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Inverse probability weighting to handle 
attrition in cohort studies: some guidance 
and a call for caution
Marie‑Astrid Metten1, Nathalie Costet2, Luc Multigner2, Jean‑François Viel1 and Guillaume Chauvet3* 

Abstract 

Background: Attrition in cohort studies challenges causal inference. Although inverse probability weighting (IPW) 
has been proposed to handle attrition in association analyses, its relevance has been little studied in this context. We 
aimed to investigate its ability to correct for selection bias in exposure‑outcome estimation by addressing an impor‑
tant methodological issue: the specification of the response model.

Methods: A simulation study compared the IPW method with complete‑case analysis (CCA) for nine response‑
mechanism scenarios (3 missing at random – MAR and 6 missing not at random ‑ MNAR). Eighteen response models 
differing by the type of variables included were assessed.

Results: The IPW method was equivalent to CCA in terms of bias and consistently less efficient in all scenarios, 
regardless of the response model tested. The most effective response model included only the confounding factors of 
the association model.

Conclusion: Our study questions the ability of the IPW method to correct for selection bias in situations of attrition 
leading to missing outcomes. If the method is to be used, we encourage including only the confounding variables of 
the association of interest in the response model.

Keywords: Cohort studies, Attrition, Missing outcome, Selection bias, Inverse probability weighting, Complete‑case 
analysis
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Cohort studies are essential for investigating associations 
between exposure and health outcomes thanks to their 
prospective design. The repeated collection of informa-
tion in successive follow-ups (also called survey waves) 
allows studying the effects of past exposures on health 
outcomes occurring at inclusion or thereafter. However, 
such studies are known to be affected by partial and total 
non-response, which can invalidate the causal infer-
ence that can be drawn from them. Partial non-response 
refers to missing data that occasionally occurs for certain 

variables during a survey wave when some individuals 
fail or refuse to answer some of the questions. Total non-
response (or attrition) occurs when a subset of individu-
als does not participate in one specific survey wave or 
quit the study completely [1]. Only the latter (drop-outs) 
was considered in this study.

Missing data resulting from non-response can be clas-
sified according to their postulated underlying mecha-
nism [2]. In  situations of the missing completely at 
random mechanism (MCAR), the probability of missing 
data does not depend on either the observed or unob-
served values. In  situations of the missing at random 
mechanism (MAR), it depends on the observed data 
but not the unobserved data. Finally, in situations of the 
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missing not at random mechanism (MNAR), it depends 
on the unobserved data.

The simplest and most widely used approach to han-
dle total non-response in cohort studies is complete-case 
analysis (CCA). This method assumes a MCAR mecha-
nism and consists of studying the exposure-outcome 
association in the subset of respondents only. However, 
total non-response is generally considered to result from 
MAR or MNAR mechanisms. Several methodological 
publications have suggested the use of the inverse prob-
ability weighting (IPW) method in situations of the MAR 
mechanism of attrition [3, 4]. It aims to recreate a rep-
resentative sample of the initial cohort by differentially 
weighting the so-called “complete individuals” (i.e. those 
who participate in the survey wave under consideration). 
More precisely, when modeling the association between 
exposure and outcome, respondents are weighted by the 
inverse of their probability to participate (hereinafter 
referred to as the “response probability” or “probabil-
ity of response”). This response probability depends on 
some of the respondent’s characteristics. The use of the 
inverse of this probability implies that a respondent with 
a high probability of response (e.g. an individual with a 
high socio-economic level [5]) is given a comparatively 
lower weight in the analysis. The approach can be sum-
marized as: “the respondents carry the weight of the 
non-respondents”.

The probability of response is unknown and needs to 
be estimated from the data. The first step is therefore to 
build a response model (logistic regression model) to 
obtain weights that will be used in a second step in the 
association model. Because the association model is only 
fitted among respondents or complete individuals, the 
method is also called “weighted complete-case analysis” 
[2]. It is also referred to as “inverse probability of partici-
pation/attrition weighting” (IPPW/IPAW) in the litera-
ture [6–8].

Originally developed for reducing the effects of con-
founding in observational studies (propensity score 
method) [9], the IPW method was extended to correct 
for selection biases in  situations of attrition. Although 
researchers have already adopted the method in associa-
tion studies [10, 11], guidance on its correct use is still 
needed, in particular regarding the specification of the 
response model (i.e. variables to be introduced into the 
response model).

