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a b s t r a c t 

Entropy algorithms have been applied extensively for time series analysis. The entropy value given by the 

algorithm quantifies the irregularity of the data structure. For higher irregular data structures, the entropy 

is higher. Both permutation entropy (PE) and amplitude-aware permutation entropy (AAPE) have been 

previously used to analyze time series. These two metrics have the advantage, over others, of being com- 

putationally fast and simple. However, fewer entropy measures have been proposed to process images. 

Two-dimensional entropy algorithms can be used to study texture and analyze the irregular structure of 

images. Herein, we propose the extension of AAPE for two-dimensional analysis (AAPE 2 D ). To the best of 

our knowledge, AAPE 2 D has never been proposed to analyze texture of images. For comparison purposes, 

we also study the two-dimensional permutation entropy (PE 2 D ) to analyze the effect of the amplitude 

consideration in texture analysis. In this study, we compare AAPE 2 D method with PE 2 D in terms of ir- 

regularity discrimination, parameters sensitivity, and artificial texture differentiation. Both AAPE 2 D and 

PE 2 D appear to be interesting entropy-based approaches for image texture analysis. When applied to a 

biomedical dataset of chest X-rays with healthy subjects and pneumonia patients, both methods showed 

to statistically differentiate both groups for P < 0 . 01 . Finally, using a SVM model and multiscale entropy 

values as features, AAPE 2 D achieves an average of 75.7% accuracy which is slightly better than the results 

of PE 2 D . Overall, both entropy algorithms are promising and achieve similar conclusions. This work is a 

new step towards the development of other entropy-based texture measures. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Entropy-based metrics are known for being used to study the 

rregularity of biomedical signals. In the last few decades, several 

ntropy-based algorithms were proposed, namely, approximate en- 

ropy [1] , sample entropy [2] , fuzzy entropy [3] , and permutation 

ntropy [4] . Although most entropy-based methods rely on the 

robability distribution of the data, they also require the adjust- 

ent of control parameters. Permutation entropy (PE) is a simple 

nd fast method, with few adjustment parameters, used to esti- 

ate the entropy value based on the concept of counting permu- 

ation patterns [4] . Nonetheless, this promising technique presents 

ne main issue: the amplitude fluctuations and variations within 
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he signal are not accounted for [5] . This means that PE might 

ot be able to discriminate different signal’s behaviors by ignoring 

ts structure [6] . Based on this, Azami and Escudero [5] proposed 

 new method denominated as amplitude-aware permutation en- 

ropy (AAPE) to solve this drawback for one-dimensional data. 

When applied to images, these metrics allow to analyze differ- 

nt textures. An image associated with a more irregular texture 

ill have a higher entropy value. Several entropy approaches have 

lso been used to process two-dimensional (2D) data, such as: 

ample entropy 2D [7] , fuzzy entropy 2D (FE 2 D ) [8] , colored fuzzy 

ntropy 2D [9] , complexity-entropy causality plane 2D (CECP 2 D ) 

10] , and also permutation entropy 2D (PE 2 D ) [11] . These entropy 

lgorithms can be used to study texture and analyze the irregular 

tructure of images [12] . For example, FE 2 D is known for extract- 

ng squared-patterns to establish comparisons between these pat- 

erns, which has been proven useful for texture characterization, 

ven though it can be computationally expensive [8] . A different 

trategy for CECP is adopted where the image is considered as 
2 D 
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 2D ordered array. The entropy is obtained through the estima- 

ion of the ordinal probability distribution, that relies on calculat- 

ng the number of ordinal patterns which are obtained through the 

ame process as permutation patterns . However, CECP 2 D obtains the 

ormalized entropy with the normalized Shannon entropy equa- 

ion and also assesses the statistical complexity value [10] . In [13] , 

he concept of CECP 2 D is used to compare different paintings using 

he normalized permutation entropy and complexity concepts. 

Based on the advantages of AAPE over PE for time series, we 

erein propose the extension of AAPE for the analysis of 2D data 

AAPE 2 D ). To the best of our knowledge, AAPE 2 D algorithm has 

ever been proposed to analyze texture of images. We also com- 

are the behavior of AAPE 2 D with PE 2 D to analyze the effect of the 

mplitude consideration in texture analysis. Finally, we apply both 

ntropy algorithms to a chest X-rays dataset of healthy subjects 

nd subjects diagnosed with pneumonia [14] . Pneumonia is a pul- 

onary infection whose diagnosis relies on tracking the symptoms 

nd the signs of respiratory tract infection presence, radiological 

hanges, the identification of a putative pathogen, and the treat- 

ent response consistent with pneumonia [15] . In Europe, mor- 

ality rates of hospitalized patients associated with community- 

cquired pneumonia are around 5–20 % [15] . Usually, pneumonia is 

dentified when lung consolidation, a radiological hallmark, is ver- 

fied using chest X-rays [15,16] . Therefore, entropy algorithms can 

e helpful in the characterization of texture properties of lung con- 

olidation verified in chest X-rays and CT scans when pneumonia 

s diagnosed. 

