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Abstract—Grammatical inference is concerned with the study
of algorithms for learning automata and grammars from
words. We propose some models for learning Nondeterministic
Finite Automaton (NFA) of size k from samples of words of
the language and words not belonging to the language we want
to describe. To this end, we formulate the problem as a SAT
model trying to reduce the size of generated SAT instances.

We propose new models to generate even smaller SAT
instances. We also suggest some techniques for breaking some
symmetries, hence reducing the search space, and consequently,
speeding-up solving. We also achieved some experimental com-
parisons and we analyze our various model improvements and
over-constraint propositions. Compared to [1], our models are
easier and faster to solve. Compare to the parallel solver of [2],
we find some new bounds for some instances for which the
minimal size of NFA is not known yet.

1. Introduction
A classic way to identify and learn regular languages

is to infer a finite automaton. While deterministic finite au-
tomata (DFAs) are generally faster for accepting or rejecting
a word, they are also larger, sometimes exponentially larger
(in terms of the number of states), than non-deterministic
finite automata (NFAs). The spatial complexity of models
for inferring automata being polynomial in the number of
states, NFAs become a very good alternative. The problem
can be formulated as follows: given a sample S = S+∪S−
made of some positive words (S+) that are in the regular
language L, some negative words (S−) that are not element
of the language L, and k a number of states, find an
automaton of size k to characterize L by accepting words
from S+ and rejecting words from S−.

DFA inference is generally based on the generation of
a prefix tree acceptor (PTA), and then, on some algorithms
for merging states while keeping the determinism, see for
example [3] for the RPNI (Regular Positive and Negative In-
ference) algorithm, or [4] for merge based on graph coloring.
From the idea that a non deterministic automaton (NFA) is
usually a smaller description of a regular language than its
equivalent DFAs, various techniques have been proposed.
Among them, algorithms, such as DeLeTe2 [5] based on
Residual Finite State Automata, or algorithm for Unam-
biguous Automata [6]. Other approaches use metaheuristics

for computing NFA, such as hill-climbing [7] or genetic
algorithm [8].

Constraint Satisfaction Problem (CSP [9]) makes it pos-
sible to declaratively represent combinatorial problems: the
user defines variables together with their domains (i.e., the
candidate values) and relations between these variables (i.e.,
the constraints). This task is called modeling, the result
(variables and constraints) is a model, and a model together
with some data forms an instance. In our case, the model is
a NFA inference model, the data are S and k. For example,
an INLP (Integer Non Linear Programming) model for in-
ferring NFA is given in [10], in [2] a SAT (the propositional
satisfiability problem [11]) model is given, and in [12], [1]
several improvements of the SAT model are given.

Whereas some approaches focus on improving the
solver, such as specific strategies [13], or parallel tech-
niques [2] for optimizing k, we have an othogonal approach
that consists in improving the model and using a standard
solver. In [12], we studied complex data structures to gener-
ate smaller instances, and in [1], we proposed various mod-
els, and we use metaheuristics to optimize instance sizes. In
this paper, we propose four new models for the inference
of NFA based on the optimization of the splitting of words
into a prefix and a suffix. The idea is to try to share prefixes
(respectively suffixes) among as many words as possible
and/or to obtain the longest prefixes (respectively suffixes).
Our new S?

k model surpass our previous models [1], both
in the size of the generated instances and in the solving
speed. The new model based on Iterated Local Search is
very efficient in terms of instance size. However, the gain
in solving time is not always sufficient to compensate for
the time lost in instance generation.

We also propose some extra constraints to over-constrain
the model, either removing symmetric solutions (in this case,
the ”deleted” solutions can be recovered by permutation
of remaining solutions) or loosing solutions (these solu-
tions cannot be recovered, but as we will see, these over-
constrained models can help finding solutions of complex
instances). The first extra-constraints consists in enforcing,
for each symbol, the first derivation from the initial state q1.
The second one consists in reducing undeterminism of the
first transitions from q1.

