Frédéric Lardeux
email: frederic.lardeux@univ-angers.fr

Eric Monfroy
email: eric.monfroy@univ-angers.fr

Optimized models and symmetry breaking for the NFA inference problem

Grammatical inference is concerned with the study of algorithms for learning automata and grammars from words. We propose some models for learning Nondeterministic Finite Automaton (NFA) of size k from samples of words of the language and words not belonging to the language we want to describe. To this end, we formulate the problem as a SAT model trying to reduce the size of generated SAT instances.

We propose new models to generate even smaller SAT instances. We also suggest some techniques for breaking some symmetries, hence reducing the search space, and consequently, speeding-up solving. We also achieved some experimental comparisons and we analyze our various model improvements and over-constraint propositions. Compared to [1], our models are easier and faster to solve. Compare to the parallel solver of [2], we find some new bounds for some instances for which the minimal size of NFA is not known yet.

Introduction

A classic way to identify and learn regular languages is to infer a finite automaton. While deterministic finite automata (DFAs) are generally faster for accepting or rejecting a word, they are also larger, sometimes exponentially larger (in terms of the number of states), than non-deterministic finite automata (NFAs). The spatial complexity of models for inferring automata being polynomial in the number of states, NFAs become a very good alternative. The problem can be formulated as follows: given a sample S = S + ∪ S - made of some positive words (S +) that are in the regular language L, some negative words (S -) that are not element of the language L, and k a number of states, find an automaton of size k to characterize L by accepting words from S + and rejecting words from S -.

DFA inference is generally based on the generation of a prefix tree acceptor (PTA), and then, on some algorithms for merging states while keeping the determinism, see for example [START_REF] Oncina | Inferring Regular Languages In Polynomial Updated Time[END_REF] for the RPNI (Regular Positive and Negative Inference) algorithm, or [START_REF] Heule | Software model synthesis using satisfiability solvers[END_REF] for merge based on graph coloring. From the idea that a non deterministic automaton (NFA) is usually a smaller description of a regular language than its equivalent DFAs, various techniques have been proposed. Among them, algorithms, such as DeLeT e2 [START_REF] Denis | Learning regular languages using rfsas[END_REF] based on Residual Finite State Automata, or algorithm for Unambiguous Automata [START_REF] Coste | Unambiguous automata inference by means of state-merging methods[END_REF]. Other approaches use metaheuristics for computing NFA, such as hill-climbing [START_REF] Tomita | Dynamic construction of finite-state automata from examples using hill-climbing[END_REF] or genetic algorithm [START_REF] Dupont | Regular grammatical inference from positive and negative samples by genetic search: the GIG method[END_REF].

Constraint Satisfaction Problem (CSP [START_REF]Handbook of Constraint Programming[END_REF]) makes it possible to declaratively represent combinatorial problems: the user defines variables together with their domains (i.e., the candidate values) and relations between these variables (i.e., the constraints). This task is called modeling, the result (variables and constraints) is a model, and a model together with some data forms an instance. In our case, the model is a NFA inference model, the data are S and k. For example, an INLP (Integer Non Linear Programming) model for inferring NFA is given in [START_REF] Wieczorek | Grammatical Inference -Algorithms, Routines and Applications[END_REF], in [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF] a SAT (the propositional satisfiability problem [START_REF] Garey | Computers and Intractability, A Guide to the Theory of NP-Completeness[END_REF]) model is given, and in [START_REF] Lardeux | Improved SAT models for NFA learning[END_REF], [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF] several improvements of the SAT model are given.

Whereas some approaches focus on improving the solver, such as specific strategies [START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF], or parallel techniques [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF] for optimizing k, we have an othogonal approach that consists in improving the model and using a standard solver. In [START_REF] Lardeux | Improved SAT models for NFA learning[END_REF], we studied complex data structures to generate smaller instances, and in [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF], we proposed various models, and we use metaheuristics to optimize instance sizes. In this paper, we propose four new models for the inference of NFA based on the optimization of the splitting of words into a prefix and a suffix. The idea is to try to share prefixes (respectively suffixes) among as many words as possible and/or to obtain the longest prefixes (respectively suffixes). Our new S k model surpass our previous models [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF], both in the size of the generated instances and in the solving speed. The new model based on Iterated Local Search is very efficient in terms of instance size. However, the gain in solving time is not always sufficient to compensate for the time lost in instance generation.