The remaining of the paper is divided as follows: Section 2 de- 

cribes the entropy algorithms used herein, details both the syn- 

hetic textures and biomedical images used, and describes the al- 

orithms’ validation tests; Section 3 discusses the results on PE 2 D 
nd the novel measure AAPE 2 D ; finally, Section 4 summarizes the 

ain results, debates future work, and discusses the use of these 

ntropy metrics as texture descriptors and features. 

. Methods and materials 

Both PE and AAPE are based on the determination of the prob- 

bility distribution of permutation patterns . The permutation pat- 

erns are obtained after re-arranging the positions of the initial 

atterns obtained from the signal/image. These approaches differ 

n how the probability is accounted for. The first approach, PE, is 

impler as it only accounts for how many patterns exist for each 

ermutation pattern. The second approach, AAPE, applies a correc- 

ion factor by using an amplitude factor based on the mean and 

tandard deviation of neighbouring points within the pattern. The 

wo-dimensional definitions of PE and AAPE, PE 2 D and AAPE 2 D , re- 

pectively, are described below. 

.1. Entropy algorithms 

First, consider an image X of width W and height H where a 

nd b are the position of an element in X and 1 ≤ a ≤ W and 1 ≤
 ≤ H. Considering the embedding dimension parameter m , we can 

efine squared templates from the image as: 

 

m 

a,b = 

⎡ 

⎢ ⎣ 

X a,b . . . X a,b+ m −1 

X a +1 ,b . . . X a +1 ,b+ m −1 

. . . . . . . . . 

X a + m −1 ,b . . . X a + m −1 ,b+ m −1 

⎤ 

⎥ ⎦ 

(1) 

here 1 ≤ a ≤ W − m + 1 and 1 ≤ b ≤ H − m + 1 , making a total of

 m 

= (W − m + 1) × (H − m + 1) possible templates. For both ap-

roaches, PE 2 D and AAPE 2 D , the strategy herein used is to vectorize 

he squared templates as follows: 

 

′ m 

a,b 
= { X a,b , . . . , X a,b+ m −1 , X a +1 ,b , . . . , 

 a +1 ,b+ m −1 , . . . , X a + m −1 ,b , . . . , X a + m −1 ,b+ m −1 } . (2) 
151 
imilarly to the 1D approaches [4,5] , the intensities of the tem- 

lates must be rearranged in ascending order to determine the 

orresponding permutation pattern. As the template X 
′ m 

a,b 
has m 

2 

oints, there will be D = (m × m )! permutation patterns, πm 

j 

where 1 ≤ j ≤ D ). To fully understand this procedure, consider the 

xample of the template shown in Fig. 1 for m = 2 . The template is

quared and has dimensions of 2 × 2 . Step 1 illustrates the trans- 

ormation of this template into a vector with 4 points. Afterwards, 

o obtain the corresponding permutation pattern, this vector X 
′ m 

a,b 

s rearranged according to its intensity in an ascending order (step 

). Finally, the order of the original positions of the intensity values 

ive the corresponding permutation pattern πm 

j 
(step 3) shown in 

range. 

Then, for the PE 2 D [11] approach, the probability of each per- 

utation pattern πm 

j 
is defined as in Eq. (3) . 

p p (π
m 

j ) = 

# { X 

′ m 

ab 
produces πm 

j 
} 

N m 

(3) 

# represents the number of [11] . Basically, this probability de- 

ends on the amount of times a certain permutation pattern is re- 

eated within the image. 