In this article, we will focus on attrition resulting in a 
missing outcome of interest. This situation is commonly 
encountered in mother-child cohorts for example, where 
the effects of prenatal medical conditions or exposures 
on the future health of the children are studied. At the 
time point of interest (6 year old, for example), some 
children do not participate in the follow-up. Depending 

on the attrition mechanism (MAR, MNAR), restricting 
the analysis to the participating children may result in a 
biased estimation of the association between the expo-
sure and the outcome.

Our work aimed at evaluating through simulations the 
ability of the IPW method to correct for a selection bias 
under various missingness mechanisms and specifica-
tions of the response model. Response model specifica-
tions were compared in terms of bias, variance and mean 
square error of the association estimates between the 
exposure and the outcome.

In all scenarios tested, we assumed that the exposure 
variable and the other covariates were fully observed at 
preceding waves or at baseline.

Which variables should be introduced 
into the response model?
Relatively few authors have addressed the question of 
which variables should be introduced in the response 
model from which the weighting is derived. In 2004, 
Hernan et al. recommended including the exposure vari-
able and all variables that independently predict both 
response and outcome [3]. In 2013, Seaman and White 
advised not including variables that are exclusively 
related to the response without being related to the out-
come and exposure variables. They suggested adding 
confounding variables (i.e. associated with both exposure 
and outcome) and prognostic variables (i.e. exclusively 
associated with the outcome) of the association studied 
[4]. Seaman and White’s recommendations are consist-
ent with simulation studies performed in the propensity 
score literature [12, 13]. In this context, including varia-
bles that are related to the exposure but not the outcome 
is discouraged. Variables unrelated to the exposure but 
related to the outcome should instead be included. The 
literature on the IPEW method considers only two vari-
ables: the exposure and the outcome, whereas the IPPW 
method involves the response as a third variable. Thus, 
there is still uncertainty as to whether the inclusion of 
confounding and prognostic variables in the response 
model depends on whether or not they are associated 
with the response. Furthermore, if the exposure vari-
able X is itself associated with the response, should it be 
included in the response model?

A quick glance at the applied literature shows that 
researchers usually build the response and association 
models independently. They often fit a logistic regression 
model by including the presumed predictors of response, 
whether or not they are related to exposure or outcome 
[14, 15]. Their approach is thus primarily to fit a model 
that perfectly predicts the response and not to optimize 
the response model in relation to the association model.
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None of the proposed strategies in the literature has 
been tested through simulations and they do not appear 
to be applied by researchers. Therefore, we propose here 
to provide insight on this issue by studying the impact of 
the type of variables included in the response model on 
the bias and variance of the exposure regression coeffi-
cient in the association model.

Simulation study
We conducted a Monte-Carlo simulation study under 
several MAR and MNAR scenarios. We aimed to evalu-
ate i) the relative performance of the IPPW method 
relative to CCA and ii) how the specification of the 
response model in the IPPW method affects the bias of 
the exposure regression coefficient β̂ , its variance and 
mean square error, and the coverage rate of confidence 
intervals.

The SAS code to implement the simulation study is 
available in Additional file 1: e-Appendix 1.

We focused on the case of a linear regression model in 
which a continuous outcome is explained by continuous 
exposure and covariates.

Data‑generating process
We first created a sample of size n = 1,000, contain-
ing seven covariates z1, …, z7 generated independently 
according to standard normal distributions. We then 
generated an exposure variable according to the follow-
ing model:

where ϵi is generated according to a standard normal dis-
tribution. In the exposure model (1), the coefficients were 
chosen as α1 = α2 = α5 = α6 = 0.218, so that the correla-
tion between xi and each of the covariates zi was approxi-
mately 0.2. We generated an outcome variable according 
to the following model:

where ϵ′i is generated according to a standard normal dis-
tribution. In the outcome model (2), the coefficients were 
chosen as β =0.5, β1 = β5 = 0.170, and β3 = β7 = 0.230, 
such that the correlation between yi and xi was approxi-
mately 0.3,and the correlation between yi and any of the 
covariates zi was approximately 0.2. Finally, we generated 
response probabilities according to the following logistic 
model:

We used the values γy = 0.0, 0.2 or 0.5 and γx = 0.0, 0.2 
or 0.5. The case in which γy =0.0 corresponds to a MAR 
situation (i.e. the response probability does not depend 

(1)xi = 1+ α1 z1i + α2 z2i + α5 z5i + α6z6i + ǫi,

(2)
yi = 1+ βxi + β1 z1i + β3 z3i + β5 z5i + β7 z7i + ǫ′i ,

(3)logit
(

pi
)