We also propose some extra constraints to over-constrain the model, either removing symmetric solutions (in this case, the "deleted" solutions can be recovered by permutation of remaining solutions) or loosing solutions (these solutions cannot be recovered, but as we will see, these overconstrained models can help finding solutions of complex instances). The first extra-constraints consists in enforcing, for each symbol, the first derivation from the initial state q 1 . The second one consists in reducing undeterminism of the first transitions from q 1 . We present some results of experimentation. We use the benchmarks of [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF]. Our new models with symmetry breaking techniques give even better results than the models presented in [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF]. Compared to [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF] which use parallelism, we find interesting results, and for some instances, we were able to find better bounds for some instances for which the optimal size k is not known.

This paper is organized as follows. The next section (Section 2), describes the models for inferring NFAs. We first describe the necessary variables, and then, some previous models (Section 2.1) that will be used to compare our new models presented in Section 2.2. Complementarily to the models, we propose some extra constraints to over constraint the model. The first one (Section 3.1), only remove some symmetric solutions that can be recovered by permutations of nodes. The second one is also a symmetry breaking technique for the final states (Section 3.2). The last one may loose some solutions that cannot be recovered latter (Section 3.3). We then present our experimentation in Section 4. The results are given in Section 5 together with some discussions and comparisons with previous works. We finally conclude in Section 6.

Models

Let Σ = {s 1 , . . . , s n } be an alphabet of n symbols. Consider a training sample S = S + ∪ S -, where S + (respectively S -) is a set of positive words (respectively negative words) from Σ * , and k, an integer. The NFA inference problem is to learn a NFA with k states, that accepts each word of S + , and rejects each word of S -. We say that S + is a set of "positive" words, and S -is a set of "negative" words. This satisfaction problem can be extended to an optimization problem for minimizing k [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF].

A NFA is a 4-tuple A = (Q, Σ, q 1 , F) with: Q = {q 1 , . . . , q k } a set of k states, Σ a finite alphabet, q 1 the initial state, and F the set of final states. λ denotes the empty word, and K is the set of integers {1, . . . , k}.

We will consider the following variables in our models:

• k, an integer, the size of the NFA we want to learn,

• a set of k Boolean variables F = {f 1 , . . . , f k } determining whether state q i is final or not,

• and ∆ = {δ s, # » qiqj |s ∈ Σ and (i, j) ∈ K 2 } a set of n.k 2 Boolean variables defining the existence or not of the transition from state q i to state q j with the symbol s, for each i, j, and s.

The path i 1 , i 2 , . . . , i n+1 for w = w 1 . . . w n exists if and only if d = δ w1, # » qi 1 qi 2 ∧ . . . ∧ δ wn, # » qi n qi n+1 is true. We say that the conjunction d is a c path, and D w, # » qiqj is the set of all c paths for the word w between states q i and q j .

Previous models

For each model, we have to consider λ:

(λ ∈ S + -→ f 1) ∧ (λ ∈ S --→ ¬f 1) (1)
The Direct model (see e.g., [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF], [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF]) to infer a NFA of size k is composed of 3 sets of constraints. D k = (1) ∧ (2) ∧ (3) with:

• For each word w ∈ S + , there is at least a path from q 1 to a final state q j : j∈K d∈Dw, # »

q 1 q j d ∧ f j (2)
• For each w ∈ S -and each state q j , either there is no path from q 1 to q j , or q j is not final:

¬   j∈K d∈Dw, # » q 1 q j d ∧ f j   (3)
After Tseitin transformations [START_REF] Tseitin | On the Complexity of Derivation in Propositional Calculus[END_REF], to convert

D k in CNF, the spacial complexity is in O(|S + |•(|ω + |+1)•k |ω+|)
for the number of clauses, and in

O(|S + | • k• |ω+|)
for the number of variables with ω + (respectively ω -) the longest word of S + (respectively of S -). See [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF] for more details about the Tseitin transformations and complexity of the model.

