger, M., Perozzo, R., Karimou, S., Kaiser, M., Cuendet, M., Christen, P., 2014. Antitrypanosomal quinoline alkaloids from the roots of Waltheria indica. J. Nat. Prod. 77, 2304-2311. https://doi.org/10.1021/np5006554.

Dariya, B., Nagaraju, G. P., 2020. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov. Today 25, 1614-1623. https://doi.org/10.1016/j.drudis.2020.07.003.

Darwish, F. M. M., Reinecke, M. G., 2003. Ecdysteroids and other constituents from Sida spinosa L. Phytochemistry 62, 1179-1184. https://doi.org/10.1016/S0031-9422(03)00021-9.

De Groot, L., Posthumus, M. D., Kallenberg, C. G. M., Bijl, M., 2010. Risk factors and early detection of atherosclerosis in rheumatoid arthritis. Eur. J. Clin. Invest. 40, 835-842. https://doi.org/10.1111/j.1365-2362.2010.02333.x.
eFloras, 2008. Published on the Internet http://www.efloras.org [accessed January 2022] Missouri Botanical Garden, St. Louis, MO \& Harvard University Herbaria, Cambridge, MA.

Gerards, M., Snatzke, G., 1990. Circular dichroism, XCIII determination of the absolute configuration of alcohols, olefins, epoxides, and ethers from the CD of their "in situ" complexes with [Rh2($\left.\left.\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\right]$. Tetrahedron: Asymmetry 1, 221-236. https://doi.org/10.1016/S0957-4166(00)86328-4.

Grimblat, N., Zanardi, M. M., Sarotti, A. M., 2015. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 80, 12526-12534. https://doi.org/10.1021/acs.joc.5b02396.

Han, B. H., Park, M. H., Han, Y. N., 1990. Cyclic peptide and peptide alkaloids from seeds of Zizyphus vulgaris. Phytochemistry 29, 3315-3319. https://doi.org/10.1016/0031-9422(90)80207-W.

Hiltunen, E., Pakkanen Tuula, T., Alvila, L., 2006. Phenolic compounds in silver birch (Betula pendula Roth) wood. hfsg 60, 519. https://doi.org/10.1515/HF.2006.086.

Khan, M., Liu, H., Wang, J., Sun, B., 2020. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 130, 108933. https://doi.org/10.1016/j.foodres.2019.108933.

Kiyekbayeva, L., Mohamed, N. M., Yerkebulan, O., Mohamed, E. I., Ubaidilla, D., Nursulu, A., Assem, M., Srivedavyasasri, R., Ross, S. A., 2018. Phytochemical constituents and antioxidant activity of Echinops albicaulis. Nat. Prod. Res. 32, 1203-1207. https://doi.org/10.1080/14786419.2017.1323213.

Krongyut, O., Sutthanut, K., 2019. Phenolic profile, antioxidant activity, and anti-obesogenic bioactivity of Mao Luang fruits (Antidesma bunius L.). Molecules 24, 4109. https://doi.org/10.3390/molecules24224109.

Lee, S.-J., Jang, H.-J., Kim, Y., Oh, H.-M., Lee, S., Jung, K., Kim, Y.-H., Lee, W.-S., Lee, S.W., Rho, M.-C., 2016. Inhibitory effects of IL-6-induced STAT3 activation of bio-active compounds derived from Salvia plebeia R.Br. Process Biochem. 51, 2222-2229. https://doi.org/10.1016/j.procbio.2016.09.003.

Lomchoey, N., Panseeta, P., Boonsri, P., Apiratikul, N., Prabpai, S., Kongsaeree, P., Suksamrarn, S., 2018. New bioactive cyclopeptide alkaloids with rare terminal unit from the root bark of Ziziphus cambodiana. RSC Adv. 8, 18204-18215. https://doi.org/10.1039/C7RA13050C.

Lu, Y., Xue, Y., Liu, J., Yao, G., Li, D., Sun, B., Zhang, J., Liu, Y., Qi, C., Xiang, M., Luo, Z., Du, G., Zhang, Y., 2015. (\pm)-Acortatarinowins A-F, norlignan, neolignan, and lignan enantiomers from Acorus tatarinowii. J. Nat. Prod. 78, 2205-2214. https://doi.org/10.1021/acs.jnatprod.5b00328.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, Fox, D. J., 2016. Gaussian 16. Gaussian, Inc., Wallingford CT.

Martin, F., Hay, A.-E., Cressend, D., Reist, M., Vivas, L., Gupta, M. P., Carrupt, P.-A., Hostettmann, K., 2008. Antioxidant C-glucosylxanthones from the leaves of Arrabidaea patellifera. J. Nat. Prod. 71, 1887-1890. https://doi.org/10.1021/np800406q.