= �0 + �y yi + �x xi + �1 z1i + �2 z2i + �3 z3i + �4 z4i ,

on yi). The cases in which γy =0.2 and 0.5 correspond to 
MNAR situations (i.e. the response probability depends 
on yi). In the response model (3), the coefficients γ1, γ2, 
γ3, and γ4 were chosen to be equal to 0.1. The coefficient 
γ0 was chosen such that the average response rate was 
approximately 60% for all cases. In the sample, the indi-
viduals responded independently with the probabilities 
pi. The data-generation model is presented in Fig. 1 and 
the nine response mechanism scenarios are summarized 
in Table 1.

Simulation parameters and performance criteria
We compared the IPPW method to CCA for a parsimoni-
ous association model, i.e. including only the confound-
ing variables  Z1 and  Z5, which corresponds to standard 
epidemiological practice: yi = 1+ xi + z1i + z5i + ǫ′i.

Several response models were tested (see Table  2) to 
determine the impact of the type of variables included 
on the β̂ regression coefficient of the exposure variable 
and its variance in the association model. Briefly, we first 
evaluated the “well-specified” response model, i.e. the 
one that included all the variables really related to the 
response (X,  Z1,  Z2,  Z3,  Z4), as simulated (Eq. 1). We also 
initially included the exposure variable X, although this 
variable was not associated with the response in certain 
tested scenarios (MAR 1, MNAR 1, MNAR 4). We then 
tested a model including all available variables. Then, we 
assessed the proposals by Hernan et  al. (2004) and by 
Seaman and White (2013), described above [3, 4]. Finally, 
we evaluated parsimonious strategies: including only 
the confounding variable associated with the response, 
including only the confounding variable not associated 
with the response, including both, including both with 
the addition of a prognostic variable not associated with 
the response, and finally, including both confounding and 
prognostic variables not associated with the response. All 
these response models were then evaluated without the 
exposure variable X.

The generation of the sample and variables was 
repeated B = 10,000 times. For each sample, we com-
puted the β̂ regression coefficient and its variance accord-
ing to the 18 possible response models. The simulations 
were conducted using SAS version 9.4.

The results were assessed according to the following 
criteria:

• The Monte Carlo bias:

• The Monte Carlo variance:

BMC

(

β̂x

)

=
1

10, 000

10,000
∑

b=1

(

β̂b
x − β

)
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Fig. 1 Scheme of the data‑generation model for the simulation experiments. Seven covariates, differing in their association with the variables of 
interest (exposure and outcome variables) and the response variable, were generated. The strength of the associations (dashed arrows) between 
the variables of interest and the response variable (γx and γy) varied according to the scenarios described in Table 1

Table 1 Response mechanism scenarios (data generation)

γk:regression coefficients of the generated response models (logit(pi) = γ0 + γy yi + γx xi + γ1 z1i + γ2 z2i + γ3 z3i + γ4 z4i)

Scenario γx γy γ 1 , γ 2 , γ 3 , γ 4
Description

MAR 1 0.0 0.0 0.1 Response depending only on covariates

MAR 2 0.2 0.0 0.1 Response depending on covariates and exposure

MAR 3 0.5 0.0 0.1 Response depending on covariates and exposure

MNAR 1 0.0 0.2 0.1 Response depending on outcome and covariates

MNAR 2 0.2 0.2 0.1 Response depending on outcome, exposure, and covariates

MNAR 3 0.5 0.2 0.1 Response depending on outcome, exposure, and covariates

MNAR 4 0.0 0.5 0.1 Response depending on outcome and covariates

MNAR 5 0.2 0.5 0.1 Response depending on outcome, exposure, and covariates

MNAR 6 0.5 0.5 0.1 Response depending on outcome, exposure, and covariates
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• The mean square error:

• The relative root mean square error:

The Monte Carlo variance is the variance of the esti-
mates over 10,000 replications. Therefore, it accounts for 
the entire variability of the estimators, including the fact 
that the weights are estimated. We have also computed 
the coverage rates for the normality-based confidence 
intervals for β̂x , with nominal rates of 2.5% in each tail.

Results of the simulation study
The simulation results are reported in Tables 3, 4 and 5 
for the Monte Carlo bias, variance, mean square error 
and relative root mean square error, and in Table  6 for 
the coverage rates.