The Prefix Model is defined as follows. Let P ref (w) be the set of all the non-empty prefixes of the word w and,

P ref (W) = ∪ w∈W P ref (w).
For each w ∈ P ref (S), consider a Boolean variable p w, # » q1qi to determine the existence of a c path for w from state q 1 to q i . The prefix model is defined by

P k = (1) ∧ (4) ∧ (5) ∧ (6) ∧ (7)
with Constraints (4), (5), [START_REF] Coste | Unambiguous automata inference by means of state-merging methods[END_REF], and (7) defined as follows:

• For each prefix w = a with w ∈ P ref (S), and a ∈ Σ, there is a c path of size 1 for w:

i∈K δ a, # » q1qi ↔ p a, # » q1qi (4)
• For each prefix w = va, w ∈ P ref (S), v ∈ P ref (S), and a ∈ Σ:

i∈K (p w, # » q1qi ↔ (j∈K p v, # » q1qj ∧ δ a, # » qj qi)) (5)
• For each word w ∈ S + \ {λ}:

i∈K p w, # » q1qi ∧ f i (6)
• For each word w ∈ S -\ {λ}:

i∈K (¬p w, # » q1qi ∨ ¬f i) (7)
After transformations, P k is converted in CNF, and its spacial complexity is in O(σ • k 2) variables, and

O(σ • k 2)
clauses with σ = Σ w∈S |w|. See [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF] for details.

The Suffix Model, S k , is based on Suf (S), the set of all the non-empty suffixes of all the words in S. The construction starts from every state and terminates in state q 1 . For each w ∈ Suf (S), we add a Boolean variable p w, # » qiqj to determine the existence of a c path for w from q i to q j . S k = (1) ∧ (8) ∧ (9) ∧ (6) ∧ (7) with:

• For each suffix w = a with w ∈ Suf (S), and a ∈ Σ, there is a c path of size 1 for w:

(i,j)∈K 2 δ a, # » qiqj ↔ p a, # » qiqj (8) • For each suffix w = av, w ∈ Suf (S), v ∈ Suf (S)
and a ∈ Σ:

(i,j)∈K 2 (p w, # » qiqj ↔ (k∈K δ a, # » qiq k ∧ p v, # » q k qj)) (9)
Although P k models, and S k models could seem similar, their complexities are very different.

S k models are in O(σ • k 3) variables, and in O(σ • k 3) clauses [1].
The Hybrid Models consists in splitting each word w ∈ S into a prefix p and a suffix s such that w = p.s. We then consider two samples, S p = S + p ∪ S - p with S + p = {p | ∃w ∈ S + , w = p.s} and S - p = {p | ∃w ∈ S -, w = p.s}, and

S s = S + s ∪ S - s with S + s = {s | ∃w ∈ S + , w = p.s} and S - s = {s | ∃w ∈ S -, w = p.s}.
For each prefix of P ref (S p) we generate Constraints (4) and (5), and for each suffix of Suf (S s), Constraints (8) and [START_REF]Handbook of Constraint Programming[END_REF]. For each w = p.s, clauses generated for p must be linked to clauses generated for s as follows:

• if w = p.s ∈ S -: (j,k)∈K 2 (¬p p, # » q1qj ∨ ¬p s, # » qj q k ∨ ¬f k) (10)
• if w = p.s ∈ S + :

(j,k)∈K 2 p p, # » q1qj ∧ p s, # » qj q k ∧ f k (11)
We thus have:

H k = (1) ∧ 4) ∧ (5) ∧ (8) ∧ (9) ∧ (10) ∧ (11)
Obviously, the way we split each word into a prefix and a suffix will determine the size of the instance.

In [START_REF] Lardeux | Improved SAT models for NFA learning[END_REF], we proposed two strategies based on metaheuristics for optimizing models, and consequently for optimizing the split of each word of S. For both of them, the search space corresponds to all the hybrid models, i.e., all the possible split for all words of S. The fitness we used is:

f (S p , S s) = |P ref (S p)| + k • |Suf (S s)|.
The first strategy is based on an Iterated Local Search (ILS) [START_REF] Stützle | Iterated Local Search[END_REF] with the fitness f for optimizing our hybrid model ILS k (rand, f). The search starts with a random split for each word. At each iteration, the best split w = p.s is found for the selected word w: w is selected randomly with a roulette wheel selection based on the weights of words defined by weight w = 75%/|S| + 25% * |w|/(wi∈S |w i |). The number of iterations is given. We do not need to introduce random walks or restarts since our word selection process ensures diversification.

The second hybrid strategy was based on genetic algorithms (GA). A population is made of individuals, each individual being a split for each word of S. Each generation keeps a portion of individuals as parents and creates children by crossing (well-known uniform crossover) the selected parents. For each word, children inherit the prefix and the suffix of one of their parents randomly chosen. The population size is constant during all the search. Each individual w = p.s is applied a mutation process (i.e., a new split of w into p and s) with a probability p mut . The search stops when the maximum number of generations is reached or when no improvement is observed in the population during a given time. The corresponding model is noted GA k (rand, f).