Mauldina, M. G., Sauriasari, R., Elya, B., 2017. α-glucosidase inhibitory activity from ethyl acetate extract of Antidesma bunius (L.) Spreng stem bark containing triterpenoids. Pharmacogn Mag 13, 590-594. https://doi.org/10.4103/pm.pm_25_17.

Nagaraj, R. H., Shipanova, I. N., Faust, F. M., 1996. Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. The Journal of biological chemistry 271, 19338-19345. https://doi.org/10.1074/jbc.271.32.19338.

Ngamlerst, C., Udomkasemsab, A., Kongkachuichai, R., Kwanbunjan, K., Chupeerach, C., Prangthip, P., 2019. The potential of antioxidant-rich Maoberry (Antidesma bunius) extract on
fat metabolism in liver tissues of rats fed a high-fat diet. BMC Complement. Altern. Med. 19, 294. https://doi.org/10.1186/s12906-019-2716-0.

Owen, R. W., Haubner, R., Hull, W. E., Erben, G., Spiegelhalder, B., Bartsch, H., Haber, B., 2003. Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem. Toxicol. 41, 1727-1738. https://doi.org/10.1016/S0278-6915(03)00200-X.

Peng, W. C., 2011. Constituents from charred Cirsium japonicum. Chem. Nat. Compd. 47, 279. https://doi.org/10.1007/s10600-011-9904-6.

Rouger, C., Derbré, S., Charreau, B., Pabois, A., Cauchy, T., Litaudon, M., Awang, K., Richomme, P., 2015. Lepidotol A from Mesua lepidota inhibits inflammatory and immune mediators in human endothelial cells. J. Nat. Prod. 78, 2187-2197. https://doi.org/10.1021/acs.jnatprod.5b00222.

Séro, L., Sanguinet, L., Blanchard, P., Dang, B. T., Morel, S., Richomme, P., Séraphin, D., Derbré, S., 2013. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules 18, 14320-14339. https://doi.org/10.3390/molecules181114320.

Shao, S.-Y., Yang, Y.-N., Feng, Z.-M., Jiang, J.-S., Zhang, P.-C., 2018. An efficient method for determining the relative configuration of furofuran lgnans by 1 H NMR spectroscopy. J. Nat. Prod. 81, 1023-1028. https://doi.org/10.1021/acs.jnatprod.8b00044.

Tanaka, T., Fujisaki, H., Nonaka, G.-i., Nishioka, I., 1992. Tannins and related compounds. CXVIII. Structures, preparation, high-performance liquid chromatography and some reactions of dehydroellagitannin-acetone condensates. Chem. Pharm. Bull 40, 2937-2944. https://doi.org/10.1248/cpb.40.2937.

Tanaka, T., Nonaka, G.-I., Nishioka, I., 1985. Punicafolin, an ellagitannin from the leaves of Punica granatum. Phytochemistry 24, 2075-2078. https://doi.org/10.1016/S0031-9422(00)83125-8.

Tawali S, As'ad S, Hatta M, Bukhari A, Khairi N, Rifai Y, R, D., 2019. Anthocyanin-rich buniberry (Antidesma bunius) extract increases paraoxonase 1 gene expression in BALB/c mice fed with a high-fat diet. J. Young Pharm. 11, 46-50. https://doi.org/10.5530/jyp.2019.11.10.

Torres-Tapia, L. W., Sosa-Espinosa, T., Peraza-Sánchez, S. R., 2013. Isolation of a phydroxyphenyl anhydride from the leaves of Diphysa carthagenensis. Nat. Prod. Res. 27, 286289. https://doi.org/10.1080/14786419.2012.668689.

Trang, D. T., Huyen, L. T., Nhiem, N. X., Quang, T. H., Hang, D. T. T., Yen, P. H., Tai, B. H., Anha, H. L. T., Binh, N. Q., Van Minha, C., Van Kiem, P., 2016. Tirucallane glycoside from the leaves of Antidesma bunius and inhibitory NO production in BV2 cells and RAW264.7 macrophages. Nat Prod Commun 11, 935-937. https://doi.org/10.1177/1934578X1601100717.

Ueno, Y., Kato, Y., Okatani, S., Ishida, N., Nakanishi, M., Kitade, Y., 2003. Synthesis of antisense oligonucleotides carrying modified 2-5A molecules at their $5^{〔}$-termini and their properties. Bioconjug. Chem. 14, 690-696. https://doi.org/10.1021/bc020072a.

