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ABSTRACT One of the most active research fields in single-pixel imaging is the influence of the sampling
basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending
scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation
and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to 128× 128).
These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG),
using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have
better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity
index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders
performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and
CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results
present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA)
metric to assess image reconstruction quality in the context of single pixel imaging.

INDEX TERMS Compressive sensing, Fourier transform, Hadamard ordering, single pixel imaging.

I. INTRODUCTION
It is acknowledged that the first attempt to use a single-pixel
imaging (SPI) technique may date back to the invention of the
flying-spot camera during the decade of the 1920s [1]. That
device consisted of a mechanical scanning imaging system
aimed to transduce visual images into electrical signals, using
a patterned disc with equally distanced and sized holes - the
Nipkow disc. This system could be used to convert images to
electrical signals in a time where two-dimensional imaging
sensors were not available.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Forouzanfar .

Since then, the scientific and technical improvements of
this technique have transformed it into a cutting-edge tech-
nology with advantages over traditional imaging techniques.
Because SPI does not require a two-dimensional sensor to
produce images, it takes advantage of faster, simpler and
more sensitive light detectors to produce images in low
light conditions, with faster equivalent acquisition frequen-
cies and at wavelengths outside the range of operation of
two-dimensional sensors.

A single-pixel camera (SPC) can be constructed in two
distinct configurations: selective light detection or structured
illumination. In both configurations, the SPC is mainly com-
posed of three principal components, a light source, a spa-
tial light modulator and a photodetector. The spatial light
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modulator is used to selectively collect light in accor-
dance with a set of defined patterns. The electrical sig-
nal recorded by the photodetector is then correlated with
the projection/detection pattern to retrieve a reconstructed
two-dimensional image.

The reconstruction process can be combined with com-
pressive sensing (CS), a mathematical concept that allows
for signal reconstruction with a sampling frequency below
the Nyquist limit. Compressive sensing in the context of SPI
reduces the number of patterns needed for sampling the scene
which mitigates one of its biggest disadvantages, the acquisi-
tion time. Moreover, higher compression ratios are difficult
to achieve in low resolution applications since coefficients
tend to be less sparse when compared with high resolution
applications [2], [3].

Recently, due to the development of fast and advanced light
modulators based on digital micro-mirror devices (DMD)
the SPI showed advances in theoretical CS principles, like
the use of new projection bases, new projection orderings,
and new reconstruction algorithms, and in practical appli-
cations. Among other applications, SPI can be used for the
development of light detection and ranging (LiDAR) sys-
tems in conjunctions with deep learning optimization [4],
to develop optical machine learning systems that can perform
fully-optically pattern recognition [5], to perform optical
color image encryption [6], and as an optical authentica-
tion method [7]. Moreover, SPI is also currently used in
the biomedical field for fluorescence lifetime imaging [8],
phosphorescence lifetime imaging [9], 3D imaging [10] and
turbid imaging [11]. All of these applications are in their early
days of development and there is still room for improvements
and studies to determine the best settings and image recon-
struction algorithms.

This paper presents a study on the effect of the projection
pattern ordering, using the Hadamard basis, in the quality
of reconstructed low resolution images. Here, we present
a simulation work in a large dataset (110 images), as well
as an experimental work in two images, using state-of-the-
art orderings, namely, the cake-cutting (CC) [3] and total
gradient (TG) [12] methods, and two novel orders: the first,
denominated as ascending scale (AS), is based on the increas-
ing of the predominant 2D spatial frequency of the projected
pattern, and the second one, designated as ascending inertia
(AI), is based on the increasing of inertia property of the gray-
level co-occurrence matrix (GLCM) also obtained from each
projected pattern. From the knowledge of the authors, both of
these orders were not yet described in previous works.

II. THEORETICAL OVERVIEW
A. SINGLE-PIXEL IMAGING
As stated in the introduction, the SPI technique is able to
reconstruct two-dimensional images using only a single-pixel
detector. The target is illuminated with structured light pro-
duced by a DMD. The micro-mirrors are programmed to tilt
in one of two directions, resulting in light projected onto the

target or loss to the environment. Then, the light reflected by
the target is collected by a set of optics and focused on the
photodetector.