VMC

(

𝛽x

)

=

1

10,000 − 1

10,000
∑

b=1

(

𝛽
b
x
− 𝛽x

)2

with 𝛽x =
1

10,000

10,000
∑

b=1

𝛽
b
x
.

MSEMC

(

β̂x

)

=
1

10, 000− 1

10,000
∑

b=1

(

β̂b
x − β

)2
.

RRMSEMC

(

�̂x

)

= ��� ×

√

MSEMC

(

�̂x

)

�
.

Bias in the β̂ regression coefficient
We observed no bias with either CCA or the IPPW 
method for the three MAR scenarios and MNAR scenario 
1 (γx = 0.0, γy = 0.2). A bias occurred with both meth-
ods for the five other MNAR scenarios, with a greater 
amplitude for MNAR scenarios 5 (γx = 0.2, γy = 0.5) and 
6 (γx = 0.5, γy = 0.5). The bias was globally equivalent 
between CCA and the IPPW method for these five sce-
narios. Within the IPPW method, all response models 
tested showed the same bias pattern across all MAR and 
MNAR scenarios. For MNAR scenarios 1 to 3, the abso-
lute bias increases as γx increases. Similarly, the absolute 
bias increases as γx increases for MNAR scenarios 4 to 6.

Variance of the β̂ regression coefficient
The IPPW method was less efficient than CCA for all 
scenarios. We observed an increase in variance with 
increasing correlation between the exposure variable X 
and the response (illustrated by Figs. 2 and 3). The loss 
of efficiency of the IPPW method was thus particularly 
pronounced in MAR scenario 3 and MNAR scenarios 3 
and 6 (all three characterized by γx = 0.5).

Table 2 Response models tested

a X was not associated with the response in scenarios MAR 1, MNAR 1, or MNAR 4

Response 
model

Set of variables Description

1 X,  Z1,  Z2,  Z3,  Z4 All variables associated with the  responsea

2 X,  Z1,  Z2,  Z3,  Z4,  Z5,  Z6,  Z7 The exposure variable X and all covariates

3 X,  Z1,  Z3 The exposure variable X and variables associated with both response and outcome (strategy proposed by 
Hernan et al. [3])

4 X,  Z1,  Z2,  Z3,  Z5,  Z7 All variables associated with the response*, except  Z4 only associated with the response; Adding  Z5 a con‑
founding variable  (Z5) and a prognostic variable  (Z7), neither associated with the response (strategy proposed 
by Seaman and White [4])

5 X,  Z1 The exposure variable X and the confounding variable associated with the response  (Z1)

6 X,  Z5 The exposure variable X and the confounding variable not associated with the response  (Z5)

7 X,  Z1,  Z5 The exposure variable X and both confounding variables, that associated with the response  (Z1) the other not 
 (Z5)

8 X,  Z1,  Z5,  Z7 The exposure variable X, both confounding variables  (Z1,  Z5) and a prognostic variable not associated with the 
response  (Z7)

9 X,  Z5,  Z7 The exposure variable X and a confounding variable and prognostic variable, neither associated with the 
response  (Z5,  Z7)

10 Z1,  Z2,  Z3,  Z4 Previous response models without the exposure variable X

11 Z1,  Z2,  Z3,  Z4,  Z5,  Z6,  Z7

12 Z1,  Z3

13 Z1,  Z2,  Z3,  Z5,  Z7

14 Z1

15 Z5

16 Z1,  Z5

17 Z1,  Z5,  Z7

18 Z5,  Z7
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The response models that enabled a reduction in the 
variance were those in which the exposure variable 
X was removed (see Figs.  2 and 3). This was particu-
larly observed in scenarios in which the exposure vari-
able X was associated with the response, but it was also 
observed in MAR scenario 1 and MNAR scenarios 1 
and 4 (all three characterized by γx = 0.0). Among the 
response models without the exposure variable X, the 
response model that further reduced the variance was 
that which included only the variable  Z5 (confounding 
variable not associated with the response). Neverthe-
less, response models including the variables  Z5,  Z7 (a 
confounding variable and a prognostic variable, neither 
associated with the response), and only  Z1 (confounding 
variable associated with the response) also showed good 
performance in terms of precision. Overall, the gain in 
precision obtained with all these response models did 
not enable us to reach the level of precision obtained 
using CCA.

Mean square error of the β̂ regression coefficient
For the MAR scenarios, all the tested estimators are 
unbiased and there is therefore no difference between 
the variance and the mean square error (see Table 3). For 

MNAR scenarios 1 to 3, the mean square error increases 
with γx, i.e. when the correlation between the exposure 
variable and the response increases. This also holds true 
for MNAR scenarios 4 to 6.