Xiong, L., Zhu, C., Li, Y., Tian, Y., Lin, S., Yuan, S., Hu, J., Hou, Q., Chen, N., Yang, Y., Shi, J., 2011. Lignans and neolignans from Sinocalamus affinis and their absolute configurations. J. Nat. Prod. 74, 1188-1200. https://doi.org/10.1021/np200117y.

Yoshida, T., Hatano, T., Okuda, T., Memon, M. U., Shingu, T., Inoue, K., 1984. Spectral and chromatographic analyses of tnnins. I. 13C Nuclear Magnetic Resonance spectra of hydrolyzable tannins. Chem. Pharm. Bull 32, 1790-1799. https://doi.org/10.1248/cpb.32.1790.

Figure and Table legends

Fig. 1. Chemical structures of isolated compounds from A. bunius aerial parts.
Fig. 2. Key $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ and ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY correlations of compounds $\mathbf{1 - 5 , 8}, \mathbf{1 6}, \mathbf{1 7}$, and 20.
Fig. 3. Experimental CD spectra of $\mathbf{1}$ and 2; (B-F) Calculated and experimental ECD spectra of $\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}$, and $\mathbf{8}$.

Table 1. NMR spectroscopic data ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compounds 1-3.
Table 2. NMR spectroscopic data ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compounds 4 and 5.
Table 3. NMR spectroscopic data ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compounds 16 and 17.
Table 4. Anti-AGEs activity of selected natural products isolated from A. bunius aerial parts.

$17^{\prime} R, 8^{\prime} R, 10^{\prime} R$
$27^{\prime} S, 8^{\prime} S, 10^{\prime} R$

3

R
4象足 $6 \xrightarrow{2}$
7

5

R_{1}
$8 \alpha-\mathrm{OH}$
\mathbf{R}_{2}
H
$9 \beta-H$
H
$10 \beta-\mathrm{H} \quad O$-glc

14

15

16

17

24

27 OH
28 H

25

26

R

29

33

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	\mathbf{R}_{3}	\mathbf{R}_{4}	$\mathbf{R}_{\mathbf{5}}$
$\mathbf{3 0}$	O-rha	H	H	H	OH
31	O-glc $(6 \rightarrow 1)$ rha	H	H	H	OH
$\mathbf{3 2}$	H	O-glc $(6 \rightarrow 1)$ rha	OCH_{3}	CH_{3}	H

1, 2

3

4

5

8

20

H
H

16, 17

Fig. 3

Table 1

position		1	2		3	
2	159.9		159.9		160.1	
3	132.8		132.8		132.6	
4	138.1	7.46, s	138.2	7.48, s	138.2	7.45, s
5	100.0	6.45, s	100.0	6.47, s	100.7	6.47, s
6	145.7		145.6		145.8	
7	135.7		136.5		136.5	
8	132.0		132.0		131.2	
9	137.9		138.2		138.2	
10	112.3		112.0		111.8	
11	40.7		40.7		40.6	
12^{a}	26.2	1.48, s	26.2	1.49, s	26.2	1.45, s
13^{a}	26.2	1.48, s	26.2	$1.49, \mathrm{~s}$	26.2	1.45, s
14	145.8	6.18, dd (10.2, 17.4)	145.8	6.19, dd (10.2, 17.4)	145.8	6.15 , dd (10.2, 17.4)
15	112.1	5.09, d (12.0)	112.3	5.09, d (12.0)	112.3	5.06, d (10.2)
		5.09, d (17.4)		5.09, d (17.4)		5.07, d (17.4)
1^{\prime}	129.6		129.3		129.5	
2^{\prime}	110.6	6.91, d (1.8)	111.2	6.93, d (1.8)	110.6	6.92, m
3^{\prime}	146.9		146.7		146.9	
4^{\prime}	146.5		146.5		146.5	
$5 \prime$	114.7	6.89, d (8.4)	114.4	6.89, d (8.4)	114.5	6.87, d (8.4)
6^{\prime}	121.6	6.94, dd (1.8, 8.4)	122.4	6.96, dd (1.8, 8.4)	121.3	6.92, m
$7{ }^{\prime}$	76.4	5.22, d (5.4)	77.8	5.15, d (6.6)	75.4	5.22, d (4.8)
8^{\prime}	80.3	4.36, d (5.4)	82.2	4.16, d (6.6)	80.7	4.36, d (4.8)
9^{\prime}	40.7		40.3		40.9	
10^{\prime}	79.5	4.44, t (7.2)	77.9	4.14, t (7.2)	80.1	4.29, t (7.2)
11^{\prime}	65.4	3.79, dd (7.2, 8.4)	65.2	3.70, t (8.4)	65.8	3.78, t (8.4)
		4.09, dd (7.2, 8.4)		$3.90, \mathrm{~m}$		4.11, dd (6.6, 8.4)
12^{\prime}	108.9		108.9		108.3	
$13^{\prime b}$	25.1	1.35, s	25.4	1.27, s	25.2	1.34, s
$14^{\prime b}$	26.4	1.38, s	26.5	1.37, s	26.5	1.38, s
$15^{\prime c}$	17.5	0.97, s	19.4	0.87, s	17.0	0.97, s
$16^{\prime c}$	19.3	0.72, s	21.2	0.95, s	20.0	0.76, s
6-OMe	56.5	3.84, s	56.4	3.84, s	56.6	3.87, s
3'-OMe	56.2	3.87, s	56.1	3.89, s	56.2	3.87, s

