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Abstract

Constraining the systematic evolution of iodine solubility in borosilicate glasses is required
for the formulation of adequate glass matrices able to immobilize '*°I representing a major

troublesome radioisotopes produced by nuclear anthropic activities.

We investigated experimentally the change in iodine solubility in a large series of borosilicate
glasses synthesized under high-pressure conditions (1.5 GPa) and at 1350°C. The nature of
network modifying cation (Na, K, Rb, Ca, Ba and Sr) and the concentration of B203 (~<10
mol.% and ~>10 mol.%) have been tested. The XPS measurements showed that iodine
speciation in glasses is mostly represented by iodide (I") for a range of iodine solubility from

0.3 to 3.1 mol.% as determined by SEM EDS and LA-ICP-MS analyses.

The iodine solubility is enhanced in glasses with lower B2O3 content and with a higher
concentration in network modifying cation. Regardless of the cation nature: alkali or alkaline-

earth; increasing the cation size appears to induce a decrease in iodine solubility.

We used the optical basicity (Aclass) and iono-covalent parameter (ICPgiass) to express the
large variety of investigated glass compositions; both relating to the electron donor capability
of the glass. We show that iodine solubility is positively correlated to Aciass and accordingly
negatively correlated to ICPaiass. It implies that more iodine will be dissolved in glass
compositions having a stronger electron donating capability. Evidence of the relationship
between iodine solubility and oxygen network is shown by the iodine solubility positive trend
with equilibrium constant of the oxygen speciation. Future work should take these parameters
into consideration for modeling iodine solubility in borosilicate glasses providing additional

information are collected such as the boron, aluminum and silicon speciation in glasses.

Keywords: iodine solubility, optical basicity, high-pressure, nuclear waste
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1. Introduction

In the many radioactive elements produced by anthropic nuclear sources, iodine (I) is one
important volatile element representing a serious problem in the effort for the immobilization
of radioactive wastes [1-5]. One particular isotope ('*’I) requires a special attention because
of 1) its long half-life (>15 Ma) and 2) its high mobility and volatility in environment [3, 6,
71]. Currently, several academic studies aim at developing durable conditioning matrices for
this radioisotope but no ideal industrial solution has emerged for immobilizing it in a
permanent and safe manner [8—17]. Although alternative surrogates have been recently
suggested with phosphate glasses [18, 19], the immobilization of radioactive elements is often
achieved in aluminoborosilicate glasses synthesized at ambient pressure, high-temperature
and representing a good compromise that 1) will contain high concentration in radioactive
elements to reduce the disposal space; 2) will be stable through time; 3) will not be damaged
by radiation and heating; 4) will present high chemical durability [20-24]. However, owing to
the high iodine volatility this protocol cannot retain efficiently *I radioisotopes that will
escape from the melt to the atmosphere. Previous works [25-27] showed that the iodine

solubility does not exceed 0.7 mol.% I in that case.

Recent investigations [28—30] demonstrate that the use of high-pressure synthesizing protocol
of aluminoborosilicate glasses can circumvent this lack of iodine dissolution. For instance,
Jolivet et al.[30] reached iodine solubility of 1.3 and 2.5 mol.% I in International Simple
Glass (ISG, [31]) and typical Low Activity Waste glass (LAW, [32]) synthesized at 1.5 GPa,
respectively. More recently, Morizet et al. [33] showed that the iodine solubility could be
further increased by using highly oxidizing conditions promoting the formation of iodate

I°*) within the glass structure. Regardless, the strong increase in the iodine solubility

species (
is ascribed to the increase in thermodynamic activity of the fluidic iodine in equilibrium with

the melt phase upon pressure [30, 34, 35]. Although, this represents a major breakthrough in
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the race for immobilizing efficiently iodine radioisotopes, we still lack a clear fundamental
understanding on how iodine behave as a function of glass composition. At given intensive
conditions, the systematic evolution of iodine solubility as a function of glass composition is

currently poorly known.

Up to now, subsequent experimental investigations showed that iodine is sensitive to 1) the
presence of alkali cations in the glass [25-27, 36] and 2) the presence of boron (B20s3, [28—
30]). For simplified aluminoborosilicate glass compositions, McKeown et al. [27] and more
recently Morizet et al. [37] demonstrate that iodine dissolved as I" is surrounded preferentially
by Na* cations for charge compensation, however, it appears that Ca®" can also play this role
but to a lower extent. The formulation of a reliable nuclear waste glass matrix extends well-
beyond the case of Na and Ca. For example, the SON68 glass composition used in France for
immobilizing High Activity nuclear waste is composed of more than 25 different oxides [38].
The role of each element in glasses is fairly apprehended: either network former, or charge
compensating cation for network species with excess negative charges (e.g. AlO4"), or
network modifying cations. The latter category regroups number of element ranging from
alkalis (Na*, K*, Li*, Rb"), alkaline-earth (Ca?*, Mg?*, Ba?", St?*), rare-earth elements (La**,
Yb*"), Bi** and others. These are supposed to be the elements that are mobilized for charge
compensating the I" species as the charge compensating cation is tightly associated with the
network species having excess negative charges and there is no exchange between oxygen and
iodine atoms in network units [37]. As mentioned earlier the effect of Na* and Ca®" on iodine
solubility is fairly understood; however, for the other elements we have virtually no

information.

As a result, there is a need for additional experimental investigations aiming at determining
systematically the change in iodine solubility as a function of glass composition in order to

propose the most adequate aluminoborosilicate glass formulation that can serve as a matrix
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for the immobilization of '?°I radioisotopes. In the present work, we have investigated the
change in iodine solubility as a function of glass composition involving different alkalis or
alkaline-earth elements. Syntheses were done under high-pressure conditions with a I2 fluid
phase as a source of iodine; and, as expected, iodine speciation is represented by iodide
species (I'). The results are interpreted in terms of electrochemical parameters (optical basicity
and iono-covalent parameter) that traduce the glass composition. We propose a discussion and
some recommendations for future work to model iodine solubility and formulate an adequate

aluminoborosilicate glass matrix for the immobilization of '*’I.