Coverage rates
The coverage rates are well respected for all the MAR 
scenarios and for MNAR scenario 1. For MNAR sce-
narios 1 to 3, the coverage decreases as the correla-
tion between the exposure variable and the response 
increases. This also holds true for MNAR scenarios 4 to 
6. The coverage rates are poorly respected for MNAR 
scenarios 5 and 6.

Illustrative example
As an example, we analyzed the association between pre-
pregnancy maternal BMI with the child’s BMI at age 7 
in TIMOUN, a prospective mother-child cohort study 
conducted in the Guadeloupe archipelago (French West 
Indies) [16].

Study population and data collection
Between November 2004 and December 2007, 1068 
pregnant women were enrolled in TIMOUN by 

Table 6 Simulation study results: coverage rate of the normality‑based confidence interval for the β̂ regression coefficient for CCA and 
the IPPW method (18 response models), for nine response mechanism scenarios

Scenarioa γx γy CCA IPPW method

Response models

(X),  Z1,  Z2,  Z3,  Z4 (X),  Z1,  Z2,  Z3, 
 Z4,  Z5,  Z6,  Z7

(X),  Z1,  Z3 (X),  Z1,  Z2, 
 Z3,  Z5,  Z7

(X),  Z1 (X),  Z5 (X),  Z1,  Z5 (X),  Z1,  Z5,  Z7 (X),  Z5,  Z7

MAR 1 0.0 0.0 94.9 Xb 95.1 95.0 94.9 95.1 95.0 95.0 95.0 95.0 95.0

– 95.1 95.0 94.9 95.0 94.9 95.0 95.0 94.9 95.0

MAR 2 0.2 0.0 95.1 Xb 95.1 95.1 95.1 95.0 95.2 95.2 95.1 95.1 95.2

– 95.0 95.0 95.0 95.0 95.0 95.2 95.0 95.0 95.1

MAR 3 0.5 0.0 94.9 Xb 95.0 94.9 95.0 95.0 94.8 94.9 94.8 94.9 94.9

– 94.8 94.9 94.8 94.9 94.9 94.9 94.9 94.9 95.0

MNAR 1 0.0 0.2 95.0 Xb 95.2 95.2 95.1 95.1 95.0 95.0 95.0 95.0 95.1

– 95.2 95.2 95.1 95.1 94.9 95.0 95.0 95.0 95.0

MNAR 2 0.2 0.2 93.8 Xb 94.1 94.3 94.2 94.3 93.8 93.8 93.7 94.0 93.9

– 93.8 94.0 93.9 93.8 93.8 93.8 93.8 93.9 93.8

MNAR 3 0.5 0.2 89.9 Xb 91.5 91.9 91.5 92.0 90.2 90.3 90.1 90.6 90.8

– 89.9 90.0 89.8 90.0 89.7 90.0 89.6 89.6 89.9

MNAR 4 0.0 0.5 93.2 Xb 93.6 93.6 93.7 93.7 93.3 93.3 93.3 93.3 93.4

– 93.4 93.3 93.3 93.3 93.2 93.1 93.2 93.2 93.2

MNAR 5 0.2 0.5 84.3 Xb 86.2 87.0 86.2 87.0 84.4 84.5 84.4 85.4 85.5

– 84.3 84.6 84.1 84.3 84.3 84.3 84.2 84.2 84.3

MNAR 6 0.5 0.5 63.9 Xb 71.2 73.4 71.2 73.5 66.5 66.8 66.5 69.0 69.4

– 64.2 64.7 63.9 64.3 63.6 63.6 63.7 63.5 63.4
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Fig. 2 Monte‑Carlo variance obtained with CCA and the IPPW method (response models 1 and 10, see Table 2) for the nine response mechanism 
scenarios. The variance increased as the correlation between the exposure variable and the response variable increased for both methods. The 
variance was consistently higher with the IPPW method than with CCA in all scenarios. With the IPPW method, variance inflation was particularly 
observed when the exposure variable X was put into the response model