New hybrid models

We now propose 4 new hybrid models. In [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF], we have noticed that ILS k (rand, f) and GA k (rand, f), produce smaller instances, but the time for generating an instance with GA k (rand, f) is too long compared to the gain in solving time. For ILS k (rand, f), generation is much faster, but remain costly. The first two models thus focus on optimizing the splitting of words in a deterministic manner.

The spatial complexity of the S model is quite bad. Thus, the idea of the Best suffix model is to optimize the construction of the suffixes. The Best suffix model consists in ordering the set Suf (S) of suffixes of words of S. For each suffix s of Suf (S), we consider Ω(s), the set of words of S accepting s as a suffix:

Ω(s) = {w ∈ S | s ∈ Suf (w)}
We can now define the order as follows. Consider s 1 and s 2 , two suffixes of Suf (S), then:

s 1 s 2 ⇔ |s 1 | * |Ω(s 1)| ≥ |s 2 | * |Ω(s 2)|
with |.| being both the length of a word and the cardinal of a set. The set of best suffixes, S, is defined as follows: S ⊆ Suf (S) such that • s∈S Ω(s) = S, each word of S has a suffix in S;

• ∀s ∈ Suf (S) \ S, ∀s ∈ S, s s , i.e., suffixes of S are the most important ones regarding the order;

• ∀s ∈ S, (s∈S\{s } Ω(s)) ⊂ S, i.e., if a suffix is removed from S, at least a word of S has no suffix in S.

For each word w ∈ S, we define the best suffix for w as s w ∈ S∩Suf (w), and ∀s ∈ Suf (w), s w s, i.e., the suffix s w we consider for w is the largest suffix possible w.r.t. in S. Hence, S is the set S s of our S hybrid model and S p = {p ∈ P ref (S) | ∃w ∈ S, w = s w .p}. The hybrid model S k is then built with S s and S p has describe above for H k .

The second model is the Best prefix model. This model is built in a similar way as the Best suffix model, starting with a selection of the best prefixes. It consists in first determining which are the best prefixes with respect to the order defined as above for prefixes: consider p 1 and p 2 , two prefixes of P ref (S), then:

p 1 p 2 ⇔ |p 1 | * |α(p 1)| ≥ |p 2 | * |α(p 2)| with α(p) = {w ∈ S | p ∈ P ref (w)}.
Then, similarly as with suffix, the set of best prefixes is built, and consequently, we define S p and S s that will be used in H k to generate the constraints of the best prefix hybrid model P k .

The third model we propose, the ILS k (S k , f) model combines techniques from the Best suffix model and from the ILS model. The main difference with ILS k (rand, f) is the initial configuration. Indeed, we first compute word splitting of the S k model to initialize the ILS algorithm. Note that we do not need to generate the S k model itself, only the splitting is necessary. Hence, we know that the time for generating SAT instances with this model will be long, but we hope to obtain even smaller instances, and thus, we hope to be able to tackle even larger problems.

The last model, the ILS k (P k , f) model, is similar to the previous one, but the initial configuration is based on the word splitting of P k .

Over-constraining

In this section we propose some extra constraints, either to break symmetries, or to over-constrain the models. Note that these extra constraints are compatible with each of the previous models.

Symmetry Breaking for first derivations

A symmetric solution can be restored from another solution by some permutations. In constraint programming, symmetry breaking is a technique which consists in adding extra constraints for removing symmetric solution, and thus reducing the search space. This way, lost solutions can be recovered, and the problem remains satisfiable if it was before.

We propose some symmetry breaking that consist in enforcing the derivations from the state q 1 . Remember that q 1 has a kind of special behavior when λ ∈ S. Consider a word w = s 1 v from S + with s 1 ∈ Σ. Then, the following constraints can be added to remove symmetric NFA:

δ s1, # » q1q1 ∨ δ s1, # » q1q2 (12)
This means that we force to have at least a transition for symbol s 1 to be either from state q 1 to q 1 or from q 1 to q 2 . For the second symbol, s 2 , we can enforce to have a transition labeled with s 2 from q 1 to q 1 , from q 1 to q 2 , or from q 1 to q 3 . The last possibility is required since we already have extra Constraints (12) over q 1 and q 2 . Consider Σ = {a 1 , . . . , a l }, such that Σ ⊆ Σ, and for each symbol a j ∈ Σ there exists a word w = a j v in S + , and for each s ∈ Σ \ Σ , there does not exists a word w = sv in S + .

