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Let X ⊂ R n be a closed semi-algebraic set, F : R n → R be a C 2 semi-algebraic function and f = F |X : X → R n be the restriction of F to X. We define the global index of a critical value c i of f and prove an index formula for χ(X) that generalizes a result previously proved by the authors for the case of isolated critical points. We define also new indices at infinity and prove an alternative index formula for χ(X).

Introduction

Let f : (R n , 0) → (R, 0) be an analytic function germ with an isolated critical point at 0. The Khimshiashvili formula (see [START_REF] Khimshiashvili | On the local degree of a smooth map[END_REF]) states that χ(f -1 (δ) ∩ B ) = 1 -sign(-δ) n deg 0 ∇f, where 0 < |δ| 1, B is the closed ball of radius centered at 0, ∇f is the gradient of f and deg 0 ∇f is the topological degree of the mapping ∇f |∇f | : S → S n-1 .

As a corollary of the Khimshiashvili formula, by a result of Arnol'd [START_REF] Arnol | 'd, Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed Hodge structures[END_REF] and Wall [START_REF] Wall | Topological invariant of the Milnor number mod 2[END_REF] we have that χ({f ≤ 0} ∩ S ) = 1 -deg 0 ∇f, χ({f ≥ 0} ∩ S ) = 1 + (-1) n-1 deg 0 ∇f, and χ({f = 0} ∩ S ) = 2 -2 deg 0 ∇f, if n is even.

Szafraniec [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF] generalized the results of Arnol'd and Wall to the case of a function germ f with non-isolated singularities and in [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF] he improved this result for a weighted homogeneous polynomial f : R n → R.

In [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] Lemma 2.5, the first named author proves a new relation between the topology of the positive (resp. negative) real Milnor fibre of an analytic function germ f : (R n , 0) → (R, 0) and the topology of the link of the set {f ≤ 0} (resp. {f ≥ 0}). Using Szafraniec's results, he deduces a generalization of the Khimshiashvili formula for non-isolated singularities. Namely he proves that if 0 < δ , then

χ(f -1 (-δ) ∩ B ) = 1 -(-1) n deg 0 ∇g -, and 
χ(f -1 (δ) ∩ B ) = 1 -(-1) n deg 0 ∇g + , with g -= -f -ω d , g + = f -ω d , ω(x) = x 2 1 + • • • + x 2
n and d is an integer big enough.

Sekalski in [START_REF] Sekalski | The degree at infinity of the gradient of a polynomial in two real variables[END_REF] gives a global counterpart of Khimshiasvili's formula for a polynomial function f : R 2 → R with a finite number of critical points. He considers the set Λ f = {λ 1 , . . . , λ k } of critical values of f at infinity, where λ 1 < λ 2 < • • • < λ k , and its complement R \ Λ f = ∪ k i=0 ]λ i , λ i+1 [ where λ 0 = -∞ and λ k+1 = +∞. Denoting by r ∞ (g) the number of real branches at infinity of a curve {g = 0} in R 2 , he proves that

deg ∞ ∇f = 1 + k i=1 r ∞ (f -λ i ) - k i=0 r ∞ (f -λ + i ),
where for i = 0, . . . , k, λ + i is an element of ]λ i , λ i+1 [ and deg ∞ ∇f is the topological degree of the mapping ∇f ∇f : S R → S n-1 , R 1. Gwoździewicz in [START_REF] Gwoździewicz | The index at infinity of a polynomial in two variables[END_REF] gives a topological proof of Sekalski's result using Euler integration. He proves that

deg ∞ ∇f = 1 + R r ∞ (f -t)dχ c (t),
where χ c denotes the Euler characteristic with compact support that we will define later.

The first named author generalizes Sekalski result in [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF] by considering a closed semi-algebraic set X ⊂ R n and a C 2 semi-algebraic function f : R n → R such that f |X has a finite number of critical points. In [START_REF] Dutertre | Topological formulas for closed semi-algebraic sets by Euler integration[END_REF] the authors recover the first named author's results using Euler integration, which clearly simplifies the proofs.

Finally, in [START_REF] Dutertre | Do Espirito Santo, Fibration structures and formulae for the Euler characteristics of Milnor fibers[END_REF], Section 3, Araujo, Chen, Andrade and the first named author gave a generalization of the results of [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF] when X = R n and f is a semi-tame function with non-isolated critical points, by adapting to the global case the method developed by Szafraniec in [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF].

The aim of this paper is to extend these results to the general case, i.e., without any assumption on the set of critical points of the function. We work in the following setting:

X ⊂ R n is a closed semi-algebraic set, F : R n → R is a C 2 semi-algebraic function and f = F |X : X → R n is the restriction of F to X.
In Section 3, we define the global index of a critical value

c i of f , ind g (f, X, f -1 (c i )) = χ(f -1 (c i )) -χ(f -1 (c i -α) ∩ B Rc i ),
where R ci 1 and 0 < α

1 Rc i
. Then, we generalize Theorem 3.16 of [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF] and Theorem 5.1 of [START_REF] Dutertre | Topological formulas for closed semi-algebraic sets by Euler integration[END_REF] for the case of a non-compact critical set, that is, we prove that (Theorem 3.2)

χ(X) = l i=1 ind g (f, X, f -1 (c i )) - R χ(Lk ∞ ({f ≤ t}))dχ c (t).
Using the same techniques we generalize the other results of [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF] and [START_REF] Dutertre | Topological formulas for closed semi-algebraic sets by Euler integration[END_REF] for χ(X) for the case of a non-compact critical set. As an application, we obtain an index formula for the quotient of two semi-algebraic functions.