Fig. 3 Monte‑Carlo variance obtained with CCA and the IPPW method (response models 6 and 15, see Table 2) for the nine response mechanism 
scenarios. The variance increased as the correlation between the exposure variable and the response variable increased for both methods. The 
variance was consistently higher with the IPPW method than with CCA in all scenarios. With the IPPW method, variance inflation was particularly 
observed when the exposure variable X was put in the response model. On the other hand, removal of variable X (covariate  Z5 only) resulted in the 
variance obtained with the IPPW method being very close to that obtained by CCA 
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obstetricians during their second- or third-trimester 
prenatal visit at public hospitals or at a local dis-
pensary. At inclusion, women were interviewed by 
trained midwives to assess their medical history, 
socioeconomic conditions, and lifestyle. At birth, 
information concerning maternal diseases during 
pregnancy, health status of the newborn, and details 
of the delivery was also collected [17]. In total, 1033 
single live births were registered. Several follow-
ups were organized within a selected subsample of 
the children at 3, 7, and 18 months of age [18, 19]. 
When the children were 7 years of age, all the moth-
ers initially included were invited to participate in 
a new follow-up which consisted of an interview of 
the mothers and a medical examination of the chil-
dren. Among the 1033 mother-child couples initially 
included, 592 participated in this second wave, rep-
resenting 57% of the initial sample. Weight was not 
measured for two children examined at age 7, result-
ing in a final population of 590 for the association 
studied (see detailed flow-chart in Additional file  1: 
e-Appendix 2).

Outcome and exposure
The exposure of interest was the pre-pregnancy maternal 
BMI (kg/m2). It was calculated from the mothers’ self-
reported weight and height before pregnancy at inclu-
sion in the cohort. The outcome of interest was the child’s 
BMI at 7 years. It was calculated from measurements per-
formed during a medical examination at 7 years.

Covariates
The covariates considered in the analysis were mater-
nal age at birth (continuous), maternal educational level 
(< 5 years, 5–12 years, > 12 years), maternal place of birth 
(French West Indies, other Caribbean island, Europe), 
non-gestational maternal diabetes (yes, no), enrollment 
site (university hospital, local hospital, antenatal care 
dispensary), maternal alcohol consumption during preg-
nancy (yes, no), maternal smoking during pregnancy 
(yes, no), sex of the child (boy, girl).

The proportion of missing data within these covari-
ates did not exceed 3%, except for maternal alcohol con-
sumption during pregnancy (5.6%). For the variables with 
missing values, a single imputation by the modal value 
was previously performed.

The directed acyclic graph (DAG) on which we based 
our analyses is presented in Fig. 4. All arrows were placed 
according to a priori knowledge. In our study, the DAG 
approach did not identify all the types of covariates Z 
presented in the simulation study: no variables of type 
 Z3,  Z5, or  Z6 were present in our example. In this didactic 
example, we assume a situation equivalent to the MAR 
1 scenario in the simulation study (i.e. the response at 
7 years depends neither on the exposure nor the out-
come, but only on the covariates).

A linear regression model was fitted with an a priori 
adjustment for maternal education and maternal place of 
birth (confounding variables). Both CCA and the IPPW 
method were applied, the latter using several response 
models.

Fig. 4 Directed acyclic graph (DAG) of the known or assumed associations between variables of the illustrative example. For the sake of simplicity 
and clarity, the arrows representing the associations between the covariates are not drawn. Not all types of variables considered in the simulation 
study were suitable for this illustrated example. The covariates ‘maternal educational level’ and ‘maternal place of birth’ were considered to be 
confounding factors in the relationship between pre‑pregnancy maternal BMI and child BMI at age 7. The association models were therefore 
adjusted for these covariates
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The analyses were performed using R 3.3.2 (R Foun-
dation for Statistical Computing, Vienna, Austria). The 
standard errors were computed taking into account 
the weight estimation phase, according to the method 
described by Metten et al. [20].

The R code to implement the CCA and IPPW analyses 
and a training dataset are available in Additional file  1: 
e-Appendix 3.

Results
The β coefficients related to the exposure of interest 
were very similar between CCA and the IPPW method 
(Table  7). Within the IPPW results, the most effective 
response model strategy was the one including only  Z1 
variables (maternal educational level and maternal place 
of birth).

Discussion
Attrition is a major methodological issue in cohort stud-
ies. It challenges the validity of association analyses 
because its occurrence is generally not completely at ran-
dom. Several authors have proposed the IPPW method 
to correct for potential selection biases [3, 4]. However, 
little evaluation of the method has been performed and 
there is little guidance for researchers who wish to apply 
it, in particular for the specification of the response 
model.