We present some results of experimentation. We use the



benchmarks of [2]. Our new models with symmetry breaking
techniques give even better results than the models presented
in [1]. Compared to [2] which use parallelism, we find
interesting results, and for some instances, we were able to
find better bounds for some instances for which the optimal
size k is not known.

This paper is organized as follows. The next section
(Section 2), describes the models for inferring NFAs. We
first describe the necessary variables, and then, some pre-
vious models (Section 2.1) that will be used to compare
our new models presented in Section 2.2. Complementarily
to the models, we propose some extra constraints to over
constraint the model. The first one (Section 3.1), only re-
move some symmetric solutions that can be recovered by
permutations of nodes. The second one is also a symmetry
breaking technique for the final states (Section 3.2). The
last one may loose some solutions that cannot be recovered
latter (Section 3.3). We then present our experimentation in
Section 4. The results are given in Section 5 together with
some discussions and comparisons with previous works. We
finally conclude in Section 6.

2. Models

Let Σ = {s1, . . . , sn} be an alphabet of n symbols.
Consider a training sample S = S+ ∪ S−, where S+

(respectively S−) is a set of positive words (respectively
negative words) from Σ∗, and k, an integer. The NFA
inference problem is to learn a NFA with k states, that
accepts each word of S+, and rejects each word of S−. We
say that S+ is a set of ”positive” words, and S− is a set of
”negative” words. This satisfaction problem can be extended
to an optimization problem for minimizing k [2].

A NFA is a 4-tuple A = (Q,Σ, q1, F ) with: Q =
{q1, . . . , qk} a set of k states, Σ a finite alphabet, q1 the
initial state, and F the set of final states. λ denotes the
empty word, and K is the set of integers {1, . . . , k}.

We will consider the following variables in our models:

• k, an integer, the size of the NFA we want to learn,
• a set of k Boolean variables F = {f1, . . . , fk}

determining whether state qi is final or not,
• and ∆ = {δs, #    »qiqj |s ∈ Σ and (i, j) ∈ K2} a set of

n.k2 Boolean variables defining the existence or not
of the transition from state qi to state qj with the
symbol s, for each i, j, and s.

The path i1, i2, . . . , in+1 for w = w1 . . . wn exists if and
only if d = δw1,

#         »qi1qi2
∧ . . . ∧ δwn,

#                »qinqin+1
is true. We say

that the conjunction d is a c path, and Dw, #    »qiqj is the set of
all c paths for the word w between states qi and qj .

2.1. Previous models

For each model, we have to consider λ:

(λ ∈ S+ −→ f1) ∧ (λ ∈ S− −→ ¬f1) (1)

The Direct model (see e.g., [2], [1]) to infer a NFA of size
k is composed of 3 sets of constraints. Dk = (1)∧ (2)∧ (3)
with:

• For each word w ∈ S+, there is at least a path from
q1 to a final state qj :∨

j∈K

∨
d∈Dw, #    »q1qj

(
d ∧ fj

)
(2)

• For each w ∈ S− and each state qj , either there is
no path from q1 to qj , or qj is not final:

¬

∨
j∈K

∨
d∈Dw, #    »q1qj

(
d ∧ fj

) (3)

After Tseitin transformations [14], to convert Dk in CNF,
the spacial complexity is in O(|S+|·(|ω+|+1)·k|ω+|) for the
number of clauses, and in O(|S+| · k·|ω+|) for the number
of variables with ω+ (respectively ω−) the longest word of
S+ (respectively of S−). See [1] for more details about the
Tseitin transformations and complexity of the model.