In Section 4 we define two new indices, the right index at infinity of an asymptotic non-ρ-regular value d i (see Definition 2.15),

ind + ∞ (f, X, f -1 (d i )) = χ(f -1 (d i + α)) -χ(f -1 (d i + α) ∩ B R d i ), and the left index at infinity of d i , ind - ∞ (f, X, f -1 (d i )) = χ(f -1 (d i -α)) -χ(f -1 (d i -α) ∩ B R d i ),
where R di 1 and 0 < α

1 R d i
. We compute these indices in particular cases and we finish the section with a formula that relates χ(X) with them (Theorem 4.4). This formula can be viewed as a generalization of Corollary 2.3 applied to f : X → R.

We end the paper in Section 5 with some real and global Lê-Iomdine type formulas. Namely, by adding or substracting to f a big power of an adapted function, we construct two functions g + and g -that have compact sets of critical points and then we prove that the sum of the global indices of f (respectively -f ) and g - (respectively g + ) coincide (Theorem 5.11). Such results were prevoiusly proved in [START_REF] Dutertre | Do Espirito Santo, Fibration structures and formulae for the Euler characteristics of Milnor fibers[END_REF], when X = R n and f is a semi-tame function.

Let us finish this introduction with a comment. It seems that all these results can be extended to the case of arbitrary real closed fields. Indeed the tools and results that we use (Euler characteristic with compact support, Hardt's theorem, constructible functions, first Thom-Mather's isotopy lemma...) have versions in this case. For instance, Coste and Shiota [START_REF] Coste | Thom's first isotopy lemma: a semialgebraic version, with uniform bound, Real analytic and algebraic geometry[END_REF] proved a version of the Thom-Mather isotopy lemma without integrating vector fields. But in order to do this, one needs to check many (hidden) details.

The authors are grateful to the referee for suggesting valuable improvements.

Some preliminary results

2.1. Euler integration. Let X ⊂ R n be a semi-algebraic set. We can write it in the following way:

X = l j=1 C j , where C j is semi-algebraically homeomorphic to ] -1, 1[ dj (C j is called a cell of dimension d j ). We set χ c (X) = l j=1
(-1) dj , and we call it the Euler characteristic with compact support of X. Let us remark that if X is compact, then χ c (X) = χ(X).

A constructible function ϕ : X → Z is a Z-valued function that can be written as a finite sum

ϕ = i∈I m i 1 Xi ,
where X i is a semi-algebraic subset of X.

If ϕ is a constructible function, the Euler integral of ϕ is defined as

X ϕdχ c (x) = i∈I m i χ c (X i ).
Definition 2.1. Let f : X → Y be a continuous semi-algebraic map and let ϕ : X → Z be a constructible function. The push forward f * ϕ of ϕ along f is the function f * ϕ : Y → Z defined by

f * ϕ(y) = f -1 (y) ϕdχ c (x).
Theorem 2.2. (Fubini type theorem) Let f : X → Y be a continuous semi-algebraic map and let ϕ be a constructible function on X. Then, we have

Y f * ϕdχ c (y) = X ϕdχ c (x).
Proof. See Statement 3.A in [START_REF] Viro | Some integral calculus based on Euler characteristic[END_REF].

Corollary 2.3. Let X, Y be semi-algebraic sets and let f : X → Y be a continuous semi-algebraic map. Then

χ c (X) = Y χ c (f -1 (y))dχ c (y).
2.2. Link at infinity and adapted radius. For any closed semi-algebraic set equipped with a Whitney stratification X = α∈A S α , we denote by Lk ∞ (X) the link at infinity of X. It is defined as follows. Let ω : R n → R be a C 2 proper semi-algebraic positive function. Since ω |X is proper, the set of critical points of ω |X (in the stratified sense) is compact. Hence for R sufficiently big, the map ω :

X ∩ ω -1 ([R, +∞[) → R is a stratified submersion.
The link at infinity of X is the fibre of this submersion. The topological type of Lk ∞ (X) does not depend on the choice of the function ω (for instance, see [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF], Section 3).

Definition 2.4. We will say that R > 0 is an adapted radius for

X if D : X ∩ D -1 ([R, +∞[) → R is a stratified submersion,
where D is the euclidean norm.

Remark 2.5.

(i) We note that if R is an adapted radius for X then Lk ∞ (X) is homeomorphic to X ∩ S R , for R ≥ R. (ii) We note that χ c (X) = χ(X) -χ(Lk ∞ (X)).

Stratified critical points and values. Let us consider from now on a closed

semi-algebraic set X ⊂ R n . It is equipped with a finite semi-algebraic Whitney stratification X = a∈A S a . Let F : R n → R be a C 2 -semi-algebraic function and let f = F |X . Definition 2.6. (1) A point p ∈ X is a critical point of f if it is a critical point of F |S(p) , where S(p) is the stratum that contains p. (2) A point c ∈ R is a critical value if there exists p ∈ f -1 (c) such that p is a critical point of f . (3) If p is an isolated critical point of f , we define the index of f at p by ind(f, X, p) = 1 -χ({f = f (p) -δ} ∩ B (p)), where 0 < δ 1.
Let us notice that if X = R n , by [START_REF] Khimshiashvili | On the local degree of a smooth map[END_REF], ind(f, X, p) = deg p ∇f .

Lemma 2.7. The set of critical points of f , Σ f , is a closed semi-algebraic subset of X and its set of critical values, ∆ f , is finite.