Our simulation study showed no superiority of the 
IPPW method over CCA in terms of bias, and it even 
led to a loss of efficiency. Both were similarly unbiased in 
the MAR scenarios and similarly biased in most MNAR 
scenarios. For the MNAR scenarios, the absolute bias 
increased as the correlation between the exposure and 

the response increased. As a result, the mean square 
error is high for these scenarios when γx = 0.5. In addi-
tion, because the bias is negative, the confidence inter-
vals are shifted to the left and the nominal error rates are 
poorly respected.

These results are consistent with those observed in a 
study comparing several methods of handling attrition in 
a simulated cohort of 300 subjects [21]. In this study, the 
authors concluded that CCA produces results as valid as 
those obtained with the other compared methods, which 
included the IPPW method. It is worth noting that the 
IPPW method consists in reweighting the study popu-
lation with complete data, meaning that both CCA and 
IPPW methods are based on the same sub-population. 
Therefore, a difference in efficiency cannot be attributed 
to a varying sample size. One explanation for the loss of 
efficiency observed with the IPPW method lies in the fact 
that adding covariates in the response model tends to 
increase the variability of estimated weights.

We chose to solely compare the IPPW method to CCA. 
However, there are also other approaches, including 
imputation methods, which consist of replacing missing 
values with plausible ones. Multiple imputation (MI) is an 
advanced imputation method that has steadily improved 
and gained popularity in recent years [22, 23]. It consists 
of imputing the dataset several times by using adapted 
models that include the collected variables. However, 
imputation methods are mainly used for missing covari-
ates in  situations of partial non-response. Seaman and 
White emphasized that it may be potentially dangerous 
to use MI in situations of total non-response [4]. The risk 
of mis-specifying the imputation model would be high 
because it requires the imputation of all missing variables 
of a given survey wave, without auxiliary information at 
the time of the survey wave. The results of Lewin et  al. 
also showed that MI was no better than CCA in  situa-
tions of attrition that lead to a missing outcome [24]. This 
is also consistent with the findings of Kristman et al. [21].

Our study aimed also to assess the impact of the 
choice of the variables included in the response model 
on the bias of the exposure regression coefficient and 
its variance. The various response models tested did 
not change the bias patterns, which is consistent with 
what has been observed in the literature on the propen-
sity score method. Indeed, Brookhart et al. showed that 
the issue of the choice of variables resided essentially 
in the variance, not in the bias [12]. The strategy of not 
including variables associated with the exposure in the 
propensity score, but rather confounding and prognos-
tic variables, improved the precision of the estimates 
without increasing the bias.

In our study, we show that it is preferable not to 
include the exposure variable in the response model. 

Table 7 Adjusted association between pre‑pregnancy maternal 
BMI and child BMI at age 7 (CCA and IPPW method)

Z1: maternal educational level and maternal place of birth

Z2: maternal tobacco smoking during pregnancy, maternal age at birth, and 
non-gestational maternal diabetes

Z4: enrollment site and maternal alcohol consumption during pregnancy

Z7: sex of the child

Abbreviations: CCA  Complete case analysis, IPPW Inverse probability of 
participation weighting, β Beta coefficient (regression estimate), SE Standard 
error
a Adjustment for maternal educational level and maternal place of birth

β SE

CCA (N = 590)a 0.142 0.0197

IPPW method (N = 590)a

 Response models

   Z1,  Z2,  Z4 0.137 0.0229

   Z1,  Z2,  Z4,  Z7 0.138 0.0231

   Z1,  Z2,  Z7 0.140 0.0234

   Z1 0.140 0.0224
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Otherwise variance inflation would be observed, which 
is not in line with the proposal of Hernan et  al. [3]. 
Paradoxically, this phenomenon was particularly pro-
nounced in scenarios in which the exposure variable 
was associated with the response. This can possibly be 
explained by over-fitting because the exposure variable 
is present in the association model.

Within response models without the exposure vari-
able, the minimalist strategy, consisting of includ-
ing only the confounding variable unrelated to the 
response, resulted in the lowest estimated variance. 
Close response models (in order of best precision: 
inclusion of both confounding and prognostic variables 
unrelated to the response; inclusion of the confound-
ing variable related to the response) also performed 
well in terms of precision. Thus, parsimonious strate-
gies using the same variables as the association model 
(except the exposure variable) were the most effective. 
This was also observed in our illustrated example. The 
strategy to optimize the response model when using the 
IPW method to limit a selection bias (IPPW) is thus the 
same as that recommended in  situations in which the 
IPW method is used to limit a confounding bias (pro-
pensity scores).