2. Experimental methods

2.1. Starting materials

Three series of aluminoborosilicate glass compositions were investigated in the present work.
We cover a wide range of compositions having a common basis: Si02-A1203-B203; completed
by various elements acting as network modifying or charge balancing cations: Na20, K20,
Rb20, Ca0O, BaO and SrO. The first series consists in several glasses with a single network
modifying cation either Na, K or Rb for alkalis or Ca, Ba, Sr for alkaline-earth elements.
Within this group series, we prepared two different compositions: one with higher B203
content (B203 >10 mol.%) than the other (B203 <10 mol.%). The glass composition for this
series with single network modifying cation is shown in the Table 1 for volatile-free glass
synthesized at ambient pressure. The second glass series is composed of several Na-rich
aluminoborosilicate glasses investigated in Jolivet et al. [39]: BASN3, BASN4, LJ4b (Al-
free) and LJ8. Two additional compositions have been prepared, Na20Cal5B10Bi0-vf and
Na30Cal0B10Bi0-vf, with the purpose of having an lono-Covalent Parameter [40, 41] close

to 1.00 and 0.96, respectively. These compositions have a mixture of CaO and Na2O for the
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network modifying or charge balancing cations. The third glass series corresponds to the first

one in which a small amount of Bi203 (up to 4 mol.%) has been added.

The sample notation is the following: Ca20B20Bi0 that stands for the I-bearing pure Ca
composition with higher B20O3 content and without Bi20O3; Ca30B10Bi3 stands for the I-
bearing pure Ca composition with lower B203 content and with Bi2O3. The numbers in the
sample name correspond to the targeted mol.% for each oxide. It should be noted that I-free
glass synthesized at ambient pressure are reported in Table 1 and that the extension -vf is
added to the sample name for simplicity; on the other hand, the I-bearing glass synthesized
under high-pressure conditions are given in Table 2. For glass compositions from Jolivet et al.
[39]: BASN3, BASN4, LJ4b (Al-free) and LJ8; we added the extension -vf and -I for I-free
and I-bearing glasses in Table 1 and 2, respectively. Although, a potential industrial process is
proscribed at pressure conditions of 1.5 GPa, this investigation has multiple objectives in the
fundamental understanding of iodine behavior in aluminoborosilicate glass: 1) determine if
iodine has higher affinity for one cation or another, 2) determine if the ratio between network
modifier and network former cations impacts on the iodine solubility and 3) determine the

influence of heavy Bi20O3 on iodine solubility.

The investigated glass compositions were prepared from a mixture of oxides (SiO2, B203,
Al203 and CaO) and carbonates (Na2CO3, Rb2COs3, BaCO3 and SrCOs). We used spec pure
oxide and carbonate powders that were mixed under ethanol in an agate mortar. Prior to high-
pressure experiments, the I-free starting material powders were melted at 1200°C in a Pt
crucible. After 1h melting, the starting material is quenched to a glass by dropping the Pt
crucible in a cold-water bath. Only one melting has been conducted in order to reduce the

possible loss of alkali or boron oxides.

We loaded the sample powder into 2.9 mm outer diameter Pt capsule. The iodine was loaded

as solid I at the bottom of the capsule prior to add the glass powder. We prepared a mixture
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with 0.01 g of I and 0.04 g of glass powder that corresponds to ~10 mol.% I in the starting
composition. The Pt capsule is then welded shut using arc-welder at both ends. Our current
knowledge [30] indicates that the amount of loaded I is sufficient to insure oversaturation
and Iz should be in excess in the fluid phase during the experiments. For the Bi-bearing
sample series, the Bi-free glass powder was mixed with a small amount of Bi2Os to reach 3 to

4 mol.% Bi120s3 in the collected I- Bi-bearing glass after the experiment.

2.2. High-pressure syntheses

The high-pressure I-bearing glasses were synthesized using end-load type piston-cylinder
apparatus (LPG Nantes). We used the same pressure and temperature conditions for all the
experiments: 1.5 GPa, 1350°C and for run duration of three hours insuring equilibrium to be
reached and comparison between the experimental results. The experiments were done using
% inch talc-Pyrex assemblies and straight walls graphite furnace. Capsules are placed inside
Magnorite© ceramics preventing from a contact to the graphite furnace. Owing to the small
capsule diameter, two capsules are placed in the middle of the assembly; hence, both capsules
are experiencing the same intensive conditions (e.g. Na30Cal0B10Bi0 along with
Na20Cal5B10Bi0). The protocol to reach final pressure and temperature conditions is
described in previous works (e.g. [30, 42]): 1) increase in pressure to 1 GPa, 2) increase in
temperature to ~550°C for high-pressure assembly relaxation and compaction, 3) increase in
pressure to 1.5 GPa, and 4) increase in temperature to 1350°C. During the experiment, the
pressure is controlled automatically by a Stigma© needle pump; temperature is controlled by
a Eurotherm. The latter is accurate to £1°C that is connected to a type B thermocouple (PtRhe-
PtRh3o). Due to internal frictions, we applied a 10% correction to the pressure. Experiments
are stopped by cutting-off the power. The quench rate from 1350°C to room temperature is
~100°C/s in the first 500°C. The quench is performed isobarically to prevent the formation of

bubbles that could distribute throughout the resulting glass.
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The recovered samples consist in a colored (i.e. pink to brown) glass entirely coated with dark
coating that appears to be iodine residue. This residue implies that iodine in the fluid phase
was distributed throughout the experimental charge and it implies also that iodine was loaded
in excess prior to the experiment. We removed the excess iodine by dripping the glass pieces
into ethanol and then placing in a drying oven for a few minutes. Microscopic observation did
not reveal the presence of unwanted crystalline phases. It should be pointed out that several
experiments were replicated (e.g. Rb20B20Bi0-r is a replicate experiment of Rb20B20Bi0;
see Table 2) for insuring that measured I content is consistent, fully replicable, and not stained

by analytical bias.