Proof. To prove that Σ f is closed we use Whitney's condition (a) and to prove that ∆ f is finite we use the Bertini-Sard Theorem ( [START_REF] Bochnak | Real algebraic geometry[END_REF]).

The following result gives a relation between the Euler characteristic of X and the indices of the p i 's, when X is compact.

Theorem 2.8. ([4], Theorem 3.1) If X is compact and f has a finite number of critical points p 1 , . . . , p l , we have

χ(X) = l i=1 ind(f, X, p i ).
Now, we give some lemmas that we will use later on. For the proofs we refer to [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF]. We assume that f has a finite number of critical points p 1 , p 2 , . . . , p l . Lemma 2.9. If δ < 0 is a small regular value of f and R

1 is such that f -1 (0) ∩ B R is a retract by deformation of f -1 (0), then χ(f -1 (δ) ∩ B R ) = χ(f -1 (0)) - pi∈f -1 (0) ind(f, X, p i ).
Lemma 2.10. If f is proper then for any α ∈ R, we have

χ({f ≥ α}) -χ({f = α}) = i:f (pi)>α ind(f, X, p i ).
We state a Mayer-Vietoris type result that we will apply several times in the paper.

Lemma 2.11. For any α ∈ R, we have

χ(X) = χ({f ≥ α}) + χ({f ≤ α}) -χ({f = α}).
Proof. By the additivity of χ c , we know that

χ c (X) = χ c ({f ≥ α}) + χ c ({f ≤ α}) -χ c ({f = α}), so the result is obvious if X is compact. If X is not compact, we can choose R > 0 such that X (resp. {f ≥ α}, {f ≤ α}, {f = α}) is a deformation retract of X ∩ B R (resp. {f ≥ α} ∩ B R , {f ≤ α} ∩ B R , {f = α} ∩ B R ).
It is enough to apply the compact case and the relation between χ and χ c .

The following lemma is a consequence of Lemma 2.10 and Lemma 2.11. Lemma 2.12. If f is proper then for α and α with α < α , we have

χ({α ≤ f ≤ α }) -χ({f = α}) = i:α<f (pi)≤α ind(f, X, p i ).
Let g : R n → R be a C 2 -semi-algebraic function such that g -1 (0) intersects X transversally. Let us suppose that f |X∩{g≤0} admits an isolated critical point p in X ∩ {g = 0} which is not a critical point of f . We say that such a point is a correct critical point. If S denotes the stratum of X that contains p, this implies that

∇(f |S )(p) = λ(p)∇(g |S )(p), with λ(p) = 0.
Lemma 2.13. For 0 < δ 1, we have

χ(f -1 (-δ) ∩ B (p) ∩ X ∩ {g ≤ 0}) = 1, if λ(p) > 0 and χ(f -1 (-δ) ∩ B (p) ∩ X ∩ {g ≤ 0}) = χ(f -1 (-δ) ∩ B (p) ∩ X ∩ {g = 0}), if λ(p) < 0.
Remark 2.14. As a consequence of the last lemma and the definition of the index of a critical point p, we get that

ind(f, X ∩ {g ≤ 0}, p) = 0, if λ(p) > 0, and ind(f, X ∩ {g ≤ 0}, p) = ind(f, X ∩ {g = 0}, p), if λ(p) < 0. 2.4. Asymptotic non-ρ-regular values. Let ρ(x) = 1 + 1 2 (x 2 1 + • • • + x 2 n
). Note that ∇ρ(x) = x, ρ(x) ≥ 1 and the levels of ρ are the spheres of radius greater than or equal to 1. Let Γ f,ρ be the polar set

Γ f,ρ = x ∈ R n | rank[∇f |S (x), ∇ρ |S (x)] < 2 ,
where S is the stratum that contains x. We have Σ f ⊂ Γ f,ρ .

Definition 2.15. The set of asymptotic non-ρ-regular values of f is the set defined as follows:

Λ f = {α ∈ R | ∃{x n } n∈N ∈ Γ f,ρ such that |x n | → +∞ and f (x n ) → α}.
The set Λ f was introduced and studied by Tibȃr [START_REF] Tibȃr | Regularity at infinity of real and complex polynomial functions[END_REF] when X = R n and f :

R n → R is a polynomial. By Lemma 2.2 in [4], we can assume that Γ f,ρ \ Σ(f ) is a curve and so, that Λ f is a finite set {d 1 , d 2 . . . , d m }, with d 1 < d 2 < • • • < d m .
2.5. Some others sets of special values. We define four sets of special values. They are values where some changes in the topology of the fibres of f may occur. Definition 2.16. Let * ∈ {≤, =, ≥}.

(

) We define Λ * f by Λ * f = {α ∈ R | β → χ(Lk ∞ ({f * β})) is not constant in a neighborhood of α}. 1 
(

) We define B(f ) by B(f ) = ∆ f ∪ Λ ≤ f ∪ Λ ≥ f . Proposition 2.17. 2 
(1) The sets Λ * f and B(f

) are finite. Moreover Λ = f ⊂ Λ ≤ f ∪ Λ ≥ f . (2) If α / ∈ B(f ), the functions β → χ({f * β}), * ∈ {≤, =, ≥},
are constant in a neighborhood of α.