In addition, the DMD is programmed using a sequential
set of orthogonal patterns, denominated sensing basis, while
the intensity detected by the photodetector is recorded using
a digital acquisition system. In order to produce a complete
acquisition, a number of patterns equal to the number of
image pixels (N ) should be acquired. Mathematically, this
process can be translated by:

y = 8x, (1)

where y ∈ RN×1 is the acquired set of coefficients and 8 the
sensing basis.

B. COMPRESSIVE SENSING
Compressive sensing allows the reconstruction of a target
with a resolution ofN pixels by taking onlyM measurements,
being M <N , if two conditions are satisfied – sparsity and
incoherence [13], [14]. The sparsity is fulfilled when a signal
can be represented by high valued coefficients, in a particular
orthonormal basis (9), while the low valued coefficients are
removed without significant losses. The incoherence condi-
tion implies that the mutual coherence between the sensing
basis (8) and the sparsity basis (9) must be low to ensure
a good image reconstruction. The complete mathematical
description of this process can be formulated as:

y = 8x = 89θ = Aθ, (2)

where θ ∈ RM×1 is the set of coefficients that contains
the majority of spatial information. The sampling ratio (SR)
is defined as the ratio between the set of target measure-
ments and the resolution of the recovered image SR=M/N .
Some papers also denominate this quantity as compression
ratio [15] but this nomenclature is counter-intuitive, and
should be abandoned, because in that term ‘‘higher compres-
sion ratios’’ means the use of more sampling patterns.

C. SENSING MATRIX AND ORDERINGS
One of themost used sensing basis is the Hadamard transform
which can be represented in the form of a matrix:

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
= H2 ⊗ H2k−1 , (3)

where⊗ is the Kronecker product,H1 = 1 and 2k the number
of lines of the Hadamard matrix (order). Each line of this
matrix, denominated as Walsh function, is reshaped, column
by column, into a 2D array when applied in SPI. One of
the main characteristics of the Walsh functions is that they
are only composed of two values, +1 and −1, making them
appropriate to use with DMD.

The equation 3 produces a Hadamard matrix in the natural
order. Nevertheless, the order of the Walsh functions can
be rearranged to allow the acquisition of higher coefficients
(θ ) first. Many different orders have been proposed for the
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Hadamard matrix because the order in which the patterns are
displayed has a great impact on the minimum sampling ratio
that can be achieved without losing too much image quality.
Here we propose two novel orders (AS and AI) and compare
it with the high performing orders used in past works (CC [2]
and TG [16]).

D. ORDERINGS
1) STATE OF THE ART
Regarding CC, the rows of the Hadamard matrix are rear-
ranged to increase the groups of pixels with the same value
(blocks). Since this is a straightforward approach, the process
will not be detailed here but it can be found in [2], [3].

Concerning the TG order, it was first introduced in [12]
along with another order denominated as total variance
ascending order. The process of determining the TG order
starts by reshaping each row of the Hadamard matrix into
its corresponding 2D pattern. Then, the gradient of this
matrix is determined in both x and y direction (Gx and Gy).
Both in the original paper [12] and in our work, the Mat-
lab function gradient was used to determine the mask’s
gradient. This function implements the central difference for
the interior data and the single-sided differences along the
matrix borders.

In order to archive the same order as the one presented
in fig. 2 of paper [12], the equation originally presented
(Eq. 5 of [12]) must be modified to:

TGi =
N∑
j=1

|Gxj | + |G
y
j | (4)

where TGi is the total gradient of the pattern derived from
Hadamard matrix line i, Gj is the gradient value in pixel j in
that pattern and N the number of pixels of the pattern.1

2) NEWLY PROPOSED
The newly proposed AS order is based on the identification
of the predominant frequency of each reshaped Walsh func-
tion. The predominant frequency of each pattern is deter-
mined by computing the 2DFourier transform and calculating
the euclidean distance from the peak to the transform ori-
gin (0, 0). Then, the Walsh functions are ordered by increas-
ing frequency to produce the AS ordered Hadamard matrix.
This process is exemplified in fig. 1. Each line of the original
Hadamard matrix is reshaped, column by column, into a 2D
square pattern. From left to right and top to bottom, we can
see all the 16 patterns derived from the original matrix. The
magnitude of the Fourier transform first quadrant, using zero
padding to 256× 256 to increase the transform resolution, for
each pattern is presented below the respective pattern, where
lighter colors mean higher intensity. Finally, the patterns are
ordered by ascending distance.