The Prefix Model is defined as follows. Let Pref(w) be
the set of all the non-empty prefixes of the word w and,
Pref(W ) = ∪w∈WPref(w). For each w ∈ Pref(S), con-
sider a Boolean variable pw, #    »q1qi to determine the existence
of a c path for w from state q1 to qi. The prefix model is
defined by Pk = (1)∧ (4)∧ (5)∧ (6)∧ (7) with Constraints
(4), (5), (6), and (7) defined as follows:

• For each prefix w = a with w ∈ Pref(S), and
a ∈ Σ, there is a c path of size 1 for w:∨

i∈K

δa, #    »q1qi ↔ pa, #    »q1qi (4)

• For each prefix w = va, w ∈ Pref(S), v ∈
Pref(S), and a ∈ Σ:∧

i∈K

(pw, #    »q1qi ↔ (
∨
j∈K

pv, #     »q1qj ∧ δa, #    »qjqi)) (5)

• For each word w ∈ S+ \ {λ}:∨
i∈K

pw, #    »q1qi ∧ fi (6)

• For each word w ∈ S− \ {λ}:∧
i∈K

(¬pw, #    »q1qi ∨ ¬fi) (7)

After transformations, Pk is converted in CNF, and its
spacial complexity is in O(σ · k2) variables, and O(σ · k2)
clauses with σ = Σw∈S |w|. See [1] for details.

The Suffix Model, Sk, is based on Suf(S), the set of
all the non-empty suffixes of all the words in S. The
construction starts from every state and terminates in state
q1. For each w ∈ Suf(S), we add a Boolean variable pw, #    »qiqj



to determine the existence of a c path for w from qi to qj .
Sk = (1) ∧ (8) ∧ (9) ∧ (6) ∧ (7) with:

• For each suffix w = a with w ∈ Suf(S), and a ∈ Σ,
there is a c path of size 1 for w:∨

(i,j)∈K2

δa, #    »qiqj ↔ pa, #    »qiqj (8)

• For each suffix w = av, w ∈ Suf(S), v ∈ Suf(S)
and a ∈ Σ:∧

(i,j)∈K2

(pw, #    »qiqj ↔ (
∨
k∈K

δa, #     »qiqk ∧ pv, #     »qkqj )) (9)

Although Pk models, and Sk models could seem similar,
their complexities are very different. Sk models are in O(σ ·
k3) variables, and in O(σ · k3) clauses [1].

The Hybrid Models consists in splitting each word w ∈ S
into a prefix p and a suffix s such that w = p.s. We then
consider two samples, Sp = S+

p ∪S−p with S+
p = {p | ∃w ∈

S+, w = p.s} and S−p = {p | ∃w ∈ S−, w = p.s}, and
Ss = S+

s ∪ S−s with S+
s = {s | ∃w ∈ S+, w = p.s} and

S−s = {s | ∃w ∈ S−, w = p.s}.
For each prefix of Pref(Sp) we generate Constraints (4)

and (5), and for each suffix of Suf(Ss), Constraints (8)
and (9). For each w = p.s, clauses generated for p must be
linked to clauses generated for s as follows:

• if w = p.s ∈ S−:∧
(j,k)∈K2

(¬pp, #     »q1qj ∨ ¬ps, #     »qjqk ∨ ¬fk) (10)

• if w = p.s ∈ S+:∨
(j,k)∈K2

pp, #     »q1qj ∧ ps, #     »qjqk ∧ fk (11)

We thus have: Hk = (1)∧ 4)∧ (5)∧ (8)∧ (9)∧ (10)∧ (11)
Obviously, the way we split each word into a prefix and a
suffix will determine the size of the instance.

In [12], we proposed two strategies based on metaheuris-
tics for optimizing models, and consequently for optimizing
the split of each word of S. For both of them, the search
space corresponds to all the hybrid models, i.e., all the
possible split for all words of S. The fitness we used is:
f(Sp, Ss) = |Pref(Sp)|+ k · |Suf(Ss)|.

The first strategy is based on an Iterated Local Search
(ILS) [15] with the fitness f for optimizing our hybrid model
ILSk(rand, f). The search starts with a random split for
each word. At each iteration, the best split w = p.s is
found for the selected word w: w is selected randomly with
a roulette wheel selection based on the weights of words
defined by weightw = 75%/|S|+ 25% ∗ |w|/(

∑
wi∈S |wi|).