Proof. The first point is proved in [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semi-algebraic sets[END_REF]. Let α / ∈ B(f ) and let α -< α be a value close enough to α. Let R α (resp. R α -) be an adapted radius for f -1 (α) (resp. f -1 (α -)). We can choose them in such a way that they are also adapted to {f ≤ α} and {f ≤ α -} respectively. The critical points of f |{α -<f <α}∩B R α -can only lie on S R α -, and they point outwards. By Lemma 2.12, this implies that

χ({f ≤ α -}) = χ({f ≤ α}), because R α -is also adapted for {f ≤ α}.
Similarly, we can consider the critical points of -f |{α -<f <α}∩B R α -. Applying Lemma 2.12 twice, we obtain that

χ({f ≥ α -}) -χ({f ≥ α}) = χ(Lk ∞ ({f ≥ α -})) -χ(Lk ∞ ({f ≥ α})) = 0, since α / ∈ Λ ≥ f . By Lemma 2.11, we see that χ({f = α -}) = χ({f = α}).
The same proof works for α + > α, a value close enough to α.

Remark 2.18. Taking into account Proposition 2.17 and basic properties of χ c , if we have inclusions

Λ * f ⊂ {ν 1 , ν 2 , . . . , ν t }, with ν 1 < ν 2 < • • • < ν t and B(f ) ⊂ {η 1 , η 2 , . . . , η u }, with η 1 < η 2 < • • • < η u , we can express the Euler integral R χ(Lk ∞ (X ∩ {f * t}))dχ c (t) as R χ(Lk ∞ (X ∩{f * t}))dχ c (t) = t i=1 χ(Lk ∞ (X ∩{f * ν i }))- t i=0 χ(Lk ∞ (X ∩{f * ν + i })), the Euler integral R χ(X ∩ {f * t})dχ c (t) as R χ(X ∩ {f * t})dχ c (t) = u j=1 χ(X ∩ {f * η j }) - u j=0 χ(X ∩ {f * η + j }),
and the Euler integral

R χ c (X ∩ {f * t})dχ c (t) as R χ c (X ∩ {f * t})dχ c (t) = u j=1 χ c (X ∩ {f * η j }) - u j=0 χ c (X ∩ {f * η + j }),
where

ν 0 , η 0 = -∞, ν t+1 = +∞, η u+1 = +∞, ν + i ∈]ν i , ν i+1 [ and η + j ∈]η j , η j+1 [.

Formulas for the Euler characteristic of a closed semi-algebraic set in the general case

Let X be a closed semi-algebraic set, equipped with a finite semi-algebraic Whitney stratification X = a∈A S a . Let F : R n → R be a C 2 semi-algebraic function. We call f = F |X , the restriction of F to X. Let ∆(f ) = {c 1 , c 2 , . . . , c k } be the set of critical values of f . Let c i be a critical value of f . The partition f -1 (c i ) = a∈A f -1 (c i ) ∩ S a may not be a Whitney stratification, but since Whitney conditions are stratifying, we can refine it in order to get a Whitney stratification

f -1 (c i ) = b∈B T B of f -1 (c i ) such that X = a∈A (S a \ f -1 (c i ))
b∈B T B is still a Whitney stratification of X. Definition 3.1. We define the index of a critical value c i of f as

ind g (f, X, f -1 (c i )) = χ(f -1 (c i )) -χ(f -1 (c i -α) ∩ B Rc i ) with 0 < α
1 and R ci is an adapted radius for f -1 (c i ).

Theorem 3.2. We have

χ(X) = k i=1 ind g (f, X, f -1 (c i )) - R χ(Lk ∞ ({f ≤ t}))dχ c (t).
Proof. By Hardt's theorem [START_REF] Hardt | Topological properties of subanalytic sets[END_REF], there exists a finite set

∆ f ⊂ R such that over each connected component of R \ ∆ f , f is a semi-algebraic trivial fibration. Let us write Λ f ∪ B f ∪ ∆ f = {b 1 , . . . , b l }, where b 1 < • • • < b l .
Note that, by Lemma 2.9, ind g (f,

X, f -1 (b j )) = 0 if b j / ∈ ∆(f ). By Corollary 2.3, we have χ c (X) = R χ c (f -1 (t))dχ c (t) = l j=1 (χ c (f -1 (b j ) -χ c (f -1 (b - j )) -χ c (f -1 (b + l )),
where b - j = b j -α and b + j = b j + α, with 0 < α 1. To compute the right-hand side of the above equality, we work with each difference

χ c (f -1 (b j ) -χ c (f -1 (b - j )) for j = 1, . . . , l. Let us set b - j = b -and b j = b with b -= b -δ, 0 < δ 1 R b -, where R b -> R b 1 are adapted radius for f -1 (b -) and f -1 (b). We have χ c (f -1 (b)) -χ c (f -1 (b -)) = χ(f -1 (b)) -χ(Lk ∞ (f -1 (b)) -χ(f -1 (b -) ∩ B R b ) + χ(f -1 (b -) ∩ S R b ) -χ c (f -1 (b -) ∩ {|x| ≥ R b }) = ind g (f, X, f -1 (b))-χ(Lk ∞ (f -1 (b))+χ(f -1 (b -)∩S R b )-χ c (f -1 (b -)∩{|x| ≥ R b }).
As explained above, we can assume that f -1 (b) is a union of strata of our stratification. If R b is sufficiently big and b -is sufficiently close to b, then the (stratified) critical points of -ρ |{b -≤f ≤b} lying in {R b ≤ ρ ≤ R b -} appear on {f = b -}. Moreover they are correct and points outwards (Figure 1).