The PE algorithm does not consider the amplitude variations 

ithin the data structure. Furthermore, different templates with 

ifferent amplitude variations or different mean values can lead 

o the equal permutation patterns discarding this information. An- 

ther issue is when equal intensity values exist within the tem- 

late and a conflict in the ordering process emerges [5] . Bandt and 

ompe [4] proposed adding noise to the data structure to avoid 

his but this can result in imprecise results [5] . Based on Azami 

nd Escudero [5] approach to solve these issues, we herein pro- 

ose the AAPE 2 D algorithm that uses a weighting factor A to ob- 

ain the probability of πm 

j 
in Eq. (4) . This factor defines the weight 

f the mean of consecutive samples (first term of Eq. (5) ) and the

eight of their absolute difference values (second term of Eq. (5) ). 

his weighting process is included in the probability definition as 

ollows: 

p a (π
m 

j ) = 

∑ 

δab if X 

′ m 

ab 
produces πm 

j ∑ W −m +1 
a =1 

∑ H−m +1 
b=1 δab 

(4) 

here δab is: 

ab = 

A 

m 

2 

m 

2 ∑ 

k =1 

∣∣X 

′ 
ab (k ) 

∣∣ + 

1 − A 

m 

2 − 1 

m 

2 −1 ∑ 

k =1 

∣∣X 

′ 
ab (k + 1) − X 

′ 
ab (k ) 

∣∣ (5) 

here A is the adjusting coefficient between [0,1]. For A = 0 , only

he differences between consecutive samples are considered; for 

 = 1 , only the mean value of consecutive samples is considered 

or the probability calculus; for A < 0 . 5 , the differences between

onsecutive samples have more weight than the mean value of 

onsecutive samples, and the opposite happens when A > 0 . 5 [5] .

hen considering the same example in Fig. 1 , the first three steps 

re the same as for PE. However, to define the probability, a fourth 

tep is required, corresponding to the determination of δab . 

Thus, we can define PE 2 D and AAPE 2 D according to Eqs. (6) and 

7) , respectively: 

E 2 D = −
m ! ∑ 

j=1 

p p (π
m 

j ) × log (p p (π
m 

j )) (6) 

APE 2 D = −
m ! ∑ 

j=1 

p a (π
m 

j ) × log (p a (π
m 

j )) . (7) 

These algorithms were applied using the numba package [17] of 

ython® v3.7 in a AMD Ryzen 7 5800H with Radeon Graphics 

.20 GHz. 
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Fig. 1. Example illustrating the method to obtain the permutation pattern πm 
j 

from a template X m 
a,b 

and δab , using the weighting factor A . 

Fig. 2. MIX 2 D (p) images (2a-2c) and their shuffled versions (2a-2f) with a size of 64 × 64 pixels for p = 0 . 2 , p = 0 . 5 , and p = 0 . 8 . 
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.2. Synthetic textures and validation tests 

First, to evaluate the effect of the embedding parameter on the 

rregularity discrimination performance, we used 5 MIX 2 D (p) im- 

ges [7] of 64 × 64 pixels, where the p-level indicates the image ir- 

egularity. When p increases, so does the irregularity of the image. 

igure 2 shows examples of MIX 2 D (p) images for p = 0 . 2 , p = 0 . 5 ,

nd p = 0 . 8 . Each image was tested by using m = 2 and m = 3 for

oth entropy algorithms and the p-level was varied within [0,1]. 

esides, we assessed the influence of the coefficient A . The AAPE 2 D 
as tested for A = 0 . 1 , A = 0 . 5 , and A = 0 . 9 . 

Then, we compared the values of PE 2 D and AAPE 2 D for A = 0 . 1 ,

sing the original MIX 2 D (p) images as shown in Fig. 2 a–c and their

huffled versions in Fig. 2 d–f. The process of shuffling the image 

ixels decreases the regular order present in the image, increasing, 

herefore, the irregularity. 

We also assessed the computational cost of PE 2 D and AAPE 2 D 
ith 5 MIX 2 D (p = 0 . 6) images using m = 2 and A = 0 . 1 . We

resent the average computational times and their standard devia- 

ion values. 

.3. Biomedical dataset 

Finally, we applied both algorithms, PE 2 D and AAPE 2 D , using 

 = 2 and A = 0 . 1 for AAPE 2 D , to a public biomedical dataset of

hest x-rays with a total of 5856 validated images of healthy sub- 
152 
ects and subjects diagnosed with pneumonia [14] . The dataset is 

omposed of 1583 normal chest X-rays and 4273 chest X-rays of 

atients diagnosed with pneumonia [14] . Figure 3 shows examples 

f such chest X-ray images (healthy person and a patient diag- 

osed with pneumonia). These images were resized to 128 × 128 

ixels in order to have a consistent image size throughout the 

ataset for calculating the entropy values. The mean ( μ) and stan- 

ard deviation ( σ ) values of these images were also assessed for 

oth groups. We verified that the images of the healthy group have 

 value of 122 . 6 ± 62 . 7 ( μ ± σ ) and that the images corresponding

o the pneumonia group have a value of 122 . 9 ± 59 . 3 ( μ ± σ ). This

llows us to conclude that the contrast of the whole dataset will 

ot influence the texture analysis. 