[^0]Table 2

position	4		5	
1	116.7	6.40, d (9.6)	116.1	6.40, d (7.8)
2	125.9	6.65, dd (8.4, 9.6)	125.7	6.74, d (7.8)
3		6.38 (d, 8.4)		6.57, d (8.4)
4	167.4		166.5	
5	52.8	4.04, m	59.2	3.85, d (7.2)
6		5.44, d (7.8)		
7	168.3		170.6	
8	57.0	4.55, d (7.8)	56.0	4.74, dd (7.2, 10.2)
9	80.6	4.85, dd (1.8, 7.8)	82.1	5.93, d (7.2)
11	156.1		155.5	
12	122.5	7.15, dd (2.4, 8.4)	123.7	7.36, m
13	131.6	7.04, m	132.1	7.12, m
14	132.0		132.8	
15	130.6	7.03, m	130.5	7.07, m
16	123.0	7.11, dd (2.4, 8.4)	123.7	7.24, m
17	39.2	1.31, ddd (3.0, 12.0, 15.0)	26.1	1.39, m
		1.78 , ddd ($3.0,10.2,15.0$)		2.17, m
18	24.5	$1.21, \mathrm{~m}$	24.6	1.45, m
				1.77, m
19	21.2	0.73, d (6.6)	46.9	2.90, t (8.4)
				3.10 , dt (6.6, 12.0)
20	23.5	0.86, d (6.6)	137.5	
21	28.9	1.50, m	128.4	7.35, m
22	14.7	0.68, d (6.6)	128.5	7.24, m
23	20.7	1.14, d (7.2)	128.4	7.24, m
24			128.5	7.24, m
25	172.4		128.4	7.35, m
26	67.5	2.85, m		7.41, d, 9.6
27			170.9	
28	68.4	3.25, dd (1.8, 5.4)	54.3	4.54, m
		4.07, d (5.4)		
29	35.9	2.94, dd (5.4, 14.4)	36.2	2.81, dd (10.2, 15.0)
		3.11, dd (4.2, 14.4)		3.32 , dd (1.8, 15.0)
30	137.2		136.4	
31,35	130.2	7.24, m	128.8	7.06, m
32,34	128.3	7.27, m	128.9	7.21, m
33	126.7	7.22, m	126.9	7.11, m
36				5.80, d (7.8)
37			166.5	
38			117.9	5.64, d (15.0)
39			153.9	6.76, dd (6.6, 15.0)
40			31.3	2.49 , m
41			21.6	1.14, d (6.6)
42			21.6	1.11, d (7.2)
$\mathrm{N}-\mathrm{Me}$	39.3	2.22, s		

Table 3

position		16		17	
1	137.9	6.61, s	137.8	6.58, s	
2, 6	103.0		102.7		
3,5	153.8		153.0		
4	134.1		135.9		
7	86.2	4.74, d (5.4)	86.1	4.73, t (4.8)	
8	54.7	3.08, m	54.7	3.06, m	
9	71.7	3.91, m	71.7	3.90, m	
		4.26 , dd (6.6, 9.0)		4.26, dd (7.2, 9.0)	
$3,5-\mathrm{OMe}$	56.4	$3.87, \mathrm{~s}$	56.2	3.87, s	
1^{\prime}	132.9		132.9		
2^{\prime}	108.8	6.89, m	108.7	6.89, m	
3^{\prime}	146.9		146.6		
4^{\prime}	145.5		145.4		
5	114.4	6.89, m	114.4	6.89, m	
6^{\prime}	119.1	6.82, d (7.8)	119.1	6.82, dd (1.8, 7.8)	
$7{ }^{\prime}$	85.9	4.76, d (5.4)	85.9	4.75, d (4.8)	
8^{\prime}	54.2	3.12, m	54.2		
9^{\prime}	72.3	3.91, m	72.2	$3.10, \mathrm{~m}$ $3.91, \mathrm{~m}$	
		4.30, m		4.28, dd (7.2, 9.0)	
3'-OMe	56.1	3.91 , s	56.0	3.83, s	
4'-OH		5.59, s		5.59, s	
1 "	130.9 ,		131.7		
$2^{\prime \prime}$	$\begin{aligned} & 108.6 \\ & 146.9 \end{aligned}$	7.02, m	109.5	6.88, m	
$3 \prime \prime$			146.6145.6		
4"	145.0114.2				
5"		6.87, m	145.6 114.4	6.84, d (8.4)	
6"	119.0	6.76, d (7.8)	120.3	6.89, m	
7"	71.7	4.89, d (3.6)	74.4	5.10, d (8.4)	
8"	$\begin{aligned} & 83.4 \\ & 62.6 \end{aligned}$	4.56, dt (3.6, 7.2)	87.1	4.07, m	
$9{ }^{\prime \prime}$		$\begin{array}{ll} 4.33, \mathrm{~m} & 63.8 \\ 4.46, \mathrm{dd}(8.4,12.0) \end{array}$		$\begin{aligned} & \text { 4.01, m } \\ & 4.53, \mathrm{dt}(3.0,12.6) \end{aligned}$	
	62.6				
3"-OMe	56.1	3.92, s	56.1	3.95, s	
4"-OH		5.53, s		5.53, s	
7"-OH		4.21, dd ($2.4,7.8$)		4.67, dd (1.8, 9.6)	
$1{ }^{\prime \prime \prime}$	127.2		127.2		
$2{ }^{\prime \prime \prime}$	$\begin{aligned} & 109.4 \\ & 146.8 \end{aligned}$	7.00, m	109.3	7.06, m	
$3{ }^{\prime \prime \prime}$					
$4{ }^{\prime \prime \prime}$	148.1		148.2		
5"'	114.8	6.90, m	114.9	6.93, dd (1.8, 7.8)	
$6{ }^{\prime \prime \prime}$	123.2	7.03, m	123.4	$\begin{aligned} & 7.07, \mathrm{~m} \\ & 7.56, \mathrm{dd}(12.0,15.6) \end{aligned}$	
$7{ }^{\prime \prime \prime}$	$\begin{aligned} & 144.9 \\ & 1157 \end{aligned}$	7.51, dd (4.2, 15.6)	$\begin{aligned} & 145.2 \\ & 115.2 \end{aligned}$		
$8{ }^{\prime \prime \prime}$		$6.24, \operatorname{dd}(1.2,15.6)$		$\begin{aligned} & 7.56 \text {, dd (12.0, 15.6) } \\ & 6.35, \operatorname{dd}(3.0,15.6) \end{aligned}$	
$9{ }^{\prime \prime \prime}$	167.256.1		$\begin{aligned} & 115.2 \\ & 167.1 \end{aligned}$		
3''-OMe		3.89, s	56.1	3.91, s	
$4{ }^{\prime \prime \prime}$-OH		5.83, s		5.87, s	

Table 4

compound	$\mathbf{I C}_{\mathbf{5 0}}(\mathbf{m M})$
Frangufoline (6)	NA
Sanjoinenine (7)	NA
Antidesmone (9)	0.7
17-O-(β-D-glucopyranosyl)antidesmone acid (10)	1.0
Waltherione F (11)	b
p-hydroxyphenylethyl trans-ferulate (15)	0.15
1,3,6-tri- O-galloyl- β-d-glucopyranose (21)	NA
Acetonylgranatin B (23)	0.2
Acetonylhelioscopinin A (24)	0.2
Acetonylterchebin (25)	0.2
Acetonylcarpinusin (26)	0.2
1- O- β-D-(2,4-dihydroxy-6-methoxyphenyl)-6- O-(4-hydroxy-	
3,5-dimethoxybenzoyl)-glucopyranose (27)	0.5
Quercitrin (30)	0.2
Rutin (31)	0.10
Aminoguanidine ${ }^{\text {a }}$	1.4
${ }^{\text {areference }}{ }^{\text {b }}$ strong fluorescence interferences, NA = not active but no fluorescence	
interferences	

Highlights

- A comprehensive phytochemical characterization of Antidesma bunius is presented.
- Nine undescribed natural products were among the 33 isolated compounds.
- They represent coumarinolignans, cyclopeptides and furofuran-type lignans.
- Their configuration was established by ECD experiments and NMR calculations.
- Some compounds indicated inhibition of advanced glycation endproducts formation.

Conflict of interest

- none

Declaration of interests

\boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\square The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

[^0]: ${ }^{a, b, c}$ interchangeable signals