The number of iterations is given. We do not need to
introduce random walks or restarts since our word selection
process ensures diversification.

The second hybrid strategy was based on genetic al-
gorithms (GA). A population is made of individuals, each

individual being a split for each word of S. Each genera-
tion keeps a portion of individuals as parents and creates
children by crossing (well-known uniform crossover) the
selected parents. For each word, children inherit the prefix
and the suffix of one of their parents randomly chosen.
The population size is constant during all the search. Each
individual w = p.s is applied a mutation process (i.e., a
new split of w into p′ and s′) with a probability pmut.
The search stops when the maximum number of generations
is reached or when no improvement is observed in the
population during a given time. The corresponding model
is noted GAk(rand, f).

2.2. New hybrid models

We now propose 4 new hybrid models. In [1], we have
noticed that ILSk(rand, f) and GAk(rand, f), produce
smaller instances, but the time for generating an instance
with GAk(rand, f) is too long compared to the gain in
solving time. For ILSk(rand, f), generation is much faster,
but remain costly. The first two models thus focus on
optimizing the splitting of words in a deterministic manner.

The spatial complexity of the S model is quite bad.
Thus, the idea of the Best suffix model is to optimize the
construction of the suffixes. The Best suffix model consists
in ordering the set Suf(S) of suffixes of words of S. For
each suffix s of Suf(S), we consider Ω(s), the set of words
of S accepting s as a suffix:

Ω(s) = {w ∈ S | s ∈ Suf(w)}

We can now define the order < as follows. Consider s1 and
s2, two suffixes of Suf(S), then:

s1 < s2 ⇔ |s1| ∗ |Ω(s1)| ≥ |s2| ∗ |Ω(s2)|

with |.| being both the length of a word and the cardinal
of a set. The set of best suffixes, S, is defined as follows:
S ⊆ Suf(S) such that

•
⋃

s∈S Ω(s) = S, each word of S has a suffix in S;
• ∀s′ ∈ Suf(S) \ S, ∀s ∈ S, s < s′, i.e., suffixes

of S are the most important ones regarding the <
order;

• ∀s′ ∈ S, (
⋃

s∈S\{s′}Ω(s)) ⊂ S, i.e., if a suffix is
removed from S, at least a word of S has no suffix
in S.

For each word w ∈ S, we define the best suffix for w as
s?w ∈ S∩Suf(w), and ∀s ∈ Suf(w), s?w < s, i.e., the suffix
s?w we consider for w is the largest suffix possible w.r.t. <
in S. Hence, S is the set Ss of our S? hybrid model and
Sp = {p ∈ Pref(S) | ∃w ∈ S,w = s?w.p}. The hybrid
model S?

k is then built with Ss and Sp has describe above
for Hk.

The second model is the Best prefix model. This model
is built in a similar way as the Best suffix model, starting
with a selection of the best prefixes. It consists in first
determining which are the best prefixes with respect to the



order % defined as above for prefixes: consider p1 and p2,
two prefixes of Pref(S), then:

p1 % p2 ⇔ |p1| ∗ |α(p1)| ≥ |p2| ∗ |α(p2)|

with α(p) = {w ∈ S | p ∈ Pref(w)}. Then, similarly as
with suffix, the set of best prefixes is built, and consequently,
we define Sp and Ss that will be used in Hk to generate the
constraints of the best prefix hybrid model P ?

k .

The third model we propose, the ILSk(S
?
k, f) model

combines techniques from the Best suffix model and from
the ILS model. The main difference with ILSk(rand, f)
is the initial configuration. Indeed, we first compute word
splitting of the S?

k model to initialize the ILS algorithm.
Note that we do not need to generate the S?

k model itself,
only the splitting is necessary. Hence, we know that the time
for generating SAT instances with this model will be long,
but we hope to obtain even smaller instances, and thus, we
hope to be able to tackle even larger problems.