For

each i ∈ [1..k -1] ∩ [1..l],
we consider the following extra constraints that break symmetries w.r.t. possibilities of derivations from state q 1 :

j∈[1..i+1] δ ai, # » q1qj (13)

Over-constraining final states

We can also remove symmetric solutions by overconstraining final states with the following constraint:

f 1 ∨ f 2 (14)
However, Constraint (14) is not compatible with Constraints [START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF], and in our experiments, we will only consider Constraints (13) which are stronger. Note that in [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF], some extra constraints are added on final states: since they are computing in parallel, for a NFA of size k, they consider 2.k -1 different instances: each instance enforces to have a given number of final states, between 1 and k, including or not State q 1 . It is clear that most of these instances are UNSAT even for a SAT instance. But thanks to parallelism, the gain in time is sensible.

Removing some undeterminism

We now over-constrain instances by removing some undeterminism. To this end, for each symbol, we consider that there is only one derivation from q 1 . It is clear that we can remove complete groups of solutions, and thus, we can transform SAT instances into UNSAT instances. We thus have a semi-decision procedure, that can be helpful to quickly find SAT solutions, and lower upper bounds when the optimal k is not known (open instances). Consider Σ defined as above. For each

i ∈ [1..k -1]∩[1..l],
we consider the following extra constraints:

δ ai, # » q1q1 ∨ δ ai, # » q1qi+1 (15) ¬δ ai, # » q1q1 ∨ ¬δ ai, # » q1qi+1 (16) j∈K\{1,i+1} ¬δ ai, # » q1qj (17
)

Experimentations

Our algorithms are implemented in Python using specific libraries such as Pysat [START_REF] Ignatiev | PySAT: A Python toolkit for prototyping with SAT oracles[END_REF]. The experiments were carried out on a computing cluster with Intel-E5-2695 CPUs, and a limit of 10 GB of memory was fixed. Running times were limited to 10 minutes, including generation of the model and solving time. We used the Glucose [START_REF] Audemard | Predicting learnt clauses quality in modern SAT solvers[END_REF] SAT solver with its default options.

For the stochastic processes (ILS k (rand, f), ILS k (P k , f), and ILS k (S k , f)), 30 runs were realized. The maximum number of iterations is fixed to 10000 but All the characteristics of each benchmark are summarized in Table 1. When no optimal NFA size is known, the name is written in bold. 1. The benchmarks we used are accessible on the GitHub repository https://github.com/tjastrzab/min-nfa For each of the benchmarks, the NFA minimal size mv (or the lower bound for the NFA minimal size when the instance is still open) is given in [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF]. We try to generate and solve CNF instances for k ∈ {mv -1, mv, mv + 1}. Consequently, we obtained 90 instances.

StaMinA ww

|S + | = |S -| |Σ| = 2 |Σ| = 5 |Σ| = 10

Results and Discussions

In this section, we analyze and compare the results we obtained.

Comparative Results

Each of the 90 instances is tested with each of the SAT models presented above, and one of the following options: without symmetry breaking, with symmetry breaking (Extra Constraints (13)), or over-constraining (Extra Constraints (15)-(17)). In total, this leads to 2160 combinations. Some instances, 26, cannot be generated by any of the models in the given time. We discard these 26 instances, and thus propose results for the 64 remaining instances.

We summarize all these results in Table 2 which presents the average or the sum for various indicators. The first column (Model) corresponds to the selected model. The second column (Sym.) indicates the symmetry breaking option. Three values are possible: "no" for no symmetry breaking, "yes" for symmetry breaking with Constraint (13), and "OC" for the Over-Constraints [START_REF] Stützle | Iterated Local Search[END_REF][START_REF] Ignatiev | PySAT: A Python toolkit for prototyping with SAT oracles[END_REF][START_REF] Audemard | Predicting learnt clauses quality in modern SAT solvers[END_REF]. Then, we have in sequence the total number of generated SAT instances in the allocated time (#Gen.), the average number of SAT variables (V ar.) and the average number of clauses (Cl.) in the instance, and the average instance generation time (t M). The middle part of the table corresponds to the solving part with the total number of solved instances (#Sol.), and the average solving time (t S) with Glucose. Finally, the right part is made up of t T and t P which are the average total times, i.e., modeling time + solving time, without and with penalties. For each unsolved instance a penalty of 600 seconds is applied in order to correspond to the effective time which has been consumed. Note also that for column #Sol., lines corresponding to the over-constraint symmetry breaking (OC) indicate 3 values. The first one indicate the number of solved instances, the second one is the number of errors (SAT instances that became UNSAT by adding the over-constraints), and finally, the number of SAT instances that were not found by the other combinations Model/Sym.