2.3. Scanning Electron Microscopy with Energy Dispersive Spectrometer

We used Scanning Electron Microscopy with Energy Dispersive Spectrometer (SEM EDS) to
characterize the recovered glasses for major element and iodine concentrations. Glass chips
were mounted into epoxy resin plugs and subsequent polishing was done to 1 pm.
Measurements were conducted on a JEOL JSM 5800LV SEM (IMN Jean Rouxel), equipped
with a SDD SAMx dispersive spectrometer. The analytical conditions were 15 kV for voltage
and 0.5 nA for current. We conducted the acquisitions on a 20 um spot size to avoid alkali (K,
Na and Rb) loss under the electron beam. Five scans of 1 min were collected on each sample

at different location on the glass chip.

We used the following internal standards for quantifying the elements: corundum for Al203,
wollastonite for SiO2 and CaO, NaCl for Na2O, BaF> for BaO, SrF> for SrO, KClI for K20,
RbI for Rb20 and I, Bi metal for Bi2O3. We did not measure the B203 present in the
borosilicate glasses as it is not reliably quantified using SEM EDS due to the low boron
molecular mass. Based on the replicated measurements, we obtain an uncertainty on major
element measurements that is better than 5% in relative to the value and comparable to the

error reported in previous works on the same analytical equipment [30, 39]. For the particular
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case of iodine, the typical error bar based on replicated measurement is +£0.2 mol.%. Data in
mol.% are provided in Table 1 for I-free glasses and in Table 2 for I-bearing glasses along
with the error that is calculated from the standard deviation of the replicated measurements.
The reported error pictures the homogeneity in the element distribution; however, we
observed slight heterogeneity in the major element concentrations for Ba30B10Bi0-vf

exhibiting larger error bars than for the other glasses.
2.4. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

The B20s3 and I contents is determined using a Laser Ablation-Inductively Coupled Plasma-
Mass Spectrometry (LA-ICP-MS, LPG Nantes). The spectrometer is an ArF excimer laser
(193 nm, Analyte G2, Photon Machines) that is coupled to a quadrupole ICP-MS (Varian
Bruker 820-MS). The ablation is performed in a HelEx II 2-Volume Cell with He as carrier
gas. We used a laser energy density of 4.54 J.cm™ and with a repetition rate of 10 Hz. We
performed the acquisition in a spot mode with a diameter of 110 um. We performed five
acquisitions on each I-bearing glass sample in static mode (i.e. point by point) on a glass
polished surface from the bulk and embedded into epoxy plug. The acquisition time was set to
30 s, preceded and followed by a 30 s blank acquisition. The washout time of the ablation cell
was approximately 50 s., due to the long residence time of iodine in the system. We estimated
the pit size to ~20 um in depth that represents a large analyzed sample volume in comparison
to SEM EDS analyses. Only the LA-ICP-MS signal obtained slightly below the ablation
surface was considered for the quantification of iodine so as to avoid possible alteration in the

iodine content that could be generated from sample preparation[43].

LA-ICP-MS acquisition for I content is designed to corroborate the I results obtained by SEM
EDS. The data is calibrated against several glass samples. We recorded the '?’I and 2’Al
isotopes and this latter one was used as an internal standard. We calibrated the I content with

two high-pressure ISG glasses [31] doped with I (1.29 and 1.34 mol.% I) and with known
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Al203 content of 4.08 and 4.02 mol.%, respectively. For these two samples, I and Al2O3
contents have been determined using Electron Probe Micro-Analyses (EPMA, ISTO Orléans)
based on 400 points. We used the same protocol to quantify the B20O3 in glasses using LA-
ICP-MS. For calibrating the B2O3 content in our glasses, we used the aluminoborosilicate
glasses investigated by Jolivet et al. [39] that have been characterized using multiple
techniques (SEM EDS, ''B MAS NMR and ICP Optical Emission Spectrometry) for the
quantification of B20s. In particular, we used the LJ3, LJ4 and NH glasses from Jolivet et al.
[39] having 34.9, 30.7 and 15.1 mol.% B20s, respectively. The present calibration for I and
B203 could not be used for I-bearing LJ4b glass sample as this glass does not contain Al20O3
currently used as the internal standard. For this sample, we considered the I content
determined by SEM EDS and the B20Os reported in Jolivet et al. [39]. We performed three
analytical sessions on distinct glass chips for the Ca-bearing glass samples (Ca20B20Bi0 and

Ca30B10Bi0) to check for consistency.
2.5. X-ray Photoelectron Spectroscopy

X-ray Photoelectron Spectroscopy (XPS) measurements were performed on each glass sample
to determine the I and the O signatures in our glasses. XPS spectra for crystalline standards
were not acquired considering that peak assignment has been previously reported for similar
I-bearing glasses[33, 37, 44]. We carried out the XPS analyses on a Kratos Nova spectrometer
(IMN Jean Rouxel) using a monochromatic Al Ka radiation operating at 1486.6 eV (15 kV,
20 mA). We analyzed glass chips (several mm?) corresponding to a surface fracture from the
bulk of the experimental charge. The surfaces were not prepared and the analyses were
conducted on raw glass surfaces, hence avoiding possible surface contamination. The glass
chips were loaded into the sample chamber under high-vacuum conditions (<10® mbar). The
spot size on the sample is 300x700 pm? area of analyses. We recorded survey spectra at a pass