The last model, the ILSk(P
?
k , f) model, is similar to

the previous one, but the initial configuration is based on
the word splitting of P ?

k .

3. Over-constraining

In this section we propose some extra constraints, either
to break symmetries, or to over-constrain the models. Note
that these extra constraints are compatible with each of the
previous models.

3.1. Symmetry Breaking for first derivations

A symmetric solution can be restored from another
solution by some permutations. In constraint programming,
symmetry breaking is a technique which consists in adding
extra constraints for removing symmetric solution, and thus
reducing the search space. This way, lost solutions can be
recovered, and the problem remains satisfiable if it was
before.

We propose some symmetry breaking that consist in
enforcing the derivations from the state q1. Remember that
q1 has a kind of special behavior when λ ∈ S. Consider a
word w = s1v from S+ with s1 ∈ Σ. Then, the following
constraints can be added to remove symmetric NFA:

δs1, #     »q1q1 ∨ δs1, #     »q1q2 (12)

This means that we force to have at least a transition for
symbol s1 to be either from state q1 to q1 or from q1 to
q2. For the second symbol, s2, we can enforce to have a
transition labeled with s2 from q1 to q1, from q1 to q2,
or from q1 to q3. The last possibility is required since we
already have extra Constraints (12) over q1 and q2. Consider
Σ′ = {a1, . . . , al}, such that Σ′ ⊆ Σ, and for each symbol
aj ∈ Σ′ there exists a word w = ajv in S+, and for each
s ∈ Σ \ Σ′, there does not exists a word w = sv in S+.
For each i ∈ [1..k − 1] ∩ [1..l], we consider the following

extra constraints that break symmetries w.r.t. possibilities of
derivations from state q1:∨

j∈[1..i+1]

δai,
#     »q1qj (13)

Figure 1 shows all possible NFA for instance st-2-10
(|S+| = |S−| = 10 and Σ = {0, 1}). Adding symmetry
breaking constraint (13), only one solution, Sub-Figure (c),
remains.

3.2. Over-constraining final states

We can also remove symmetric solutions by over-
constraining final states with the following constraint:

f1 ∨ f2 (14)

However, Constraint (14) is not compatible with Con-
straints (13), and in our experiments, we will only consider
Constraints (13) which are stronger.

Note that in [2], some extra constraints are added on
final states: since they are computing in parallel, for a NFA
of size k, they consider 2.k − 1 different instances: each
instance enforces to have a given number of final states,
between 1 and k, including or not State q1. It is clear that
most of these instances are UNSAT even for a SAT instance.
But thanks to parallelism, the gain in time is sensible.

3.3. Removing some undeterminism

We now over-constrain instances by removing some
undeterminism. To this end, for each symbol, we consider
that there is only one derivation from q1. It is clear that
we can remove complete groups of solutions, and thus, we
can transform SAT instances into UNSAT instances. We
thus have a semi-decision procedure, that can be helpful to
quickly find SAT solutions, and lower upper bounds when
the optimal k is not known (open instances). Consider Σ′

defined as above. For each i ∈ [1..k−1]∩ [1..l], we consider
the following extra constraints:

δai,
#     »q1q1 ∨ δai,

#          »q1qi+1
(15)

¬δai,
#     »q1q1 ∨ ¬δai,

#          »q1qi+1
(16)∧

j∈K\{1,i+1}

¬δai,
#     »q1qj (17)

4. Experimentations

Our algorithms are implemented in Python using specific
libraries such as Pysat [16]. The experiments were carried
out on a computing cluster with Intel-E5-2695 CPUs, and a
limit of 10 GB of memory was fixed. Running times were
limited to 10 minutes, including generation of the model and
solving time. We used the Glucose [17] SAT solver with its
default options.

For the stochastic processes (ILSk(rand, f),
ILSk(P ?

k , f), and ILSk(S?
k , f)), 30 runs were realized.