Figure 1

Therefore, by Lemmas 2.12 and 2.13, we have

χ({R b ≤ |x| ≤ R b -} ∩ {b -≤ f ≤ b}) = χ({b -≤ f ≤ b}∩S R b -) = χ({f ≤ b}∩S R b -)-χ({f ≤ b -}∩S R b -)+χ({f = b -}∩S R b -) = χ(Lk ∞ ({f ≤ b})) -χ(Lk ∞ ({f ≤ b -})) + χ(Lk ∞ ({f = b -})),
applying Lemma 2.11 and the definition of the link at infinity.

Let us compute χ({R

b ≤ |x| ≤ R b -} ∩ {b -≤ f ≤ b}) in another way. Let b be a regular value of f such that b -< b < b and f |{R b ≤|x|≤R b -} has no critical point on { b ≤ f < b}. This implies that f -1 (b) ∩ {R b ≤ |x| ≤ R b -} is a deformation retract of {R b ≤ |x| ≤ R b -} ∩ { b ≤ f ≤ b}.
Applying the same argument as above, considering the function f |{R b ≤|x|≤R b -} and applying Lemmas 2.12 and 2.13, we obtain that

χ({b -≤ f ≤ b} ∩ {R b ≤ |x| ≤ R b -}) = χ({f = b -} ∩ {R b ≤ |x| ≤ R b -}).
By Lemma 2.11 and the deformation retract argument, we get that

χ({b -≤ f ≤ b} ∩ {R b ≤ |x| ≤ R b -}) = χ({f = b -} ∩ {R b ≤ |x| ≤ R b -}) +χ({f = b} ∩ {R b ≤ |x| ≤ R b -}) -χ({f = b} ∩ {R b ≤ |x| ≤ R b -}).
Moreover if we choose b close enough to b, then the intersection

Γ f,ρ \ Σ f ∩ [f -1 ([ b, b]) ∩ {R b ≤ |x| ≤ R b -}]
is empty (see Figure 2).

Figure 2

This implies that

χ({f = b} ∩ {R b ≤ |x| ≤ R b -}) = χ({f = b} ∩ S R b ).
Finally we obtain that

χ({b -≤ f ≤ b} ∩ {R b ≤ |x| ≤ R b -}) = χ({f = b -} ∩ {R b ≤ |x| ≤ R b -}) +χ(Lk ∞ (f -1 (b))) -χ({f = b } ∩ S R b ). Comparing the two expressions for χ({R b ≤ |x| ≤ R b -} ∩ {b -≤ f ≤ b}) leads to χ({f = b -} ∩ {R b ≤ |x| ≤ R b -) = χ(Lk ∞ ({f ≤ b})) -χ(Lk ∞ ({f ≤ b -})) +χ(Lk ∞ ({f = b -})) -χ(Lk ∞ (f -1 (b))) + χ({f = b } ∩ S R b ).
Then we can write

χ c ({f = b -} ∩ {|x| ≥ R b }) = χ({f = b -} ∩ {|x| ≥ R b }) -χ(Lk ∞ (f -1 (b -))) = χ({f = b -} ∩ {R b ≤ |x| ≤ R b -}) -χ(Lk ∞ (f -1 (b -))) = χ(Lk ∞ ({f ≤ b})) -χ(Lk ∞ ({f ≤ b -})) -χ(Lk ∞ (f -1 (b))) + χ({f = b } ∩ S R b ). Finally we obtain χ c (f -1 (b)) -χ c (f -1 (b -)) = ind g (f, X, f -1 (b)) -χ(Lk ∞ ({f ≤ b})) + χ(Lk ∞ ({f ≤ b -})), and so χ c (X) = l j=1 ind g (f, X, f -1 (b j )) - l i=1 χ(Lk ∞ ({f ≤ b j })) + l i=1 χ(Lk ∞ ({f ≤ b - j })) -χ c (f -1 (b + l )). Lemma 3.6. We have R χ c ({f ≤ t})dχ c (t) = 0. Proof. Let us take b in Λ f ∪ B f ∪ ∆ f and b + = b + δ, with δ > 0 small enough, a regular value. Since f |X∩]b,b + ] is trivial and χ c (]b, b + ]) = 0, we conclude that χ c ({f ≤ b + }) -χ c ({f ≤ b}) = χ c ({α < f ≤ b + }) = 0. Therefore, R χ c ({f ≤ t})dχ c (t) = l j=1 χ c ({f ≤ b i }) - l j=0 χ c ({f ≤ b + i }) = -χ c ({f ≤ b + 0 }) = 0.
Corollary 3.7. We have

χ(X) = k i=1 ind g (f, X, f -1 (c i )) - R χ({f ≤ t})dχ c (t).
Proof. We have

χ(X) = k i=1 ind g (f, X, f -1 (c i )) - R χ(Lk ∞ ({f ≤ t}))dχ c (t),
and

R χ c ({f ≤ t})dχ c (t) = R χ c ({f ≤ t} ∩ B Rt )dχ c (t) - R χ c (Lk ∞ ({f ≤ t}))dχ c (t) = 0. Then, R χ({f ≤ t})dχ c (t) = R χ({f ≤ t} ∩ B Rt )dχ c (t) = R χ c ({f ≤ t} ∩ B Rt )dχ c (t) = R χ(Lk ∞ ({f ≤ t}))dχ c (t),
arriving to the desired result.

Corollary 3.8. We have

χ(X) = k i=1 ind g (-f, X, f -1 (c i )) - R χ({f ≥ t})dχ c (t).
Proof. By replacing f by -f and applying an analogous procedure as in the last corollary, we arrive to the desired result.