energy of 160 eV corresponding to an overall instrument resolution measured on silver Fermi
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edge of 1.95 eV and a step of 0.5 eV from -5 to 1200 eV. High-resolution spectra of [ 3d, O
1s, and C 1s core levels were recorded with an instrument resolution measured on silver
Fermi of 0.49 eV and a step of 0.1 eV at a pass energy of 40 eV. We acquired the final
spectrum with a cycling mode (several scan of the sample) for each element and we did not
observe any modification of each individual acquisition that would suggest an alteration of the
glass under the X-ray beam. We calibrated the XPS spectra using the adventitious C 1s in the
binding energy at 284.8 eV. All spectra were treated with CasaXPS© software. We focused
on the I 3ds»2 peak in the I 3d region, which exhibits the highest intensity as compared to the
one for the I 3ds.2. The spectra were fitted with a U2 Tougaard function for the background
[45]. Subsequent simulations are achieved with a pseudo-Voigt function with a Lorentzian
ratio of 50% for the various peaks. The determination of the I species is accurate to within

10% of the derived value.

3. Results

3.1.Iodine speciation from XPS

For an adequate comparison, the samples have to exert the same or similar iodine speciation.
Iodine exhibits several redox degree ranging from -1 to +7. During the high-pressure
experiments, no constraints were placed on the redox conditions and the talc-Pyrex assembly
fixes the fO2 intrinsically. It has been previously estimated that talc-Pyrex assembly imposes
fO2 conditions relatively oxidizing at +1 log unit above the solid buffer QFM (QFM+1,
Quartz-Fayalite-Magnetite, [46]). Even though the redox conditions are relatively oxidizing,
we have previously shown that under those conditions iodine is mostly dissolved under its

reduced iodide form: I [30, 33].
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The XPS results in the I 3d region is shown in Figure 1. For clarity, we show the spectra
obtained on the glasses with alkali and high B203 (Figure 1A) and with alkaline-earth and low
B20s (Figure 1B) cations; the entire set of spectra is available in the Suppl. Mat.. In addition,
the XPS spectra in the O 1s region (~532 eV) for the whole set of glasses were acquired. For
clarity, the O 1s XPS are only provided in the Suppl. Mat.. The O 1s located at ~532 eV and
is approximately symmetric. For the O 1s spectra, the peak maximum position has been
determined as a function of glass composition. In Figure 1, we choose to represent only the |
3dss region that represents the most intense iodine peak. The peak located at 619 eV
corresponds to the signature of iodide (I") species as identified in previous works [33, 37, 44,
47, 48]. For several samples (see Suppl. Mat.), we have observed a slight asymmetry on the
high-energy side (~621 eV) that could correspond to the presence of I species [49].
Currently, I° has also been identified in previous studies for glasses [37, 44] and could
correspond to micrometric bubbles of solid I or effectively dissolved Iz species within the
glass. This aspect is not clarified yet. For K20B20Bi0, we observed an additional peak located
at ~624 eV that we assigned to the presence of a slight amount of iodate species (I°*, [33]). It
is also observed for several additional samples: Na30B10Bi0, K30B10Bi0, BASN4-I,
Na30Cal0B10Bi0 and Na20Cal5B10Bi0; and does not exceed 10% in relative to the iodine
species. Nevertheless, the existence of the most oxidized iodine species is systematically
observed in the most iodine rich samples. For instance, for K30B10Bi0 in which 1.9 mol.% I

is measured by LA-ICP-MS, the proportion of I°* is 9.9% whereas in Rb20B20Bi0 in which

| |

0.3 mol.% I is measured, the I°" is absent. However, the proportion of I°" is low enough for
samples to be compared to each other and in the present work; iodine is mostly dissolved as I’
species. The derived XI  is reported along to the spectra and is determined from the spectrum

simulation (values are provided in Table 1). As mentioned, this result is consistent with
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previous work [33, 37] that suggested the following dissolution mechanism for iodine in

aluminoborosilicate glasses:

glg"e“/ flutd 4 g+, 0-NBO  Mnt+. [~ 4 gozf tutd/melt | g 0BO Eq. 1

In Eq. 1, the M™, ONBO and OB© stand for a charge compensating cation (e.g. alkali or
alkaline-earth cations), a Non-Bridging Oxygen and a Bridging Oxygen from the glass
structure, respectively. Interestingly, the chemical reaction implies that there is, at some point,
an interaction between I> molecules in the fluid phase and the oxygen atoms of the melt.
Moreover, the Eq. 1 also suggests that there is a transfer of negative charge from the oxygen
to the iodine to form iodide species. The Eq. 1 points to the fact iodine dissolution is

accompanied by an increase in the degree of polymerization as inferred in recent work [36].

3.2.Effect of network modifying cations on iodine solubility

The iodine solubility data obtained by LA-ICP-MS and SEM EDS are provided in Table 1.
Both acquisitions compare adequately suggesting that acquired iodine solubility data are
robust. As mentioned earlier, the error (in bracket) represents the homogeneity of the iodine
distribution within the sample (i.e. standard deviation obtained on multiple analyses).. For
SEM EDS measurements, the analytical error is on the order of £0.2 mol.% similar to the
error reported in Jolivet et al. [30]. The analytical error associated with LA-ICP-MS is
suspected to be lower (0.1 mol.%) and more representative of the glass iodine content. The
volume analyzed by LA-ICP-MS spot is larger (spot of 110 um in diameter by 20 um in
depth) than the surface analyzed by SEM EDS (~20 um?). For the remaining of the
manuscript, we will preferentially consider the data obtained by LA-ICP-MS unless those are

not available.
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The change in iodine solubility as a function of the network modifying cation is represented in
Figure 2, for glass compositions with B203>10 mol.% and with B203<10 mol.%. In Figure 2,
the glass compositions have been categorized in term of increasing cation charge (alkali

before alkaline-earth) and increasing cation size (Na* — K™ — Rb" and Ca** — Sr** — Ba*").

At B203<10 mol.%, we observe that iodine solubility seems to be higher in alkali-bearing
glasses than in alkaline-earth bearing glasses. In detail, the iodine solubility is higher for Na-
bearing glass than for Ca- and Sr-bearing glasses. We observe that iodine solubility for K- Ca-
and Sr-bearing glasses are roughly the same. Previous investigations [27, 30, 33] suggested
that iodine dissolved as I" species has a better affinity towards alkali atoms rather than
alkaline-earth atoms. Our results are consistent with that statement at least for Na-bearing
glass in comparison to alkaline-earth ones. However, at B2O3>10 mol.%, the evolution of the
iodine solubility depending on the network modifying cation nature is much more complex.
There is a clear decrease in the iodine solubility with increasing cation size within each
category: alkali, I solubility decreases from Na to Rb; alkaline-earth, I solubility decreases
from Ca to Ba. We observe a non-monotonic change in iodine solubility with a jump in iodine
solubility between Rb and Ca glass compositions. Unexpectedly, the iodine solubility appears
higher in alkaline-earth bearing glasses than in alkali-bearing glasses at B2O3 concentration

above 10 mol.%.

4. Discussion
4.1. Electrochemical parameters for aluminoborosilicate glass compositions and the

relationship to oxygen activity

In the present study, the range of investigated glass compositions is relatively large: different
boron contents, different network modifying cations, and mixing between network modifying
cations; therefore explaining the change in the iodine solubility requires expressing the

studied glass compositions with chemically relevant bulk parameters. To do so, we have
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focused our approach on the pioneer work by Dufty [50, 51] that defined an oxide glass by its
optical basicity (A). The optical basicity takes its origin into the Lewis acidity concept. The
optical basicity also relates to the Jorgensen’s nephelauxetic parametrization that corresponds
to the electron donation to cations and the resulting degree of charge reduction experienced by
these ions [52, 53]. The optical basicity has been applied for describing many properties such
as the refractive index, the UV transparency, the redox behavior of glass melts, and the
viscosity dependence with temperature [54]. In the present work, we have calculated the glass

optical basicity (Aclass) according to the equation of Duffy [50]:

Xi
Agrass = Zy—i=ZXi><Ai Eq.3

In which X represents the molar fraction of the oxide i1 and yi corresponds to the basicity
moderating parameters of the oxides. For the investigated glasses, we used the yi or Ai (1/yi)
for Si02, A203, B203, CaO, SrO, BaO, Na20, K20, Rb20 and Bi203 reported in previous
works (e.g. compilation of yi values in Rodriguez et al. [55]). The calculated Aciass is reported
in Table 1 for volatile-free glasses and in Table 2 for I-bearing glasses. It should be pointed
out that the calculated Aciass represents a theoretical value as the true optical basicity value
(An) can only be obtained via the glass refractive index (n) measurement [56—58]. Because of

the small glass sample size, we could not measure the optical refractive index.

The second glass bulk parameter considered here has been defined by Portier et al. [40, 41]
and corresponds to the Iono-Covalent Parameter (ICP). The ICP is related to the acidic
strength and takes into account the ionic-covalent character of a bond. In other words, the ICP
takes into account the ionic forces (polarizing power) and the covalent forces
(electronegativity). This aspect is particularly designed for glasses having both covalent and
ionic characters. Furthermore, providing that iodine is dissolved as I" species it has a ionic

character and I' is surrounded by network modifying cation (Na* or Ca*", [37]), it is likely that



373  arelationship between ICP and iodine solubility exists. The ICP; parameter for each oxide is

374  calculated with the following equation from Portier et al. [40, 41]:
375 ICP; = log (f—z) — 0.6)xi(a—r) + 1.21 Eq. 3

376  Where zi/ri* corresponds to the polarizing power of cation i and yj-r) is the cation
377  electronegativity as defined by Allred and Rochow [59]. The ICP for the glass is then

378  determined as follow:
379  ICPguss = X X;ICP; Eq. 4

380  Where Xi is the molar fraction of the cation in the glass composition. The values for ICPGiass
381 are provided in Table 1 and Table 2. The calculation of AGlass and ICPGlass are provided in

382 Suppl. Mat..

383  The data points are shown in Figure 3 and the ICPalass is reported as a function of Aciass only
384  for the volatile-free glasses obtained at ambient pressure. In the present calculations, several
385  aspects related to structural information are not taken into account in the calculation of Agiass.
386  Recent works [53, 60] indicate that the theoretical optical basicity values will be better

387  approached if we take into account 1) the distribution of BO4 and BO3 within the glass (i.e. N4
388  and N3 values, [20, 39, 61, 62]), 2) the distribution of silicate network Q" species [63—66], and
389 the distribution in the aluminum species (i.e. 4-, 5- and 6-coordinated species, [67—69]. In the
390 present work, we do not have access to this information, as it would involve advanced NMR
391  acquisition. Furthermore, our glass samples are prepared under high-pressure conditions and
392  the effect of this intensive parameter on the optical basicity and iono-covalent parameter

393  defined by Duffy [50] and Portier et al. [40, 41] is currently not constrained but should exist.
394  For instance, Kuryaeva [70] shows that increasing pressure induces an increase in the glass

395 refractive index. The increase in the refractive index increases the oxide ion polarizability [56,



396 57, 71] and hence changes the optical basicity value [51, 57, 71]. In the Suppl. Mat. we
397  provide the same figure as Figure 3 but completed with the I-bearing data provided in Table 2.
398  The reason for which we do not include those points in the actual Figure 3 is because the

399 effect of pressure and iodine on the ICPaiass and Agiass 1s currently unknown.