The strategy for constructing the response model 
requires clear identification of the role played by the vari-
ables. This can be based on a structural approach using 
DAGs, as we did in our example in Section 5 [3]. DAGs 
are causal analysis tools originally designed to assist in 
the selection of variables in an association model [25]. 
They make it possible to control for a confusion bias and 
avoid over-adjustment in the association model. Within 
the framework of the propensity score method, Austin 
and Stuart recommended using them to identify sets 
of variables to be included in the propensity score [26]. 
Similarly, it can be useful to guide the variable selection 
in the response model. Indeed, it allows researchers to 
better visualize the relationships between all the variables 
involved in the association of interest (exposure, out-
come, response, covariates) and thus enables optimiza-
tion of the specification of the response and association 
models.

DAGs are based on a priori knowledge and thus do 
not protect against misidentification of the role played 
by the variables. In surveys, rather than weighting indi-
viduals by their individual probability of response, the 
sample is often partitioned into response homogene-
ity groups (RHGs), i.e. groups that are homogeneous 
in terms of response probability. The parameters of 
interest are estimated in each group and then pooled 
across the groups to obtain an overall parameter. This 
strategy, while improving the precision of the esti-
mates, protects against possible misspecification of the 

response model. The RHG method is quite similar to 
what is referred to as stratification in the context of the 
propensity score used to reduce a confounding bias. In 
the context of attrition, Seaman and White proposed a 
stratified IPPW method, but the stratification was not 
based on response probability but rather response pat-
terns to survey waves [4]. Once the strata were defined, 
a response model was fitted independently in each stra-
tum. We are not aware of any use of stratification on 
the probability of response in association studies based 
on cohort data, but this may be a new application of an 
existing method in other contexts (surveys, and propen-
sity scores).

Strengths
The first strength of our study is that we tested through 
simulations nine response mechanism scenarios, cor-
responding to three degrees of correlation between the 
response variable and our interest variables (exposure, 
outcome). The parameters chosen were consistent with 
those observed in the TIMOUN cohort to represent a 
realistic setting. In addition, we evaluated the impact 
of several response models on the estimated exposure 
effect. This has not been previously performed in the lit-
erature when the IPW method has been used to reduce a 
selection bias.

Limitations
This study also had limitations. First, our simulation 
framework did not consider binary outcomes, although 
this is a common situation in epidemiology. However, 
recent literature indicates that CCA is potentially much 
less prone to give biased estimates of the exposure coef-
ficient in a logistic regression [27], making the linear 
regression framework more challenging for evaluating 
the IPPW method. Second, in our simulations the level 
of attrition was kept constant, at a quite high but real-
istic level (40%) for cohort studies. The influence of the 
attrition rate is however well known, with the expected 
conclusion that bias and variance increase with the per-
centage of non-respondents [21]. Moreover, the attrition 
level we chose was realistic for cohort studies and thus 
quite high (40%). Third, we did not vary the degree of 
correlation between the covariates Z and the response or 
our variables of interest (exposure, outcome). However, 
Lewin et al. showed that a strong correlation between the 
outcome and a variable of type  Z3 (i.e. associated with 
the outcome and response) could increase the magni-
tude of the bias [24]. Finally, our study only considered 
attrition leading to missing outcomes and fully observed 
exposure and covariates. However, these variables may 
also be affected by partial non-response in everyday 
practice. Seaman proposed a mixed approach to address 
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this problem, combining MI and the IPPW method [28]. 
Although it has already been used by several epidemio-
logical researchers [29–31], such an approach should 
be further explored, especially for the evaluation of its 
superiority over a method combining IPPW and single 
imputation.

Finally, we did not address the consequence of using 
estimated weights (inverse response probability) in the 
association models. The usual statistical packages and 
procedures estimate the standard error of the effect of 
exposure as if weights are a priori known, ignoring the 
extra-variability due to their estimation. Consequently, 
the standard error is biased and may mislead the con-
clusions about the significance of the effect. We pro-
posed an exact estimation of the variance (linearized 
variance) that should be used when IPW is imple-
mented (as we did in our illustrative example). The 
details of the calculations of this variance are available 
in Metten et al. [20].

Conclusion
Our study suggests that using IPPW to handle attrition 
in cohort studies does not reduce bias and may result in 
a loss of efficiency. These results therefore raise questions 
about the contribution of the IPW method to correcting 
possible selection bias that occurs in  situations of attri-
tion that lead to a missing outcome in association analy-
ses. If the method is to be used, we encourage use of only 
the confounding variables of the association of interest in 
the response model.
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