Corollary 3.9. We have

χ(X) = k i=1 ind g (f, X, f -1 (c i )) + k i=1 ind g (-f, X, f -1 (c i )) - R χ({f = t})dχ c (t).
Proof. It follows from the last two corollaries by applying Lemma 2.11.

Remark 3.10. Since ind g (f, X, f -1 (t)) = 0 if t is not a critical value of f , we can replace

k i=1 ind g (±f, X, f -1 (c i )) with R ind g (±f, X, f -1 (t)
)dχ c (t) in all our statements. Application 3.11. Let us apply these results to the case of a function given as the quotient of two semi-algebraic functions. Let f, g : X → R be two semi-algebraic functions, where X a closed semi-algebraic set and f (resp. g) is the restriction to X of a C 2 semi-algebraic function F (resp. G). We consider their quotient φ := f /g : X \ V (g) → R which is also a semi-algebraic function. Let Y be the following closed semi-algebraic set:

Y = {(x, y) ∈ X × R | f (x) -yg(x) = 0}.
We cannot apply Corollary 3.9 since φ is not defined in X, so we work with Y to obtain a formula for the sum of the global indices of the function φ.

Let π : Y → R be the linear function defined by π(x, y) = y. By applying Corollary 3.9, we have that

χ(Y ) = R ind g (π, Y, π -1 (t))dχ c (t) + R ind g (-π, Y, π -1 (t))dχ c (t) - R χ(Y ∩ {π = t})dχ c (t).
We have that, if t = 0,

Y ∩ {π = t} = {(x, t) | f (x) -tg(x) = 0} = {x | φ(x) = t} {f = g = 0},
and so,

χ(Y ∩ {π = t}) = χ({φ(x) = t}) + χ({f = g = 0}). When t = 0, we have that Y ∩ {π = 0} = {x | f (x) = 0}, and so, χ(Y ∩ {π = 0}) = χ({f = 0}
). Let us study the global index of π at the non-zero critical value t. We recall that

ind g (π, Y, π -1 (t)) = χ(Y ∩ π -1 (t)) -χ(Y ∩ π -1 (t -α) ∩ B Rt ),
where R t is an adapted radius for π -1 (t) and 0 < α

1 Rt . We have (x, t) ∈ Y ∩ π -1 (t) ⇔ f (x) -tg(x) = 0 ⇔ φ(x) = t if g(x) = 0, f (x) = 0 if g(x) = 0, then, χ(Y ∩ π -1 (t)) = χ({φ = t}) + χ({f = g = 0}). Let us study χ(Y ∩ π -1 (t -α) ∩ B Rt ). We have (x, t -α) ∈ Y ∩ π -1 (t -α) ∩ B Rt ⇔ f (x) -(y 0 -α)g(x) = 0 |(x, t -α)| ≤ R t ⇔ φ(x) = t -α, |x| ≤ R 2 t -(t -α) 2 if g(x) = 0 f (x) = 0 if g(x) = 0 .
If R t is big enough and α small enough, then R = R 2 t -(t -α) 2 is an adapted radius for {φ = t} and {f = g = 0}. Therefore we have

χ(Y ∩ π -1 (t -α) ∩ B Rt ) = χ({φ = t -α}) ∩ B R ) + χ({f = g = 0} ∩ B R ).
Therefore, we get

χ(Y ) = R * ind g (φ, X, φ -1 (t))dχ c (t) + R * ind g (-φ, X, φ -1 (t))dχ c (t)+ ind g (π, Y, π -1 (0)) + ind g (-π, Y, π -1 (0)) -χ({f = 0}) +2χ({f = g = 0}) - R * χ(X ∩ {φ = t})dt.
We have that

Y = {(x, y) | f (x) -yg(x) = 0} = {(x, y) | φ(x) = y} {f = g = 0} × R ,
and so,

χ(Y ) = χ(X \ V (g)) + χ({f = g = 0}).
Finally we obtain that

χ(X \ V (g)) = R * ind g (φ, X, φ -1 (t))dχ c (t) + R * ind g (-φ, X, φ -1 (t))dχ c (t)+ ind g (π, Y, π -1 (0)) + ind g (-π, Y, π -1 (0)) -χ({f = 0}) +χ({f = g = 0}) - R * χ(X ∩ {φ = t})dt.
If furthermore we assume that 0 is a regular value (in the stratified sense) of f , then 0 is a regular value of π and so

χ(X \ V (g)) = R * ind g (φ, X, φ -1 (t))dχ c (t) + R * ind g (-φ, X, φ -1 (t))dχ c (t) -χ({f = 0}) + χ({f = g = 0}) - R * χ(X ∩ {φ = t})dt.
Taking f = 1, we obtain an index formula for the Euler characteristic of the nonclosed semi-algebraic set X \ V (g). Namely we have

χ(X \ V (g)) = R * ind g (φ, X, φ -1 (t))dχ c (t) + R * ind g (-φ, X, φ -1 (t))dχ c (t) - R *
χ(X ∩ {φ = t})dt.

New indices at infinity

By Proposition 2.17, there exists a finite set {e 1 , e 2 , . . . , e s }, e 1 < e 2 < • • • < e s , such that the function t → χ(f -1 (t)) is locally constant on R \ {e 1 , e 2 , . . . , e s }. When X is compact, by Corollary 2.3, we have

χ(X) = [e1,es] χ(f -1 (t))dχ c (t),
because f -1 (t) is empty for t < e 1 and t > e s . The aim of this section is to generalize this equality when X is only closed, by introducing new indices at infinity and applying the results of Section 3.