The maximum number of iterations is fixed to 10000 but
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Figure 1. Instance st-2-10 with Σ = {0, 1} and k = 4. Six NFA respect S and can be inferred, Sub-figures (a) to (f). With symmetry breaking
(Constraints (13)), only NFA of Sub-figure (c) is valid.

if no improvement is obtained during 100 iterations, the
search stops.

Experiments are realized on 30 benchmarks used in [2]1.
Some of them are based on the training set of the StaMinA
Competition (http://stamina.chefbe.net) and the others were
randomly generated. From the StaMinA competition, 10
benchmarks have an alphabet of size 2, and 10 others have
an alphabet of size 5. The 10 random benchmarks have an
alphabet of size 10. The numbers of positive and negative
words (|S+|, and |S−|) vary depending on the benchmarks.
All the characteristics of each benchmark are summarized
in Table 1. When no optimal NFA size is known, the name
is written in bold.

StaMinA ww
|S+| = |S−| |Σ| = 2 |Σ| = 5 |Σ| = 10

10 st-2-10 st-5-10 ww-10-10
20 st-2-20 st-5-20 ww-10-20
30 st-2-30 st-5-30 ww-10-30
40 st-2-40 st-5-40 ww-10-40
50 st-2-50 st-5-50 ww-10-50
60 st-2-60 st-5-60 ww-10-60
70 st-2-70 st-5-70 ww-10-70
80 st-2-80 st-5-80 ww-10-80
90 st-2-90 st-5-90 ww-10-90
100 st-2-100 st-5-100 ww-10-100

TABLE 1. 30 BENCHMARKS USED WITH THEIR CHARACTERISTICS

1. The benchmarks we used are accessible on the GitHub repository
https://github.com/tjastrzab/min-nfa

For each of the benchmarks, the NFA minimal size mv
(or the lower bound for the NFA minimal size when the
instance is still open) is given in [2]. We try to generate
and solve CNF instances for k ∈ {mv − 1,mv,mv + 1}.
Consequently, we obtained 90 instances.

5. Results and Discussions

In this section, we analyze and compare the results we
obtained.

5.1. Comparative Results

Each of the 90 instances is tested with each of the
SAT models presented above, and one of the following op-
tions: without symmetry breaking, with symmetry breaking
(Extra Constraints (13)), or over-constraining (Extra Con-
straints (15)–(17)). In total, this leads to 2160 combinations.

Some instances, 26, cannot be generated by any of the
models in the given time. We discard these 26 instances,
and thus propose results for the 64 remaining instances.

We summarize all these results in Table 2 which presents
the average or the sum for various indicators. The first
column (Model) corresponds to the selected model. The
second column (Sym.) indicates the symmetry breaking
option. Three values are possible: ”no” for no symmetry
breaking, ”yes” for symmetry breaking with Constraint (13),
and ”OC” for the Over-Constraints (15–17). Then, we have
in sequence the total number of generated SAT instances
in the allocated time (#Gen.), the average number of SAT
variables (V ar.) and the average number of clauses (Cl.)



Model Sym. #Gen. Var. Cl. tM #Sol. tS tT tP
no 15 15654 134 009 2.51 14 0.08 2.25 469.24

Dk yes 15 15654 134 011 2.52 14 0.22 2.41 469.28
OC 15 15654 134 018 2.55 14/0/0 0.04 2.26 469.25
no 61 11813 44 003 7.81 46 58.76 65.82 216.06

ILSk(rand, f) yes 61 11827 44 060 7.74 48 58.16 65.41 199.06
OC 61 11814 44 031 7.74 58/2/1 46.21 53.81 105.01
no 61 10641 37 616 1.75 42 16.92 18.57 218.43

Pk yes 61 10641 37 619 1.73 45 27.09 28.74 198.33
OC 61 10641 37 637 1.72 56/2/1 47.22 48.92 117.80
no 61 47842 173 800 2.35 37 22.90 24.01 267.00

P ?
k yes 61 47842 173 803 2.35 39 42.19 41.91 259.91

OC 61 47842 173 821 2.33 48/1/2 41.04 42.97 182.22
no 61 11892 44 307 7.77 45 55.99 62.99 222.41

ILSk(P ?
k , f) yes 61 11879 44 262 7.74 44 26.42 33.41 210.47

OC 61 11832 44 106 7.71 57/2/1 41.07 48.61 108.92
no 61 67597 243 066 2.89 39 42.60 44.61 261.56

Sk yes 61 67597 243 069 2.88 40 29.23 31.22 244.52
OC 61 67597 243 087 2.86 42/2/0 15.38 17.41 217.67
no 61 9984 37 164 1.62 43 33.38 33.48 219.37

S?
k yes 61 9984 37 167 1.62 46 26.77 28.33 189.11

OC 61 9984 37 186 1.62 57/3/0 23.15 24.75 87.67
no 61 9237 34 668 7.68 45 49.82 56.75 218.03

ILSk(S?
k , f) yes 61 9232 34 653 7.66 46 47.61 53.66 207.32

OC 61 9231 34 668 7.66 57/2/0 20.41 27.89 90.47

TABLE 2. COMPRESSED RESULTS FOR EXPERIMENTS ON ALL INSTANCES WITH 3 DIFFERENT VALUES AND AND THE PRESENTED MODELS WITH AND
WITHOUT SYMMETRY BREAKING OPTIONS.

in the instance, and the average instance generation time
(tM ). The middle part of the table corresponds to the solving
part with the total number of solved instances (#Sol.), and
the average solving time (tS) with Glucose. Finally, the
right part is made up of tT and tP which are the average
total times, i.e., modeling time + solving time, without and
with penalties. For each unsolved instance a penalty of 600
seconds is applied in order to correspond to the effective
time which has been consumed.

Note also that for column #Sol., lines corresponding
to the over-constraint symmetry breaking (OC) indicate 3
values. The first one indicate the number of solved instances,
the second one is the number of errors (SAT instances that
became UNSAT by adding the over-constraints), and finally,
the number of SAT instances that were not found by the
other combinations Model/Sym.

Over the 64 instances of our benchmark tests, each
model allowed to generate 61 SAT instances in the allowed
time, except the Dk model which allowed to generate only
15 SAT instances. One of these 15 instances was also too
complex to be solved before the time-out. Among the 4 new
hybrid models proposed, all improve the number of solved
instances compared to the previously published models,
except the P ?

k model. This is certainly due to the size of
the generated instances. Indeed, P ?

k optimizes the prefix
management, but we have shown that the suffix treatment
has a higher complexity. On the contrary, models optimizing
the treatment of suffixes (S?

k and ILSk(S?
k , f)) produce

instances with fewer variables.

Model ILSk(rand, f) solves slightly more instances
than other models. However, the model that generates SAT
instances that are solved the fastest, is the S?

k model. More-
over, the stochastic aspects of the ILS model requires to
perform several executions that are then averaged to obtain
the results. The standard deviation is quite high and the
solving times usually varies from simple to double. For
instance, benchmark st-5-30 with k = 5 generated by
ILSk(S?

k , f) is solved in average in 15.23 seconds but the
standard deviation is 12.32. The shortest solving time is
2.40 seconds and the highest solving time is 33.49 seconds.
Whereas solving time for instances generated with the S?

k
model is constant, solving time for the ILSk(∗, f) models
is not homogeneous at all.

We note that adding symmetry breaking constraints only
slightly increases the number of clauses of the generated
instances (the number of variables remains the same, except
for models using stochastic search based on ILS). This low
number of extra clauses, however, significantly improves
solving time of the instances.

Over-constrain instances obtained by removing unde-
terminism provide better results (#Sol. and tP ) but the
only exploitable results are those returning SAT. However,
given the number of solved instances, it seems relevant and
appropriate to consider this approach. For example, in the
next section, we use it for decreasing upper bounds of open
instances.



5.2. Bounds

As shown in the previous section, our new models
allowed us to obtain solutions for open instances in a reason-
able time. In order to improve the best known values for the
30 benchmarks proposed in [2], we allowed a running time
of 30 minutes to generate and solve instances using the S?

k
model with symmetry breaking and over-constraining. Table
3 summarizes the results we obtained. The first column,
|S+| = |S−|, corresponds to the number of positive and
negative words of the benchmarks. Then, for each family
of benchmarks (i.e., StaMinA with alphabet of size 2 (st-2),
and alphabet of size 5 (st-5), and random benchmarks with
alphabet of size 10 (ww-10)), we have two columns BK and
NB. Columns BK correspond to the best known bounds as
reported in [2]. Columns NB correspond to the new bounds:
lower bounds were obtained by the S?

k model and symmetry
breaking (13), and upper bounds were obtained by the model
S?
k with either symmetry breaking (13) or over-constraints

(15-17). Results are represented as intervals [x−y] for which
UNSAT is found for k = x− 1 and SAT for k = y. When
two consecutive values of k provide respectively UNSAT
and SAT, the optimal solution is found: hence, there is only
one value written in the cell, the minimal k for which there
exists a NFA for the benchmark.

st-2 st-5 ww-10
|S+| = |S−| BK NB BK NB BK NB

10 4 4 3 2 2 2
20 7 7 4 4 3 3
30 9 9 4 4 3 4
40 [9-11] [9-10] 5 6 4 4
50 [9-12] [10-11] 6 6 4 4
60 [9-15] [9-13] [6-8] [6-8] 5 5
70 [9-17] [9-13] [7-8] [7-8] 5 5
80 [9-18] [9-16] [7-9] [7-9] [5-6] [5-6]
90 [9-22] [9-16] [7-11] [7-11] [5-6] [5-6]
100 [9-26] [9-20] [8-10] [8-10] [5-7] [5-6]

TABLE 3. COMPARISONS BETWEEN BEST KNOWN BOUNDS (BK) AND
NEW BOUNDS OBTAINED (NB) WITH THE MODEL S?

k .

New results are in bold in Table 3. We can see that we
succeeded in reducing the range of some open instances.
Concerning 3 other instances, we feel that some typos
appeared in the table given in [2]:

• st-5-10 has a solution with k = 2. A NFA solution
is given in Figure 2,

• st-5-40 has no solution for k = 5, and the smallest
k is 6,

• and ww-10-30 has no solution for k < 4, the
smallest k being 4.

For all StaMinA benchmarks with |Σ| = 2 (st-2), we have
reduced the upper bounds of the intervals. For st-2-50 we
have also increased the lower bound.

Figure 2. NFA with k = 2 for instance st-5-10.

6. Conclusion

In this paper, we have presented four new SAT models
for inferring NFA of given size k. We have completed these
models with some extra constraints to over-constrain the
problem, either just for breaking symmetries, or loosing
solutions. The new models allow us to generate smaller in-
stances than previously [1]. Symmetry breaking reduces the
search space, and help finding solutions. Over-constraining
permits to find solutions to more instances than before. To
summarize, the best model without symmetry breaking is the
ILSk(rand, f) model, with symmetry breaking, S?

k , and for
tackling more complex instances, S?

k with over-constraints.
Compared to the parallel approach of [2], we managed to
improve some bounds of instances for which the minimal
size is not yet known.

Our implementation is able to generate the SAT in-
stances, but also to generate the equivalent INLP (variables
in the domain {0, 1}, and non-linear equations and inequa-
tions) instances for each model, using PyCSP3 [18]. The
results we obtained were very bad compared to the SAT
instances, and that is why we do not report about them
in this article. However, we plan to design hybrid models
especially for optimizing INLP constraints (for example,
trying to minimize the number of non-linear equations
and favoring linear ones) with ILS, or a complete order,
and compare them with SAT hybrid models. NFA models
present numerous symmetries. We proposed some symmetry
breaking techniques in this paper, but we feel that more
symmetries can be broken to reduce even more the search
space.
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