Based on multiscale analysis [18] , we applied the down- 

ampling (or coarse-graining ) procedure to obtain different image 

tructures for each scale factor ( τ ) according to the following equa- 

ion: 

 i, j 
(τ ) = 

1 

τ 2 

jτ
iτ∑ 

l=(i −1) τ+1 

m =( j−1) τ+1 

X l,m 

, (8) 

here Y 

τ is the new version of the image X having a size of 
W 

τ
× H 

τ
pixels. For τ = 1 , Y 

1 corresponds to the original image. For 

ach coarse-grained image, Y 

τ , we obtained the PE and AAPE 
2 D 2 D 
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Fig. 3. Resized chest X-rays images from a healthy individual and pneumonia patient from Kermany et al. [14] . 
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Fig. 4. PE 2 D (blue) and AAPE 2 D values using A = 0 . 1 (orange), A = 0 . 5 (yellow), and 

A = 0 . 9 (purple) for MIX 2 D (p) images of 64 × 64 pixels, 0 ≤ p ≤ 1 (step of 0.1), m = 

2 and m = 3 . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

d

d

t

i

ntropy values. We have established a maximum scale factor of 

= 6 . Therefore, the smallest coarse-grained images have 21 × 21 

ixels. 

We first analyzed the mean entropy values given by PE 2 D and 

APE 2 D for 1 ≤ τ ≤ 6 . Afterwards, we assessed the normality for 

ach scale factor ( 1 ≤ τ ≤ 6 ) and each group (healthy and pneumo- 

ia) using the Shapiro-Wilk test for a significance level of α = 0 . 01 .

or these conditions, both groups for all scale factors were verified 

o be normal. Then, we used a t-student test to differentiate the 

ealthy and patient group through entropy values (for 1 ≤ τ ≤ 6 ) 

or P < 0 . 01 . 

Since a large dataset ( N > 100 ) is being used in this work, the

 -values achieved during t-student tests are of difficult interpreta- 

ion [19] . To overcome this artifact, we also verified the minimum 

ercentage of samples required, for each scale factor, to statistically 

ifferentiate both groups using a t-student test ( P < 0 . 01 ). The sub-

et of entropy values for each percentage was randomly selected 5 

imes. Then, the mean P -value was determined for that percentage 

ubset. 

Afterwards, we tested a support vector machine (SVM) model 

ith a radial basis function kernel to classify pneumonia and 

ealthy subjects. We used 30% of the total dataset mentioned 

arlier as a test dataset. For the training dataset, a 5-fold cross- 

alidation procedure was used, and a grid search for parameters 

ptimization was also performed. The parameters to be optimized 

ere C and γ : C was varied between 0.1 and 10 0 0 0; and, γ was

aried between 1 × 10 −5 and 1. For this classification model, we 

sed as features the entropy values of the 6 scale factors for each 

lgorithm. We compared the results of the model using PE 2 D and 

APE 2 D features in terms of accuracy, sensitivity, and specificity. 

. Results and discussion 

.1. Synthetic textures 

The influence of the adjusting coefficient and embedding di- 

ension can be observed in Fig. 4 . Regardless of the parameters, 

oth algorithms show the ability to discriminate the irregular be- 

avior of MIX 2 D (p) images resulting in higher entropy when the 

p-level increases. Figure 4 (a) shows that using m = 2 the curves of

E 2 D and AAPE 2 D with A = 0 . 5 and A = 0 . 9 are very similar. In fact,

etween p = 0 . 0 and p = 1 (most regular and most irregular MIX 2 D 

mage, respectively), both PE 2 D and AAPE 2 D using A = 0 . 5 show a

elative increase of 33 . 3% . For A = 0 . 9 , AAPE 2 D shows a relative in-

rease of 34 . 5% . When using A = 0 . 1 , AAPE 2 D achieves a relative

ncrease of 53 . 6% . In Fig. 4 (b), for m = 3 , the relative increase of

E 2 D for 0 . 0 ≤ p ≤ 1 . 0 improved to 38 . 8% . In addition, for A = 0 . 5

nd A = 0 . 9 , AAPE 2 D also improved its relative increase to 39 . 5% .

or m -values, the performance of AAPE 2 D is best when choosing 

 = 0 . 1 . This means that weighting more the consecutive samples’
153 
ifferences instead of their mean value produces better results in 

iscriminating irregularity of images. Therefore, for the following 

ests, PE 2 D is compared with AAPE 2 D using A = 0 . 1 . 

Figure 5 shows the results of shuffling the pixels of the images, 

.e ., reordering randomly the pixels of the MIX (p) images. This 
2 D 
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Fig. 5. PE 2 D (blue) and AAPE 2 D using A = 0 . 1 (orange) for MIX 2 D (p) images and 

their shuffled versions (black and pink, respectively) of 64 × 64 pixels, using 0 ≤ p ≤
1 (step of 0.1) for m = 2 and m = 3 . (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Multiscale PE 2 D and AAPE 2 D entropy values, using A = 0 . 1 , m = 2 , and 1 ≤
τ ≤ 6 , for the healthy (green) and pneumonia (red) groups. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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eordering should reflect an increase of entropy values as the shuf- 

ing process increases the irregularity of the image, specially in 

ore regular images. 

In Fig. 5 (a), when using m = 2 , for PE 2 D , the entropy values of

he original images (blue) and their shuffled versions (in black) are 

ery similar. Moreover, the PE 2 D values of the original MIX 2 D im- 

ges is slightly higher than the shuffled images for p ≤ 0 . 5 . 

For m = 3 , an increase between PE 2 D for the original MIX 2 D im-

ges (blue) and their shuffled versions (black) can be observed (see 

ig. 5 (b)). In the previous test of irregularity discrimination ( Fig. 4 ),

e had also verified a slightly better performance of PE 2 D for 

 = 3 . For AAPE 2 D , there is a substantial increase of entropy for the

huffled versions (pink) of the MIX 2 D images. However, previously, 

hen analyzing the irregularity discrimination, AAPE 2 D achieved a 

igher irregularity discrimination for m = 2 . Based on this, the best 

 −value for AAPE 2 D is 2. For PE 2 D , the performance using m = 2 or

 = 3 is similar. Therefore, for comparison purposes, for both algo- 

ithms, the m −value was fixed to m = 2 for the following tests. 

In terms of computational cost, when analysing the time re- 

uired to compute a MIX 2 D (p) image ( p = 0 . 6 ) of 64 × 64 pix-

ls, PE 2 D takes an average of 14 . 3 ± 0 . 2 ms and AAPE 2 D consumes

4 . 5 ± 0 . 1 ms, having only a difference of 1.4%. We can conclude
154 
hat these algorithms are extremely fast in processing images, 

hich is usually a concern for other entropy algorithms. 

.2. Biomedical dataset 

In Fig. 6 , we observe that for PE 2 D , the entropy values are lower

or the patients group (red) than for healthy (green) subjects re- 

ardless of the scale factor. However, for AAPE 2 D , the entropy is 

igher for the patients group for 1 ≤ τ ≤ 4 . For τ ≥ 5 , this ten-

ency inverts and the entropy for the healthy subjects is higher. 

urthermore, we can observe that the PE 2 D curves behavior is sim- 

lar for both groups. First, the entropy increases between 1 ≤ τ ≤ 3 

nd then, it decreases between 4 ≤ τ ≤ 6 . For AAPE 2 D , overall, both 

urves show a decreasing behavior but the curves cross each other. 

n Table 1 , we verify that PE 2 D is able to statistically differen- 

iate both groups for all the scale factors considered. However, 

APE 2 D only differentiates 5 out 6 scale factors. Moreover, in most 

ases, the P -value for PE 2 D is considerably smaller than for AAPE 2 D . 

herefore, both methods seem to be good options when character- 

zing these different biomedical textures. 

Given the number of samples within the dataset, the low P - 

alues observed can also be derived from the dataset’s size. In [19] , 
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Table 1 

P-values for multiscale PE 2 D and AAPE 2 D with 1 ≤ τ ≤ 6 , m = 2 , and A = 0 . 1 . ∗- 

statistical significance for P < 0 . 01 . 

Scale Factors PE 2 D AAPE 2 D 

1 2 . 76 × 10 −43 ∗ 5 . 32 × 10 −27 ∗

2 7 . 66 × 10 −35 ∗ 2 . 05 × 10 −72 ∗

3 3 . 67 × 10 −63 ∗ 4 . 33 × 10 −22 ∗

4 1 . 07 × 10 −70 ∗ 3 . 59 × 10 −7 ∗

5 3 . 42 × 10 −67 ∗ 0.05 

6 7 . 71 × 10 −73 ∗ 4 . 12 × 10 −5 ∗

Table 2 

P-values for multiscale PE 2 D and AAPE 2 D for 1 ≤ τ ≤ 6 , m = 2 , and A = 0 . 1 , for 

the minimum percentage of samples from the original dataset that allows to 

statistically differentiate the healthy and the pneumonia groups (except for 

AAPE 2 D when τ = 5 ). ∗- number of samples percentage lower than < 10% . POS 

- percentage of samples used. 

τ PE AAPE 

POS ( % ) P-value POS ( % ) P-value 

1 5 ∗ 1.71E-04 8 ∗ 4.28E-04

2 8 ∗ 5.89E-03 6 ∗ 7.37E-06

3 2 ∗ 2.65E-03 12.5 2.25E-04

4 5 ∗ 6.24E-04 45 3.37E-03

5 3 ∗ 2.47E-04 100 0.04 

6 2 ∗ 9.98E-03 50 5.20E-03 

Table 3 

Classification values of multiscale PE 2 D and AAPE 2 D features. 

PE 2 D AAPE 2 D 

Accuracy 75 . 5 ± 0 . 4% 75 . 7 ± 0 . 7% 

Precision 75 . 6 ± 0 . 6% 77 . 7 ± 0 . 7% 

Sensitivity 95 . 6 ± 1 . 3% 93 . 3 ± 0 . 6% 

Specificity 26 . 8 ± 3 . 2% 28 . 8 ± 1 . 9% 
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M

he large number of samples is indicated to possibly influence the 

tatistical analysis as the low P -values can be artifacts of the large 

ample size. Therefore, it is suggested, for example, to verify the 

ependence of the P -values with different sample sizes. Based on 

his, we show, in Table 2 , the statistical significance (for P < 0 . 01 )

etween the healthy and pneumonia groups according to different 

ercentages of samples from the original dataset. We verified that 

he multiscale PE 2 D method performs better for every scale factor 

s it can statistically differentiate both groups for less than 8% of 

umber of samples. For AAPE 2 D , this can only be verified for the 

rst 2 scale factors. 

Finally, the SVM model was able to achieve a mean accuracy 

alue of 75 . 5% and 75 . 7% for multiscale PE 2 D and AAPE 2 D fea-

ures, respectively, with AAPE 2 D achieving a slightly higher accu- 

acy. Moreover, AAPE 2 D achieved higher precision, and specificity 

see Table 3 ). However, PE 2 D shows a slightly higher sensitivity, i.e ., 

t has a better ability to classify pneumonia cases when the images 

re from pneumonia patients. Hence, one can say that both AAPE 2 D 
nd PE 2 D have similar performances in classifying pneumonia, re- 

ulting in two reliable and promising texture descriptors for this 

articular biomedical imaging application. 

. Conclusion and final remarks 

In this analysis, it was proven that AAPE 2 D and PE 2 D are in- 

eresting methods for image analysis and texture discrimination. 

hen analysing the two main parameters, the embedding dimen- 

ion, m , and the adjusting coefficient, A , we observed that the 

est parameters for comparison purposes were m = 2 and A = 0 . 1 .

hese parameters allow to have a relatively good irregularity dis- 

rimination between several images with increasing irregularity 

ehavior. Moreover, when differentiating several artificial textures, 
155 
verall, AAPE 2 D shows a slightly better precision and ability to dif- 

erentiate several textures and their synthesized versions. However, 

e can say that both methods, PE 2 D and AAPE 2 D , perform similarly 

nd can discriminate irregularity clearly. 

For the biomedical chest X-rays dataset, it was verified that 

E 2 D leads, for most scale factors, to lower P -values than the 

nes obtained with AAPE 2 D . Furthermore, the PE 2 D curves be- 

avior is similar for both groups with increasing entropy be- 

ween 1 ≤ τ ≤ 3 , followed by a decrease between 4 ≤ τ ≤ 6 . 

evertheless, AAPE 2 D curves show a decreasing behavior. First, 

ith the pneumonia group having higher entropy than the 

ealthy group, and then, for τ ≥ 4 , with the healthy group hav- 

ng higher entropy values. Therefore, one can conclude that 

oth algorithms differentiate the healthy from the pneumonia 

roup. However, the curves are different according to the chosen 

lgorithm. 

Afterwards, we observed the effect size of the dataset in the 

tatistical analysis by reducing the number of samples used for 

erifying the statistical significance using P < 0 . 01 for both groups. 

e concluded that PE 2 D outperforms AAPE 2 D as it can statistically 

ifferentiate pneumonia patients from healthy individuals by using 

ess than 8% of samples for all the scale factors tested. 

When analysing the multiscale PE 2 D and AAPE 2 D features per- 

ormances, using a simple SVM classification model, we observe 

hat AAPE 2 D has a slightly better performance in terms of accu- 

acy, and precision. However, PE 2 D features achieve a slightly better 

ensitivity. This leads to the conclusion that both entropy metrics 

re reliable and promising texture descriptors for this particular 

iomedical imaging application. Furthermore, the fact that most or 

ven all scale factors entropy values were able to differentiate both 

roups with a 99 % confidence level, can indicate that these texture 

escriptors as features can be relevant for similar texture biomed- 

cal applications such as other pulmonary diseases diagnosed with 

hest X-rays or CT scans. 

For this particular biomedical dataset, both algorithms achieve 

imilar results. Therefore, to further discuss the advantage of us- 

ng the amplitude-aware method applied to permutation entropy, 

t could be interesting to obtain a dataset composed of images with 

everal amplitudes using an histogram equalization technique. 

PE 2 D and AAPE 2 D can be proven advantageous for image analy- 

is as they are fast and allow to obtain multiple texture and irregu- 

arity features when using multiscale analysis. In addition, they are 

asy to interpret in terms of irregularity content of the image and 

llow to construct a more understandable and easy classification 

odel than the state-of-the-art deep learning models which use 

he complete image as a feature input. This can allow a more sim- 

le bridge between the image processing method and the medical 

nalysis and increase the medical and patient confidence in diag- 

osis aid algorithms. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Andreia S. Gaudêncio: Conceptualization, Methodology, Soft- 

are, Formal analysis, Writing – original draft, Writing – review 

 editing. Mirvana Hilal: Writing – review & editing. João M. 

ardoso: Methodology, Writing – review & editing, Supervision. 

nne Humeau-Heurtier: Conceptualization, Methodology, Writing 

review & editing, Supervision. Pedro G. Vaz: Conceptualization, 

ethodology, Writing – review & editing, Supervision. 



A.S. Gaudêncio, M. Hilal, J.M. Cardoso et al. Pattern Recognition Letters 159 (2022) 150–156 

A

c

U

o

P

r

w

u

k

C

t

p

R

 

[

[

[

[

[

[
[

[

[

[  
cknowledgements 

This work was supported by FCT (Fundação para a Ciên- 

ia e Tecnologia) under the projects UIDP/04559/2020 and 

IDB/04559/2020 to fund human resources and activities of Lab- 

ratory for Instrumentation, Biomedical Engineering and Radiation 

hysics, and under the project PTDC/EMD-TLM/30295/2017 of Eu- 

opean Regional Development Fund (PT-COMPETE 2020). This work 

as also support by both FCT and the ESF (European Social Fund) 

nder the scholarship UI/BD/152802/2022. The authors also ac- 

nowledge the Laboratory for Advanced Computing at University of 

oimbra for providing computing resources that have contributed 

o the research results reported within this paper ( https://www.uc. 

t/lca ). 

eferences 

[1] S.M. Pincus, Approximate entropy as a measure of system complexity, Proc. 

Natl. Acad. Sci. 88 (6) (1991) 2297–2301, doi: 10.1073/pnas.88.6.2297 . 
[2] J.S. Richman, J.R. Moorman, Physiological time-series analysis using approxi- 

mate entropy and sample entropy, Am. J. Physiol.-HeartCirc. Physiol. 278 (6) 

(20 0 0) H2039–H2049, doi: 10.1152/ajpheart.20 0 0.278.6.h2039 . 
[3] W. Chen, Z. Wang, H. Xie, W. Yu, Characterization of surface EMG signal based

on fuzzy entropy, IEEE Trans. Neural Syst. Rehabil. Eng. 15 (2) (2007) 266–272, 
doi: 10.1109/tnsre.2007.897025 . 

[4] C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for 
time series, Phys. Rev. Lett. 88 (2002) 174102, doi: 10.1103/PhysRevLett.88. 

174102 . 

[5] H. Azami, J. Escudero, Amplitude-aware permutation entropy: illustration in 
spike detection and signal segmentation, Comput. Methods Programs Biomed. 

128 (2016) 40–51, doi: 10.1016/j.cmpb.2016.02.008 . 
[6] Z. Zhang, Z. Xiang, Y. Chen, J.X. and, Fuzzy permutation entropy derived from 

a novel distance between segments of time series, AIMS Math. 5 (6) (2020) 
6244–6260, doi: 10.3934/math.2020402 . 
156 
[7] L.E.V. Silva, A.C.S.S. Filho, V.P.S. Fazan, J.C. Felipe, L.O.M. Junior, Two- 
dimensional sample entropy: assessing image texture through irregularity, 

Biomed. Phys. Eng. Express 2 (4) (2016) 045002, doi: 10.1088/2057-1976/2/4/ 
045002 . 

[8] M. Hilal, C. Berthin, L. Martin, H. Azami, A. Humeau-Heurtier, Bidimensional 
multiscale fuzzy entropy and its application to pseudoxanthoma elasticum, 

IEEE Trans. Biomed. Eng. 67 (7) (2020) 2015–2022, doi: 10.1109/tbme.2019. 
2953681 . 

[9] M. Hilal, A.S.F. Gaudêncio, C. Berthin, P.G. Vaz, J. Cardoso, L. Mar- 

tin, A. Humeau-Heurtier, Bidimensional colored fuzzy entropy measure: 
a cutaneous microcirculation study, in: 2019 Fifth International Confer- 

ence on Advances in Biomedical Engineering (ICABME), IEEE, 2019, pp. 
1–4 . 

10] L. Zunino, H.V. Ribeiro, Discriminating image textures with the multiscale 
two-dimensional complexity-entropy causality plane, Chaos Solitons Fractals 

91 (2016) 679–688 . 

11] C. Morel, A. Humeau-Heurtier, Multiscale permutation entropy for two- 
dimensional patterns, Pattern Recognit. Lett. 150 (2021) 139–146, doi: 10.1016/ 

j.patrec.2021.06.028 . 
12] A. Humeau-Heurtier, Texture feature extraction methods: a survey, IEEE Access 

7 (2019) 8975–90 0 0, doi: 10.1109/ACCESS.2018.2890743 . 
13] H.Y. Sigaki, M. Perc, H.V. Ribeiro, History of art paintings through the 

lens of entropy and complexity, Proc. Natl. Acad. Sci. 115 (37) (2018) 

E8585–E8594 . 
14] D. Kermany, K. Zhang, M. Goldbaum, et al., Labeled optical coherence tomog- 

raphy (OCT) and chest X-ray images for classification, Mendeley Data 2 (2) 
(2018) . 

15] W.S. Lim, Pneumonia–overview, Ref. Module Biomed. Sci. (2020) . 
16] C. Cillóniz, S. Ewig, E. Polverino, C. Muñoz-Almagro, F. Marco, A. Gabarrús, 

R. Menéndez, J. Mensa, A. Torres, Pulmonary complications of pneumococ- 

cal community-acquired pneumonia: incidence, predictors, and outcomes, Clin. 
Microbiol. Infect. 18 (11) (2012) 1134–1142 . 

17] I. Anaconda, et al., Numba: Numba makes python code fast, 2021, ac- 
cessed:29.11.2021. https://numba.pydata.org/ . 

18] M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale entropy analysis of biological 
signals, Phys. Rev. E 71 (2) (2005) 021906 . 

19] H. Lucas, G. Shmueli, et al., Too big to fail: large samples and the p-value prob-

lem, Inf. Syst. Res. 24 (4) (2013) 906–917 . 

https://www.uc.pt/lca
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1152/ajpheart.2000.278.6.h2039
https://doi.org/10.1109/tnsre.2007.897025
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1016/j.cmpb.2016.02.008
https://doi.org/10.3934/math.2020402
https://doi.org/10.1088/2057-1976/2/4/045002
https://doi.org/10.1109/tbme.2019.2953681
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0009
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0010
https://doi.org/10.1016/j.patrec.2021.06.028
https://doi.org/10.1109/ACCESS.2018.2890743
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0013
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0014
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0015
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0016
https://numba.pydata.org/
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0018
http://refhub.elsevier.com/S0167-8655(22)00177-5/sbref0019

	Texture analysis using two-dimensional permutation entropy and amplitude-aware permutation entropy
	1 Introduction
	2 Methods and materials
	2.1 Entropy algorithms
	2.2 Synthetic textures and validation tests
	2.3 Biomedical dataset

	3 Results and discussion
	3.1 Synthetic textures
	3.2 Biomedical dataset

	4 Conclusion and final remarks
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References