We recall that Λ f is defined by

Λ f = {α ∈ R | ∃(x n ) n∈N ∈ Γ f such that |x n | → +∞ and f (x n ) → α},
and that it is a finite set {d 1 , d 2 . . . , d m }, with

d 1 < d 2 < • • • < d m .
Definition 4.1. We define the right index at infinity of

d i as ind + ∞ (f, X, f -1 (d i )) = χ(f -1 (d + i )) -χ(f -1 (d + i ) ∩ B R d i )
. Analogously, we define the left index at infinity of We have that Λ f = {0} and

d i as ind - ∞ (f, X, f -1 (d i )) = χ(f -1 (d - i )) -χ(f -1 (d - i ) ∩ B R d i ), where d + i = d i + α, d - i = d i -α with 0 < α 1 and R di is an adapted radius for f -1 (d i ).
ind + ∞ (f, R 2 , f -1 (0)) = χ(f -1 (δ)) -χ(f -1 (δ) ∩ B R0 ) = 2 -3 = -1, ind - ∞ (f, R 2 , f -1 (0)) = χ(f -1 (-δ)) -χ(f -1 (-δ) ∩ B R0 ) = 2 -3 = -1
, with R 0 an adapted radius for 0 and 0 < δ 1 (see Figure 3). Example 4.3. (Tibȃr-Zaharia, [START_REF] Tibȃr | Asymptotic behaviour of families of real curves[END_REF]) Let us consider the polynomial f (x, y) = x 2 y 2 + 2xy + (y 2 -1) 2 defined on X = R 2 . We have that 0

∈ Λ f and ind + ∞ (f, R 2 , f -1 (0)) = χ(f -1 (δ)) -χ(f -1 (δ) ∩ B R0 ) = 2 -2 = 0, ind - ∞ (f, R 2 , f -1 (0)) = χ(f -1 (-δ)) -χ(f -1 (-δ) ∩ B R0
) = 0 -0 = 0, with R 0 an adapted radius for 0 and 0 < δ 1 (see Figure 4). Theorem 4.4. We have

χ(X) = m i=1 (ind + ∞ (f, X, f -1 (d i )) + ind - ∞ (f, X, f -1 (d i ))) + [e1,es] χ(f -1 (t))dχ c (t). Proof. We recall that Λ f ∪ B f ∪ ∆ f = {b 1 , . . . , b l }, with b 1 < b 2 < • • • < b l .
First of all, note that, by the definition of the indices at infinity, ind

+ ∞ (f, X, f -1 (b i )) = ind - ∞ (f, X, f -1 (b i )) = 0, if b i / ∈ Λ(f ) and that ind g (-f, X, f -1 (b i )) = ind g (f, X, f -1 (b i )) = 0, if b i / ∈ ∆(f ).
By Corollary 3.9, we have

χ(X) = l j=1 ind g (f, X, f -1 (b i )) + l j=1 ind g (-f, X, f -1 (b i )) - R χ({f = t})dχ c (t). By definition, ind g (f, X, f -1 (b i )) = χ(f -1 (b i )) -χ(f -1 (b - i ) ∩ B R b i ). Therefore, we have χ(X) = l i=1 2χ((f -1 (b i )) -χ(f -1 (b - i ) ∩ B R b i ) -χ(f -1 (b + i ) ∩ B R b i ) + l i=1 χ((f -1 (b - i )) + χ((f -1 (b + i )) - l i=1 χ((f -1 (b i )) - l-1 i=1 χ((f -1 (b + i )) = l i=1 χ((f -1 (b i )) + m i=1 ind + ∞ (f, X, f -1 (d i )) + ind - ∞ (f, X, f -1 (d i )) - l-1 i=1 χ((f -1 (b + i )) = m i=1 ind + ∞ (f, X, f -1 (d i )) + ind - ∞ (f, X, f -1 (d i )) + [b1,b l ] χ(f -1 (t))dχ c (t).
To conclude, we remark that

[b1,e1[ χ(f -1 (t))dχ c (t) = 0, if b 1 < e 1 and ]e l ,b l ] χ(f -1 (t))dχ c (t) = 0, if e l < b l .

Relations with functions with compact critical set

If f : (C n , 0) → (C, 0) is an analytic function germ with a one-dimensional singular locus then f + l d has an isolated singularity at the origin, where l is a generic linear form and d ∈ N is sufficiently big. Moreover the topology of the Milnor fibre of f is closely related to that of the Milnor fibre of f + l d . This is the well-know Lê-Iomdine formula [START_REF] Iomdin | Complex surfaces with a one-dimensional set of singularities[END_REF][START_REF] Lê | Ensembles analytiques complexes avec lieu singulier de dimension un (d'après I.N. Iomdin)[END_REF].

In the real case, Szafraniec [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF] adapted this method by replacing l with the distance function to the origin. Then, using Szafraniec's approach, the first author in [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] found generalizations of the Khimshiashvili formula for non-isolated singularities.

The aim of this section is to present similar results in our global and general setting. We note that our results generalize the ones of [START_REF] Dutertre | Do Espirito Santo, Fibration structures and formulae for the Euler characteristics of Milnor fibers[END_REF], where the case X = R n and f semi-tame is considered.

We recall that ρ(

x) = 1 + 1 2 (x 2 1 + • • • + x 2 n ) and that Γ f,ρ = {x ∈ R n | rank[∇f (x), ∇ρ(x)] < 2} .
Note that ∇ρ(x) = x and ρ(x) ≥ 1. We have Σ f ⊂ Γ f,ρ .