400  Nevertheless, in Figure 3, we clearly see that there is a negative correlation between ICPglass
401  and Aclass. This relationship is expected and has been shown in previous works [72, 73]: A is
402  the numerical expression of the average electron donor power of the oxide species and ICP
403  represents the influence of ionic-covalent bonding in an oxide on the acid strength of the

404  cations. Furthermore, Reddy et al. [74] demonstrated that A correlates linearly with the

405  average electronegativity. Hence, both parameters (ICPaiass and Aciass) are correlated to each
406  other; however, the method to calculate each parameter is different. A is strongly dependent
407  on the cation polarizing power: in ionic solids (i.e. cations have weak polarizing power), the
408  charges are focused on each ion and the oxygen will be able to give an important partial

409  negative charge to a new cation; in solids with important covalent character in the chemical
410  bonds, the negative charge will be shared by the cation and the anion and the oxygen will
411  have a weak electron-donating power. In the present dataset, the extremes of the trend define
412 two different glass behaviours: one more acidic at lower Aclass and higher ICPGiass, one more
413  basic at higher Aciass and lower ICPaiass. The latter case implies higher electronegativity

414  global value and a higher electron donation capacity from the oxygen atoms. From Figure 3,
415  the two investigated parameters can be used to express the bulk chemical properties of the
416  glasses. In the investigated glasses, the alkaline-earth-bearing glasses have the highest ICPGiass
417  values and the lowest Aclass. On the contrary, the alkali-bearing glasses have the lowest

418  ICPauass and the highest Aciass. For glasses with a mixture of CaO and NaxO, the ICPglass and
419  the Aaciass values are located in the region of the alkali-bearing data point, which could be

420  explained by the higher concentration of Na2O in comparison to CaO (see Table 1).
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In the present work the glass optical basicity can only be accessed through calculation;
however, it has been shown that Aaiass 1s negatively correlated to the change in O 1s peak
maximum measured by XPS considering that the Aaiass represents the measure of the valence
charge density surrounding the oxygen ion in the network [56, 75, 76]. The change in the
Acass for volatile-free glasses as a function of the O 1s peak maximum is shown in Figure 4.
The same figure is proposed in the Suppl. Mat. and includes the data for I-bearing glasses.
The correlation observed in Figure 4 witnesses that the optical basicity relates intimately to
the oxygen activity within the glass [77]. It also shows that the positioning of the optical
basicity numerical value is correct from one glass composition compared to another even

though the glass structure is only partially known.

4.2. 1 solubility prediction using glass optical basicity and iono-covalent parameter

The prime objective of this work is to investigate the change of iodine solubility as a function
of glass composition that can be expressed by different bulk chemical parameters. We show
the change in iodine solubility (in mol.% I) as a function of Aciass and ICPglass in Figure SA
and 5B, respectively. In Figure 5, we added the data points from Jolivet et al. [30] acquired at
identical pressure (1.5 GPa) and for two different glass compositions: ISG and NH. The
recent I solubility data points from Morizet et al. [33] are also added. These data were
obtained on Ca- and Na-bearing aluminoborosilicate glasses synthesized at pressure

conditions of 1.5 GPa.

The data from Jolivet et al. [30] and most of the data from Morizet et al. [33] compare
adequately with our data in Figure 5. One data point (Aclass = 0.747 and 3.9 mol.% I) from
Morizet et al. [33] seems to be off the general trend. Actually, one possible explanation is the

presence of a substantial quantity of I°*

in this glass sample that has not been accounted for
and would explain the high I solubility for instance for their CON35 at 3.9 mol.% I. Although,

there is a significant scatter in the data, which we believe, is resulting from an inadequate
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approximation in the Aciass and ICPaiass as mentioned earlier; we observe a reasonable
correlation between iodine solubility and Aclass and ICPaiass. There is a positive correlation of
iodine solubility with increasing Aciass and a negative correlation with ICPGlass, which is

consistent with the observed correlation between Aciass and ICPglass shown in Figure 3.

The results shown in Figure 5 suggest that iodine solubility in aluminoborosilicate glasses can
be derived providing the optical basicity or the iono-covalent parameter are known, however,
a better accuracy is requested in the calculation of these compositional parameters. As
mentioned earlier, knowledge on the distribution of boron species (i.e. N4 and N3) is required
for calculating a more accurate value for Aciass. In Figure SA, the NH23-1 from Jolivet et al.
[26] has been fully characterized in Jolivet et al. [26] that report a N4 value at 0.45 with iodine
content at 1.9 mol.%. The iodine speciation for this sample is provided in Morizet et al. [33]
and is 100% I". With the current simple calculation for the glass optical basicity: all B203 is in
trigonal boron unit (BO3) configuration and considering yso3 = 2.47 [78]; we obtain a
Acrass(NH23-1) = 0.730. Taking into account the distribution of B203 as 55% BOs3 and 45%
BO4 (N4 = 0.45 reported in Jolivet et al. [26]) and ysos = 4.17 [60], we calculate a
Aclass(NH23-1) = 0.707. Such a change represents a variation of ~2% in relative to the value.
We report the difference in Aclass(NH23-1) in Figure SA. Unfortunately, it appears impossible
to apply systematically this Aciass variation to all the data points as the change in N4 value is a
complex function of the glass composition and the optical basicity variation in the studied

glasses is not necessarily identical to the one calculated for NH23-1.

Previous works [26] suggest that N4 value is likely to influence the iodine solubility.
Currently, the model from Lu et al. [79] determines the N4 for a large range of glass
composition; however, this model is not designed to be applied for high-pressure glasses.
There is a gap in our understanding of the effect of pressure on the distribution of boron

species in glasses. Previous investigations [80—82] demonstrate that increasing pressure
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provokes an increase in the N4 value. Nevertheless, Jolivet et al. [26] showed that the change
in N4 value upon pressure increase is probably dependent on the glass composition.
Furthermore, it is not clear if the iodine dissolution itself have or not an effect on the Na

value.