1During this work we also tried to implement the total variation order but
we were unable to reproduce the order of fig. 2 of the paper [12] using the
given definition (equation 3 of paper [12]).

The proposed AI order technique is based on the inertia,
also denominated contrast, property of the GLCM obtained
from the reshaped Walsh function [17]. First, the pattern
values −1 are replaced by zeros in order to obtain a GLCM
of the same size of the mask. Then, for each pattern we
obtain the correspondingGLCMs, using 4 different directions
(θ equals to 0, 45, 90, and 135 degrees) and an offset equal to
one.

Each GLCM, gθ (j, k), will be composed of the number of
times the pair of pixels (j, k) occurring within the pattern.
Finally, the inertia final value, for each pattern, is determined
as the mean value of the 4 inertia values:

AIi =
1
4

4∑
θ=1

√
N∑

j=1

√
N∑

k=1

|j− k|2
gθ (j, k)
Nθ

(5)

where Nθ is the sum of all the values of gθ
Figure 2 presents the Hadamard matrices reordered for

the cake-cutting (a), ascending scale (b), total gradient (c),
and ascending inertia (d) orders. Most Walsh functions retain
the same position. However, there are specific functions
(e.g. #16) that are substantially moved up in the AS order due
to the reasons detailed above.

Although several authors agree that the most significant
information in natural images is presented in the low fre-
quency region [12], both CC and TG orders penalize the 2D
patterns that present diagonal lines, causing these patterns
to be acquired last. For an illustrative example of this phe-
nomenon, consider the Hadamard pattern #11 (fig. 1), which
corresponds to a diagonal low frequency stripe. Both in CC
and TV orders, this pattern is selected only after patterns #2
and #5 which show a higher spatial frequency but in a single
direction. The proposed ascending scale order aims to cor-
rect this issue, by selecting the low frequency patterns first,
regardless of the stripes’ direction.

For AI order, the pattern #11 is also selected before the
patterns #2 and #5. The GLCMs provide the joint probability
distributions of two pixel pairs, and the inertia will reflect
the local variations within the matrix. Basically, the AI order
allows to quantify the intensity contrast between a pixel and
its neighbor along 4 directions for a given pattern. For exam-
ple, both AI and AS novel orders privilege the patterns #1,
#3, #9, #11, and #4 first. However, given the higher local
variations of the pattern #6, the AI order considers it more
important compared to the AS order that places it last.

E. RECONSTRUCTION ALGORITHMS
The reconstruction algorithm used during this exper-
iment was the total variation minimization by aug-
mented Lagrangian and alternating direction algorithm
(TVAL3) [18]. This algorithm is fast when compared to
others iterative algorithms [19], and finds the optimal solution
by considering a sparsifying basis (8) as the gradient of the
signal by solving the equation:

min
wix

∑
i

‖wi‖2, subject to 8x = y and Di = wi ∀i (6)
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FIGURE 1. Hadamard matrix of order 16 in natural with the corresponding reshape patterns and respective Fourier transform first quadrant
magnitude. In the 2D spectrum the DC value corresponds to the bottom left corner. Lighter color represent higher intensity.

FIGURE 2. Re-ordered Hadamard matrix (16×16) for different orders. The lateral numbers indicate the original position on the natural
order Hadamard matrix.

where ‖ . . . ‖2 is the l2 norm,wi = Dix ∈ R2×1 is the discrete
gradient of x at position i, horizontally and vertically.

F. ACQUISITION PROCEDURES
In this work, a dataset composed of 110 images (simulation)
and two images (experimental) were used to test the recon-
struction algorithm using different sampling ratios, different
orderings and different noise levels for the simulation case
and a data set composed of two images. The simulation
dataset was composed by the MATLAB image processing
toolbox built-in images. This dataset comprise a miscella-
neous of natural images, including cars, microscopy images,
aerial views, electronic circuits, black and white images,
and images with different conditions of luminosity. Since
the images present variations in terms of resolution and
color space, all the data set was resized to a resolution of
128× 128 pixels and converted to gray scale. Fig. 3 presents
the two images used in both the simulation and experimental
datasets, represented in gray scale levels with a resolution
of 128× 128 pixels (simulation) and a size of 5 cm× 5 cm
(physical paper target).

The simulated image sampling procedure was performed
according to equation (3) where x is a vectorized version
of the image and 8 is the desired sensing matrix. Further-
more, normally distributed noise was added to the acquisition
according to the following equation:

ys = y+ c× ¯|y| × σ (7)

where y represents the simulated signal projections, c is a
constant with values of 0 (no noise), 0.1 and 0.5, |ȳ| is the

mean of the absolute value of all projections, and σ is an
independent and normally distributed random variable with
zero mean and unit standard deviation. Since this noise has a
random component, five runs for each case were simulated to
improve the significance of the results.

The experimental set-up was based on a previously
described single-pixel camera [2], which uses a DMD to
project the Hadamard masks into a static target. The resolu-
tion of the reconstructed images in the experimental case was
64× 64 pixels.

G. EVALUATION METRICS
Two distinct metrics were used to assess the simulation
results: the structural similarity index (SSIM) [20] and the
peak-signal-to-noise ratio (PSNR) [21].

The SSIM metric is focused on three image parameters:
luminance (l), contrast (c) and structure (s). Each of these
parameters is evaluated using the following Eqs.:

l(Î , I ) =
2µÎµI + C1

µ2
Î
+ µ2

I + C1
,

c(Î , I ) =
2σÎσI + C2

σ 2
Î
+ σ 2

I + C2
,

s(Î , I ) =
σÎ ,I + C3

σÎσI + C3
,

SSIM(Î , I ) = l(Î , I )α × c(Î , I )β × s(Î , I )γ , (8)

where µ stands for the image mean value, σ is the image
standard deviation, σÎ ,I represents the co-variance between
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FIGURE 3. Images used in the simulation and bench experiment.

Î and I and C1, C2 and C3 are constants used to prevent
indeterminate expressions. This metric was determined using
C1 = 2.552, C2 = 7.652, C3 = C2/2 and α = β = γ = 1.
Finally the PSNR was determined using the equation:

PSNR = 10× log10
2552

MSE
(9)

where MSE corresponds to the mean square error, and
255 corresponds to the maximum intensity of a gray scale
image (8 bits image).

III. RESULTS
A. SIMULATION
The simulation results are summarized in fig. 4 and 5. Each
fig. shows the reconstructed images, of two of the used
images, for the four orders, using sampling ratios of 10%,
5% and 1%, and a noise level of c = 0.1. For all the cases,
the reconstructed image quality is reduced when the sampling
ratio decreases. The complete data, including the original
images and their reconstructed versions, is available at [22].

Looking at the boat image, when the SR is equal to 10%,
significant differences between the CC and AS orders are
visible (fig. 4-(a) and (b)). For example, the outriggers (long
diagonal poles) can still be identified in the AS and AI orders
while they blend in the background of the image recon-
structed with CC order. The visual analysis of the images
reconstructed with AS and AI shows a good image recon-
struction where the shape of the boat is highly visible and
the outriggers can be clearly identified. In contrast, the image
reconstructed with the TG order for this SR is already blurred
with less quality.

For the cases of SR = 5% and SR = 1%, image degrada-
tion is evident in all cases. Nevertheless, the AS and AI orders
are the only one able can recover the structural features with
sharper edges and less blur with a SR = 5%. Since were are
dealing with low resolution images (128× 128), none of the
orders is able to recover the image structure for SR = 1%.
The Cameraman case for SR = 10% (fig. 5-(a), (d), (g)

and (j)) presents a similar situation where AS and AI orders
show similar visual quality while the CC order already
presents difficulties in the identification of the background,
tripod, and camera. Nevertheless, the only order who stands
out from a negative perspective is the TG order which failed
to retrieve the image details. The same conclusion, with a
stronger evidence, can be drawn from the Cameraman case
(fig. 5-(b), (e), (h) and (k)) when the SR reaches 5%. The
global image quality, specifically the background, the subject
silhouette and the face details are much clearer in the AS and
AI orders than in the others. Again, for the lowest SR all the
orders did not perform satisfactory.

The visual conclusions are also supported by the evaluation
metrics (fig. 6-(a) and(b)). The points in the graphics corre-
spond to the mean± standard deviation obtained for all the
dataset (110 images and 5 runs for each image). The newly
proposed orders, AS and AI, achieve better SSIM and PSNR
than the state of the art TG and CC orders. An interesting
phenomenon occurs when directly comparing the SSIM of
AS and AI orders with CC order in the case of c = 0.1. For
sampling ratios between 0.04 and 0.1 the AS and AI orders
consistently show higher SSIM when compared with the CC
order. This fact is clearly reflected by the visual analysis of
figures 4 and 5. For lower SR (0.01 to 0.03), the SSIM of CC
order is similar to the one of AS and AI. Nevertheless, as can
be seen by the reconstructed images, with these SRs most
of the image structure is already lost and the SSIM could be
ineffective in determining the image global quality. The influ-
ence of the noise level is also evident in the SSIM and PSNR
values, causing their value to lower when the noise increases
from c= 0.1 to c= 0.5. For the SSIM, the orders remain in the
same position in terms of performance regardless of the noise
level. Nevertheless, the PSNR presents a different situation,
where the CC ordering is surpassed by the TG ordering for
SR> 0.7 in the noisy situation, in opposition with the less
noisy situation where CC ordering is always better than TG.

If we look at the specific example of the Cameraman image
(fig. 6-(c) and (d)), the results of PSNR show a large variation,
with a non-monotonic trend, along the SR. The AS and AI
orders still present higher PSNR, when compared with TG
and CC, for most of the SRs. Moreover, the influence of the
added noise on PSNR is much larger than in the SSIM as can
be seen by the size of the error bars in fig. when comparing
fig. 6-(c) and fig. 6-(d) graphics.

B. EXPERIMENTAL BENCH
A global decrease in the quality of the reconstructed images
can be observed when comparing these images with the sim-
ulated ones. The signal-to-noise ratio in a real environment
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FIGURE 4. Image reconstruction of boat using TVAL3 algorithm for the simulation with a noise level of c = 0.1.

is affected by many different noise sources that degrade the
signal quality. Among those noise sources, the large noise
equivalent power of the photodiode [2] and the projection
system focus that slightly blurs the pattern on the test image
must be highlighted.

Due to the lower image reconstruction quality of the exper-
imental bench data, the presented sampling ratio is higher
than the one used for the simulation case.When looking at the
results of boat image reconstruction (fig. 7) for SR= 0.5, the
differences between the four orders are not as evident as
the differences presented in the simulation results. For lower
sampling ratios (SR≤ 0.2), CC, AS and AI have a better

reconstruction image quality than TG. This is in accordance
with the simulation results where AS and AI presented very
similar performances, followed by CC, while TG was by
far the ordering with the worst reconstruction performance
(considering SSIM and PSNR).

In the case of the cameraman image (fig. 8), the AS
and AI orders show a better definition for the case when
SR = 0.5. As an example, the subjects facial definition in the
AS and AI orders is enough for its eye to be visible while
it is not visible in both CC and TG order. Moreover, the
tripod right leg bracing is more defined in the AS and AI
orders. Nevertheless, the performance of AS, AI and CC is
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FIGURE 5. Image reconstruction of Cameraman using TVAL3 algorithm for the simulation with a noise level of c = 0.1.

similar, when analyzing the images for SR = 0.2, while TG
shows a reconstruction with lower quality. For the case when
SR = 0.05 all the orders present lower reconstruction quality
but differences can still be highlighted. TG reconstruction is
more blurred when comparing with the others. When ana-
lyzing the shoulder of the cameraman, AS order provides
a better reconstruction, with less aliasing. Both CC and AI
reconstruct this area as a stair while the AS order provides a
more reliable reconstruction with a diagonal line. This is in
line with the theoretical considerations where patterns with
diagonal lines are flavored in the AS order which results in a
better reconstruction of these features when low SR are used.

Regarding the numerical results, the absence of an aligned
ground truth image invalidate the use of SSIM and PSNR
as a robust measurement metric. The PSNR method is based
on pixel by pixel comparison which is extremely dependent
on the correct alignment between the reconstructed image
and the ground truth. On the other hand, SSIM depends
on the co-variance between both images which should be
determined using the exactly same field for view. When per-
forming an experimental acquisition, it is difficult to ensure
that the projected pattern illuminates the same field of view
as the original target image. For example, in the presented
case, the reconstructed experimental image is a cropped ver-
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FIGURE 6. Numerical results of image reconstruction with noise levels of c = 0.1 and c = 0.5.

sion of the original target. Alternative no-reference image
quality assessment (NR-IQA) metrics can be used to over-
come these issues. Several methods based on traditional and
machine learning methods have been developed in recent
years [23], [24].

Since comparison of NR-IQA algorithms is out of the
scope, we have applied three of the most used state of the
art methods, namely: the blind/referenceless image spatial
quality evaluator (BRISQUE) [25], the natural image quality
evaluator (NIQE) [26] and the perception based image quality
evaluator (PIQE) to our reconstructed images [27]. Never-
theless, none of the NR-IQA metrics prove to be conclusive
in the evaluation of these images. The low resolution of
the images and the fact that they all show artifacts from
the compressive sampling reconstruction could be a possible

explanation for this occurrence. Moreover this type of IQA
was design to assess images with higher resolutions and is
only sensitive to minimal level of noise.

IV. DISCUSSION
The simulation experiment indicates that the newly proposed
ascending scale and ascending inertia orders achieve better
image quality in the reconstruction of a diverse dataset. This
conclusion is backed by the visual inspection of the images
and by the SSIM and PSNRvalues achieved by these orders in
most of the tested SR range. The cake-cutting order obtains
the best SSIM but only for low sampling ratios, where the
image quality is already poor. In our experimental conditions,
the total gradient order showed lower image reconstruction
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FIGURE 7. Experimental image reconstruction of boat.

quality for all the SRs. Both visual inspection and numerical
values strongly back this conclusion.

In contrast, the experimental bench results do not fully con-
firm this conclusion. While the ascending order and ascend-
ing inertia achieve better image quality for SR= 0.5, for lower
sampling ratios, the difference in image reconstruction qual-
ity between cake-cutting and the remaining orders is small.
In addition, it was expected for the experimental sampling
ratio to be higher since low resolution SPI coefficients tend
to be less sparse [2], [3] leading to problems in the recon-
struction process [10]. In addition, as can be seen in fig. 6(d),

PSNR is an evaluation metric very sensitive to the image
noise component. The large error bars presented for the same
conditions show that very different PSNR values are obtained
for images with similar visual quality. The PSNR should be
used very carefully when in presence of noise sources or
even small spatial displacements of the target because it is
computed using point-wise computations.

As our results demonstrate, PSNR can be misleading even
in low noise conditions. For the boat image case (Fig. 6(b)-
c= 0.1), CC order achieved a PSNR= 21 dB while AS
achieved a PSNR= 19 dB for a sampling ratio of 0.05.
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FIGURE 8. Experimental image reconstruction of cameraman.

A visual analysis of these images shows that the image
reconstructed with AS order has better quality than the image
reconstructed with CC order.

The discussion about which Hadamard ordering allows
for the lower sampling ratio gave rise to many different
orderings [2], [3], [12], [28] in recent works. Although we
can conclude that some are better than others (for example
natural order vsWalsh order [2] or CC vs Paley [12]), the best
order will depend on the structure of the image and on the
noise conditions. Other works [16] have also showed that
the best order can change depending on the analyzed image.

For example, in [16], for the reconstruction of an image of a
man, the best order was the total variation while the power
order achieved better results when reconstructing a wheel
image. In the conditions previously documented, ascending
scale and ascending inertia surpassed the cake-cutting and,
by a large margin, the total gradient order.

Single-pixel imaging range of applications has been
extending in recent years including microscopy [29],
phophorescence [9] and fluorescence imaging, microtomog-
raphy [30], retinal imaging [31] and in telescopic sys-
tems [32]. Each one of these applications has its own
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requirements and produces different images. Researchers
doing single-pixel imaging should not exclude, a priori, one
or other order. Instead, simulation works should be performed
using typical images with similar structure to the real ones
to determine the order/orders which allow for the lowest
sampling ratio. This is indeed the major disadvantage of
this simulation/experimental work because it can only be
significant for the Hadamard basis and the application in
question (natural imaging). The use of other sampling basis
will require similar studies. Another approach is to use an
adaptive strategy as the one developed for Fourier sampling
basis [33].

V. CONCLUSION
The presented paper proposes two novel Hadamard ordering
techniques for SPI applications based on Fourier analysis
and on the inertia property of GLCM, and are denominated
as ascending scale and ascending inertia, respectively. The
simulation results, using a dataset of 110 images, show that
these orders produce better image quality when compared
with state-of-the-art methods. The experimental results indi-
cate that the ascending scale and ascending inertia orders have
the potential to be good candidates to achieve lower sampling
ratios.
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