Over the 64 instances of our benchmark tests, each model allowed to generate 61 SAT instances in the allowed time, except the D k model which allowed to generate only 15 SAT instances. One of these 15 instances was also too complex to be solved before the time-out. Among the 4 new hybrid models proposed, all improve the number of solved instances compared to the previously published models, except the P k model. This is certainly due to the size of the generated instances. Indeed, P k optimizes the prefix management, but we have shown that the suffix treatment has a higher complexity. On the contrary, models optimizing the treatment of suffixes (S k and ILS k (S k , f)) produce instances with fewer variables.

Model ILS k (rand, f) solves slightly more instances than other models. However, the model that generates SAT instances that are solved the fastest, is the S k model. Moreover, the stochastic aspects of the ILS model requires to perform several executions that are then averaged to obtain the results. The standard deviation is quite high and the solving times usually varies from simple to double. For instance, benchmark st-5-30 with k = 5 generated by ILS k (S k , f) is solved in average in 15.23 seconds but the standard deviation is 12.32. The shortest solving time is 2.40 seconds and the highest solving time is 33.49 seconds. Whereas solving time for instances generated with the S k model is constant, solving time for the ILS k (* , f) models is not homogeneous at all. We note that adding symmetry breaking constraints only slightly increases the number of clauses of the generated instances (the number of variables remains the same, except for models using stochastic search based on ILS). This low number of extra clauses, however, significantly improves solving time of the instances.

Over-constrain instances obtained by removing undeterminism provide better results (#Sol. and t P) but the only exploitable results are those returning SAT. However, given the number of solved instances, it seems relevant and appropriate to consider this approach. For example, in the next section, we use it for decreasing upper bounds of open instances. and ww-10-30 has no solution for k < 4, the smallest k being 4.

For all StaMinA benchmarks with |Σ| = 2 (st-2), we have reduced the upper bounds of the intervals. For st-2-50 we have also increased the lower bound.

Conclusion

In this paper, we have presented four new SAT models for inferring NFA of given size k. We have completed these models with some extra constraints to over-constrain the problem, either just for breaking symmetries, or loosing solutions. The new models allow us to generate smaller instances than previously [START_REF] Lardeux | GA and ILS for optimizing the size of NFA models[END_REF]. Symmetry breaking reduces the search space, and help finding solutions. Over-constraining permits to find solutions to more instances than before. To summarize, the best model without symmetry breaking is the ILS k (rand, f) model, with symmetry breaking, S k , and for tackling more complex instances, S k with over-constraints. Compared to the parallel approach of [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF], we managed to improve some bounds of instances for which the minimal size is not yet known.

Our implementation is able to generate the SAT instances, but also to generate the equivalent INLP (variables in the domain {0, 1}, and non-linear equations and inequations) instances for each model, using PyCSP3 [START_REF] Lecoutre | PYCSP3: modeling combinatorial constrained problems in python[END_REF]. The results we obtained were very bad compared to the SAT instances, and that is why we do not report about them in this article. However, we plan to design hybrid models especially for optimizing INLP constraints (for example, trying to minimize the number of non-linear equations and favoring linear ones) with ILS, or a complete order, and compare them with SAT hybrid models. NFA models present numerous symmetries. We proposed some symmetry breaking techniques in this paper, but we feel that more symmetries can be broken to reduce even more the search space.

Figure 1

 1 Figure 1 shows all possible NFA for instance st-2-10 (|S + | = |S -| = 10 and Σ = {0, 1}). Adding symmetry breaking constraint (13), only one solution, Sub-Figure (c), remains.

Figure 1 .

 1 Figure 1. Instance st-2-10 with Σ = {0, 1} and k = 4. Six NFA respect S and can be inferred, Sub-figures (a) to (f). With symmetry breaking (Constraints (13)), only NFA of Sub-figure (c) is valid.