Let Λ f = {d 1 , d 2 . . . , d m }. Lemma 5.1. There is k ∈ N such that for all i ∈ {1, 2, . . . , m}, for all x ∈ Γ f,ρ \ f -1 (d i ),

|f (x) -d i | > 1 ρ(x) k , 1 ≤ i ≤ m, for |x| 1.
Proof. Note that 1 is the greatest critical value of ρ. We set Sr = ρ -1 (r). Let β :]1, +∞[→ R be defined by

β(r) = inf |f (x) -d i | | x ∈ Sr ∩ (Γ f,ρ \ f -1 (d i )) .
The function β is semi-algebraic. Furthermore β > 0 because for r > 1, f | Sr has a finite number of critical values. Thus the function 1 β is also semi-algebraic. Hence there exist r 1 ≥ 1 and k 0 ∈ N such that 1 β < r k , for r ≥ r 1 and k ≥ k 0 . This implies that β(r) > 1 r k for r ≥ r 1 and k ≥ k 0 . We can conclude that for r ≥ r 1 and k ≥ k 0 , 

|f (x) -d i | > 1 ρ(x) k , for x ∈ Sr ∩ (Γ f,ρ \ f -1 (d i )). Let G -(x) = F (x) -1 ρ(x)
g -(x) ≤ d i ⇔ f (x) - 1 R k ≤ d i ⇔ f (x) ≤ d i + 1 R k ,
and so Proof. Let us study first the case when α belongs to an interval of R \ Λ f bounded from above. We can assume that 0 ∈ Λ f and that b < 0 is the greatest negative element of Λ f (b can be -∞).

N ≤ f ⊂ N ≤ g-. Furthermore if 0 < f (x) -d i ≤ 1 R k then x / ∈ Γ f,ρ \ f -1 (d i
Let α be such that b < α < 0. We can find R b 1 such that b <

1 2 + 1 R k b < 0. If {x n } ⊆ Γ g-,ρ is a sequence such that b < g -(x n ) ≤ 1 2 α, then {g -(x n )} → b. If ρ(x n ) ≥ R b then f (x n ) = g -(x n ) + 1 ρ(xn) k ≤ g -(x n ) + 1 R k b ≤ 1 2 α + 1 R k b < 0.
Then, {f (x n )} tend to b as well. As a consequence, there exists R 0 1 such that for all R ≥ R 0 and x ∈ S R ∩ Γ g-,ρ ∩ {g -≤ 1 2 α} , f (x) ≤ b+α 2 and g -(x) ≤ b+α 2 .
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  k and let g -= G -|X . Lemma 5.2. We haveΛ f = Λ g - Proof. By definition of g -(x), we have that Γ f,ρ = Γ g-,ρ . So if {x n } is a sequence of points in Γ f,ρ such that {x n } → ∞ then {f (x n )} → d i if and only if {g -(x n )} → d i Lemma 5.3. For R 1, χ({g -≤ d i } ∩ SR ) = χ({f ≤ d i } ∩ SR ). Proof. Let R 1 be such that for all x ∈ (Γ f,ρ \f -1 (d i ))∩{ρ(x) ≥ R}, |f (x)-d i | > 1 ρ(x) k . Set N ≤ f = {x ∈ SR | f (x) ≤ d i } and N ≤ g-= {x ∈ SR | g -(x) ≤ d i }. For x ∈ SR , we have
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 5455 ) and therefore {f (x)≤ d i + 1 R k } ∩ SR retracts by deformation to {f (x) ≤ d i } ∩ SR . We get the result. We have χ(Lk ∞ ({g -≤ d i })) = χ(Lk ∞ ({f ≤ d i })). Let α / ∈ Λ f . We have χ(Lk ∞ ({g -≤ α})) = χ(Lk ∞ ({f ≤ α})).
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Let R b + l be an adapted radius for f -1 (b + l ). We can write

). Hence,

obtaining the desired result.

Corollary 3.3. If f has a finite number of critical points p 1 , p 2 , . . . , p l then

Proof. Let b i be a critical value such that f -1 (b i ) has a finite number of singularities p 1 , . . . , p ri . By Lemma 2.9, we know that

where R bi is an adapted radius for f -1 (b i ).

Corollary 3.4. We have

Proof. By replacing f by -f and applying an analogous procedure as in the last theorem, we arrive to the desired result.

Proof. It follows from Theorem 3.2 and Corollary 3.4 by applying Lemma 2.11.

To conclude, we have that Lk

Similarly if α belongs to the interval of R \ Λ f not bounded from above, we can suppose that 0 is the biggest bifurcation value and that α > 0. The proof is the same, replacing {g -≤ b+α 2 } with {g -≥ α 2 } and taking R such that α

Corollary 5.7. We have χ(Lk ∞ ({g

Lemma 5.9. The sets (∇g -) -1 (0) and (∇g + ) -1 (0) are compact.

Proof. Let us suppose that (∇g -) -1 (0) is not compact. Therefore, there exists α a critical value of g -such that (∇g We are in position to state the main theorem of this section.

Theorem 5.11. We have

Moreover, if W -is the vector field defined by W -= ρ k+1 ∇f +∇ρ, then deg ∞ W -= deg ∞ ∇g -and so, R ind g (f, X, f -1 (t))dχ c (t) = deg ∞ W -.

We can apply the same procedure to g + and obtain a vector field W + . We note if f is a polynomial then W -and W + are polynomial vector fields.