In a similar manner, the distribution in the silicate network units (i.e. Q" species where n
represents the number of bridging oxygen) should be determined for calculating an accurate
Aclass as suggested by Dimitrov et al. [60]. From another viewpoint, the distribution of Q"
species describes the degree of polymerization of the glass, namely, the connectivity between
silicate network units. The higher the SiO2, higher is the degree of polymerization and silicate

network units have higher connectivity.

In the present work, the use of bismuth oxide could appear odd, however, we justify the
addition of Bi20s3 to the studied glass compositions by two aspects: 1) Bi2Os is often used in
nuclear waste glasses for its good radiation shielding ability and 2) with its low y value, Bi2O3
could be a good oxide candidate that increases the Aclass and hence we expect an increase in [

solubility with the addition of Bi2O3. These two aspects are further discussed below.

First of all, bismuth (present as Bi**) is recognized to present good shielding capacity to
irradiation [83], hence representing a pertinent oxide to add in the borosilicate glass matrix for
the immobilization of nuclear waste. Moreover, recent works demonstrate that bismuth is
gaining great interest in glass technology, in particular in optics and photonic (e.g. [84—87]).
As mentioned earlier, the role of bismuth in glasses is similar to the one of alkali (or alkaline-
earth) elements. It acts as a network modifying cation inducing a depolymerization of the
glass structure and high concentration of NBOs in the surrounding of Bi** ions. It is
recognized that these two aspects have a positive effect on the higher dissolution of iodine[30,
33, 36]. In Figure 5A, adding a small quantity of Bi2O3 seems to induce an increase in the |

solubility for alkali-bearing glasses. For alkaline-earth-bearing glasses, we observe that
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adding Bi1203 to Ca-bearing glasses has an opposite effect and I solubility is decreasing. This

aspect is currently not explained and needs further investigations.

Second of all, in term of optical basicity, Bi2O3 has a low moderating parameter (ysi2o03 =
0.84; [84]) that induces an increase in Aclass and an increase in iodine solubility is expected.
Hence, the small addition of element having low moderating parameters such as Cs20 with
vcs20 = 0.60 [51] would be beneficial for dissolving higher concentration of iodine in glasses.
This aspect remains to be confirmed. For instance, the Rb-bearing glass composition
(Rb20B20Bi0-v{f) for which Rb20 has a low moderating parameter (yrb20 = 0.67, [53]), on the
contrary, does not exhibit a high iodine concentration: 0.3 mol.% I in Rb20B20Bi0. Further
experimental work is currently required to address in more details the change in iodine

solubility in presence of heavy elements such as bismuth.

4.3. lodine solubility and dissolution mechanism and its relationship to the glass degree of

polymerization

It has been shown that a borosilicate melt could be described by a speciation model made of
several equilibrium reactions. In particular, several types of oxygen species coexist within the

melt with the following equilibrium reaction to describe it [77, 88-90]:

ZO—NBO KE Oxygen; 00 BO + 02—free Eq 5

Where O NBO represents the Non-Bridging Oxygen, O° BO

represents the Bridging Oxygen
and O* ¢ is a free oxygen species that could be linked to available cations such as alkalis,
alkaline-earth cations or bismuth. In other words, Eq. 5 represents the degree of

polymerization of the melt as seen from the anionic oxygen species viewpoint. From Eq. 5,

the equilibrium constant can be written as follow:

Melt Melt
K ) Boxaoz—free Eqa. 6
Oxygen — Melt 2 q.
(a6<NBo
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Where aiM¢!* corresponds to the thermodynamic activity of the i species in the melt; that is
related to the actual concentration of the i species from standard thermodynamic relationship
such ai = X{I'{; where X and I'/ are the molar fraction and the activity coefficient of the i
species, respectively. Since we do not have access to a measure of the actual molar fraction of
the different oxygen species, the Koxygen cannot be solved directly; nevertheless, Moretti [77]

mentioned that the Koxygen 1s related to the optical basicity by the following equation:
Koxygen = €xp[4.662 X (X Xym+yyym+ — X Xpe+ype+) — 1.1445] Eq. 7

In Eq. 7, the Koxygen 1s a function of the molar fraction (Xi) and the optical moderating
parameter (yi). The Koxygen is calculated with the difference between the network forming
(T*) and the network modifying cations (M™"). Although Moretti [77] used this approach to
silicate melts and glasses, we believe that the same can apply to the present study for

aluminoborosilicate glasses.

In the present work, the network forming cations are Si**, AI** and B>" whereas the network
modifying cations are Na*, K*, Rb*, Ca*", Sr*", Ba?" and Bi*". The calculated values for
Koxygen are provided in Table 2 and we plotted the change in iodine solubility in mol.% as a
function of the Koxygen value in Figure 6. For the whole investigated series, there is a clear
increase in the mol.% I with the increase in the Koxygen value. Three series (the mixed alkali
and alkaline-earth, the alkali without Bi2O3 and the alkali with Bi203) have been fitted with an
exponential growth function as a guide for the reader. The Koxygen values for the alkaline-earth

series did not allow to fit reasonably the data.

Considering that the Koxygen is calculated regardless of the iodine content, the observed
increase in Figure 6 is related to the distribution of oxygen species concentrations. In the
present work we have shown that iodine is dissolved as I" species and from previous works

[30, 33] it has been shown that the dissolution mechanism follows the Eq. 1 chemical reaction
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in which I" is charge compensated by alkali or alkaline-earth cations. From the results in
Figure 6, we suggest that iodine dissolution could be related to the presence of free oxygen
within the glass structure (and by extension to the presence of network modifying cations).
According to the proposed model, the more free oxygen is present the more iodine can be
dissolved as I'. Hence, the 1odine dissolution reaction proposed with Eq. 1 could also be

rewritten by considering the presence of free oxygen such as:
1Ji 4 g2-free, Zymiiree o o= Zymt 4 1/, e Eq. 8
m m

In Eq. 8, the formation of iodide is promoted by the fact that iodine thermodynamic activity in
the fluid phase is high owing to the excess iodine loaded during the experiment. Regardless of

the glass compositional effect, the iodine solubility is proportional to the iodine fugacity
imposed by the experimental pressure and temperature conditions: [I7] « flf i O the

contrary at ambient pressure the iodine fugacity is close to 1 and the iodine solubility is low
[25, 27, 36]. At high optical basicity (i.e. high Koxygen value), the high free oxygen
concentration facilitates the formation of iodate species (I037), which means that free oxygen

species are not entirely exsolved in the fluid phase.

In the mechanism proposed in Eq. 8, there is no apparent change in the degree of
polymerization of the glass, however, because free oxygen is exsolved in the fluid phase upon
iodine dissolution, there should be a re-equilibration in the distribution of NBO and BO
concentrations. This contrasts with the recent proposition by Morizet et al. [33] in which the
involved oxygen species in the iodine dissolution are NBOs that are transformed into BOs
inducing an increase in the degree of polymerization of the glass. Currently, in the absence of
strong advanced NMR investigations (i.e. 7O NMR) we can only propose reasonable

hypotheses for type of oxygen species involved in the dissolution of iodine. Nevertheless, the
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iodine dissolution has necessarily an impact on the glass structure with a change in the

distribution of oxygen species.

5. Summary

In the present work, we have synthesized a large series of aluminoborosilicate glasses under
high-pressure conditions (1.5 GPa) in equilibrium with a iodine fluid phase. With the different
syntheses, we have tested 1) the effect of various network modifying cation (Na, K, Rb, Ca,
Sr and Ba), 2) the effect of boron concentration with either <10 mol.% or >10 mol.% B203

and 3) the effect of the addition of a small quantity of Bi2O3 (~4 mol.%).

We have shown that there is a complex change in iodine solubility with the nature of glass
containing cations but also dependent on the B2O3 concentration: at high B203, iodine
solubility increases with the following suite of cation: Rb < Ba = K < Na < Ca; at low B203,
iodine solubility increases with the following suite of cation: Ba < Sr < Ca = K < Na.
Increasing the B203 concentration in the glass (i.e. decreasing the network modifying cation
concentration) does not favor the iodine dissolution and solubility decreases. Apart for Ca-
bearing glasses, the addition of Bi2O3 induces an increase in iodine solubility that we ascribe

to the structural role of Bi atoms comparable to the network modifying cation.

We have shown that iodine solubility is correlated positively with the optical basicity (Agiass)
and negatively correlated to the lono-Covalent Parameter (ICPauass). This is consistent with
the fact that Acuss reflects the electron donor capacity of oxygen and that there is a transfer of
negative charge to dissolve iodine as I species. As a result, both ICPGiass and Agiass could
serve as predicting parameters for formulating a glass matrix able to immobilize a large

quantity of '°I. The most adequate glass composition should exhibit a high optical basicity;



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609
610

however, there is a compromise to find as increasing the glass optical basicity would reduce

the glass chemical durability.
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864  Figure caption

865  Figure 1: I 3d XPS spectra obtained on I-bearing glasses for the alkali-bearing glass

866  compositions with B203 > 10 mol.% (A): Na20B20Bi0, K20B20Bi0 and Rb20B20Bi0; and
867  alkaline-earth-bearing glass compositions with B203 < 10 mol.% (B): Ca30B10Bi0,

868  Sr30B10Bi0 and Ba30B10Bi0. The spectra are shown in the I 3ds.2 region for clarity. The
869  determined iodine speciation is reported next to each spectrum. The entire set of spectra is

870 available in the Suppl. Mat..

871  Figure 2: Change in the iodine solubility (in mol.%) as a function of glass composition
872  expressed by the cation nature (alkali and alkaline-earth) and cation size (Na* — K" — Rb"
873  and Ca?>" — Sr** — Ba?"). The data points for the two investigated glass series are shown:

874  B203 <10 mol.% and B203 > 10 mol.%.

875  Figure 3: Change in Iono-Covalent Parameter (ICPgclass) as a function of optical basicity
876  (Aclass) for iodine-free glasses reported in Table 1. The ICPaiass values are calculated

877  following the description of Portier et al. [40, 41], the Aclass 1s calculated following the

878  description of Duffy [50]. There is a negative correlation between ICPalass and Aclass that is

879  related to the overall electronic configuration of the glass composition.
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Figure 4: Change in O 1s peak position as determined from the XPS spectra as a function of
Acass for 1odine-free glasses reported in Table 1. The negative correlation observed is
consistent with the nature of the Aciass that corresponds to the electron donor capacity of
oxygen atoms within the glass. An error of £0.1 eV is considered for the peak position and

corresponds to the actual analytical error.

Figure 5: Todine solubility (in mol.%) as a function of Aciass (A) and ICPaiass (B). The iodine
solubility is positively correlated and negatively correlated to Aciass and ICPaass, respectively.
High Aaciass values represent a higher basic glass media able to share electrons from oxygen
atoms and high ICPacss values represent a glass media with electronegative charges. These
aspects are favoring the iodine dissolution as I" species. I solubility data points from Jolivet et
al. [30] and Morizet et al. [33] have also been added. We calculated the Aciass for NH23-1
from Jolivet et al. [30] using N4 = 0 and N4 = 0.45 so as to show the impact of N4 value on the

AGlass.

Figure 6: Change in iodine solubility as a function of Koxygen for the different studied glass
series. The Koxygen has been calculated with the equation of Moretti [77] that relates the
Koxygen to the element moderating parameters (vi). The increase in Koxygen denotes the increase
in the free oxygen concentration according to Eq. 6. Several glass series: alkali with and
without Bi2O3 and mixed alkali — alkaline-earth cation; have been fitted with an exponential

function of the form y = yo + A x exp(x / t); however, these trends remain hypothetical.
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