Figure 2 .

 2 Figure 2. NFA with k = 2 for instance st-5-10.

TABLE 1 .

 1 30 BENCHMARKS USED WITH THEIR CHARACTERISTICS

TABLE 2 .

 2 COMPRESSED RESULTS FOR EXPERIMENTS ON ALL INSTANCES WITH 3 DIFFERENT VALUES AND AND THE PRESENTED MODELS WITH ANDWITHOUT SYMMETRY BREAKING OPTIONS.

	Model	Sym.	#Gen.	Var.	Cl.	t M	#Sol.	t S	t T	t P
		no	15	15654	134 009	2.51	14	0.08	2.25	469.24
	D k	yes	15	15654	134 011	2.52	14	0.22	2.41	469.28
		OC	15	15654	134 018	2.55	14/0/0	0.04	2.26	469.25
		no	61	11813	44 003	7.81	46	58.76	65.82	216.06
	ILS k (rand, f)	yes	61	11827	44 060	7.74	48	58.16	65.41	199.06
		OC	61	11814	44 031	7.74	58/2/1	46.21	53.81	105.01
		no	61	10641	37 616	1.75	42	16.92	18.57	218.43
	P k	yes	61	10641	37 619	1.73	45	27.09	28.74	198.33
		OC	61	10641	37 637	1.72	56/2/1	47.22	48.92	117.80
		no	61	47842	173 800	2.35	37	22.90	24.01	267.00
	P k	yes	61	47842	173 803	2.35	39	42.19	41.91	259.91
		OC	61	47842	173 821	2.33	48/1/2	41.04	42.97	182.22
		no	61	11892	44 307	7.77	45	55.99	62.99	222.41
	ILS k (P k , f)	yes	61	11879	44 262	7.74	44	26.42	33.41	210.47
		OC	61	11832	44 106	7.71	57/2/1	41.07	48.61	108.92
		no	61	67597	243 066	2.89	39	42.60	44.61	261.56
	S k	yes	61	67597	243 069	2.88	40	29.23	31.22	244.52
		OC	61	67597	243 087	2.86	42/2/0	15.38	17.41	217.67
		no	61	9984	37 164	1.62	43	33.38	33.48	219.37
	S k	yes	61	9984	37 167	1.62	46	26.77	28.33	189.11
		OC	61	9984	37 186	1.62	57/3/0	23.15	24.75	87.67
		no	61	9237	34 668	7.68	45	49.82	56.75	218.03
	ILS k (S k , f)	yes	61	9232	34 653	7.66	46	47.61	53.66	207.32
		OC	61	9231	34 668	7.66	57/2/0	20.41	27.89	90.47

Bounds

As shown in the previous section, our new models allowed us to obtain solutions for open instances in a reasonable time. In order to improve the best known values for the 30 benchmarks proposed in [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF], we allowed a running time of 30 minutes to generate and solve instances using the S k model with symmetry breaking and over-constraining. Table 3 summarizes the results we obtained. The first column, |S + | = |S -|, corresponds to the number of positive and negative words of the benchmarks. Then, for each family of benchmarks (i.e., StaMinA with alphabet of size 2 (st-2), and alphabet of size 5 (st-5), and random benchmarks with alphabet of size 10 (ww-10)), we have two columns BK and N B. Columns BK correspond to the best known bounds as reported in [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF]. Columns N B correspond to the new bounds: lower bounds were obtained by the S k model and symmetry breaking [START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF], and upper bounds were obtained by the model S k with either symmetry breaking [START_REF] Jastrzab | A comparison of selected variable ordering methods for NFA induction[END_REF] or over-constraints [START_REF] Stützle | Iterated Local Search[END_REF][START_REF] Ignatiev | PySAT: A Python toolkit for prototyping with SAT oracles[END_REF][START_REF] Audemard | Predicting learnt clauses quality in modern SAT solvers[END_REF]. Results are represented as intervals [x-y] for which UNSAT is found for k = x -1 and SAT for k = y. When two consecutive values of k provide respectively UNSAT and SAT, the optimal solution is found: hence, there is only one value written in the cell, the minimal k for which there exists a NFA for the benchmark. New results are in bold in Table 3. We can see that we succeeded in reducing the range of some open instances. Concerning 3 other instances, we feel that some typos appeared in the table given in [START_REF] Jastrzab | Parallel algorithms for minimal nondeterministic finite automata inference[END_REF]: