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SEMI-ALGEBRAIC FUNCTIONS WITH NON-COMPACT

CRITICAL SET

NICOLAS DUTERTRE AND JUAN ANTONIO MOYA PÉREZ

Abstract. Let X ⊂ Rn be a closed semi-algebraic set, F : Rn → R be a C2
semi-algebraic function and f = F|X : X → Rn be the restriction of F to
X. We define the global index of a critical value ci of f and prove an index

formula for χ(X) that generalizes a result previously proved by the authors

for the case of isolated critical points. We define also new indices at infinity
and prove an alternative index formula for χ(X).

1. Introduction

Let f : (Rn, 0) → (R, 0) be an analytic function germ with an isolated critical
point at 0. The Khimshiashvili formula (see [9]) states that

χ(f−1(δ) ∩Bε) = 1− sign(−δ)n deg0∇f,

where 0 < |δ| � ε � 1, Bε is the closed ball of radius ε centered at 0, ∇f is the

gradient of f and deg0∇f is the topological degree of the mapping ∇f
|∇f | : Sε →

Sn−1.
As a corollary of the Khimshiashvili formula, by a result of Arnol’d [1] and Wall

[15] we have that

χ({f ≤ 0} ∩ Sε) = 1− deg0∇f,

χ({f ≥ 0} ∩ Sε) = 1 + (−1)n−1 deg0∇f,
and

χ({f = 0} ∩ Sε) = 2− 2 deg0∇f,
if n is even.

Szafraniec [11] generalized the results of Arnol’d and Wall to the case of a func-
tion germ f with non-isolated singularities and in [12] he improved this result for
a weighted homogeneous polynomial f : Rn → R.

In [6] Lemma 2.5, the first named author proves a new relation between the
topology of the positive (resp. negative) real Milnor fibre of an analytic function
germ f : (Rn, 0)→ (R, 0) and the topology of the link of the set {f ≤ 0} (resp. {f ≥
0}). Using Szafraniec’s results, he deduces a generalization of the Khimshiashvili
formula for non-isolated singularities. Namely he proves that if 0 < δ � ε, then

χ(f−1(−δ) ∩Bε) = 1− (−1)n deg0∇g−,

and

χ(f−1(δ) ∩Bε) = 1− (−1)n deg0∇g+,
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with g− = −f − ωd, g+ = f − ωd, ω(x) = x2
1 + · · · + x2

n and d is an integer big
enough.

Sekalski in [10] gives a global counterpart of Khimshiasvili’s formula for a poly-
nomial function f : R2 → R with a finite number of critical points. He considers the
set Λf = {λ1, . . . , λk} of critical values of f at infinity, where λ1 < λ2 < · · · < λk,
and its complement R \ Λf = ∪ki=0]λi, λi+1[ where λ0 = −∞ and λk+1 = +∞.
Denoting by r∞(g) the number of real branches at infinity of a curve {g = 0} in
R2, he proves that

deg∞∇f = 1 +

k∑
i=1

r∞(f − λi)−
k∑
i=0

r∞(f − λ+
i ),

where for i = 0, . . . , k, λ+
i is an element of ]λi, λi+1[ and deg∞∇f is the topological

degree of the mapping ∇f
‖∇f‖ : SR → Sn−1, R� 1.

Gwoździewicz in [7] gives a topological proof of Sekalski’s result using Euler
integration. He proves that

deg∞∇f = 1 +

∫
R
r∞(f − t)dχc(t),

where χc denotes the Euler characteristic with compact support that we will define
later.

The first named author generalizes Sekalski result in [3] by considering a closed
semi-algebraic set X ⊂ Rn and a C2 semi-algebraic function f : Rn → R such that
f|X has a finite number of critical points. In [5] the authors recover the first named
author’s results using Euler integration, which clearly simplifies the proofs.

Finally, in [4], Section 3, Araujo, Chen, Andrade and the first named author gave
a generalization of the results of [3] whenX = Rn and f is a semi-tame function with
non-isolated critical points, by adapting to the global case the method developed
by Szafraniec in [11].

The aim of this paper is to extend these results to the general case, i.e., without
any assumption on the set of critical points of the function. We work in the following
setting: X ⊂ Rn is a closed semi-algebraic set, F : Rn → R is a C2 semi-algebraic
function and f = F|X : X → Rn is the restriction of F to X.

In Section 3, we define the global index of a critical value ci of f ,

indg(f,X, f
−1(ci)) = χ(f−1(ci))− χ(f−1(ci − α) ∩BRci ),

where Rci � 1 and 0 < α � 1
Rci

. Then, we generalize Theorem 3.16 of [3] and

Theorem 5.1 of [5] for the case of a non-compact critical set, that is, we prove that
(Theorem 3.2)

χ(X) =

l∑
i=1

indg(f,X, f
−1(ci))−

∫
R
χ(Lk∞({f ≤ t}))dχc(t).

Using the same techniques we generalize the other results of [3] and [5] for χ(X)
for the case of a non-compact critical set. As an application, we obtain an index
formula for the quotient of two semi-algebraic functions.

In Section 4 we define two new indices, the right index at infinity of an asymptotic
non-ρ-regular value di (see Definition 2.14),

ind+
∞(f,X, f−1(di)) = χ(f−1(di + α))− χ(f−1(di + α) ∩BRdi ),

and the left index at infinity of di,

ind−∞(f,X, f−1(di)) = χ(f−1(di − α))− χ(f−1(di − α) ∩BRdi ),
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where Rdi � 1 and 0 < α � 1
Rdi

. We compute these indices in particular cases

and we finish the section with a formula that relates χ(X) with them (Theorem
4.4).

In Section 5 we generalize Corollaries 3.28, 3.29, 3.30 of [4] to our general sit-
uation. Namely, we construct two functions g+ and g− that have compact sets of
critical points and then we prove that the sum of the global indices of f (respectively
−f) and g− (respectively g+) coincide (Corollary 5.11).

2. Some preliminary results

2.1. Euler integration. Let X ⊂ Rn be a semi-algebraic set. We can write it in
the following way:

X = tlj=1Cj ,

where Cj is semi-algebraically homeomorphic to ] − 1, 1[dj (Cj is called a cell of
dimension dj). We set

χc(X) =

l∑
j=1

(−1)dj ,

and we call it the Euler characteristic with compact support of X. Let us remark
that if X is compact, then χc(X) = χ(X).

A constructible function ϕ : X → Z is a Z-valued function that can be written
as a finite sum

ϕ =
∑
i∈I

mi1Xi ,

where Xi is a semi-algebraic subset of X.
If ϕ is a constructible function, the Euler integral of ϕ is defined as∫

X

ϕdχc(x) =
∑
i∈I

miχc(Xi).

Definition 2.1. Let f : X → Y be a continuous semi-algebraic map and let
ϕ : X → Z be a constructible function. The push forward f∗ϕ of ϕ along f is the
function f∗ϕ : Y → Z defined by

f∗ϕ(y) =

∫
f−1(y)

ϕdχc(x).

Theorem 2.2. (Fubini’s theorem) Let f : X → Y be a continuous semi-algebraic
map and let ϕ be a constructible function on X. Then, we have∫

Y

f∗ϕdχc(y) =

∫
X

ϕdχc(x).

Corollary 2.3. Let X, Y be semi-algebraic sets and let f : X → Y be a continuous
semi-algebraic map. Then

χc(X) =

∫
Y

χc(f
−1(y))dχc(y).

2.2. Stratified critical points and values. Let us consider from now on a closed
semi-algebraic set X ⊂ Rn. It is equipped with a finite semi-algebraic Whitney
stratification X = ta∈ASa. Let F : Rn → R be a C2-semi-algebraic function and
let f = F|X .

Definition 2.4.

(1) A point p ∈ X is a critical point of f if it is a critical point of F|S(p), where
S(p) is the stratum that contains p.
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(2) A point c ∈ R is a critical value if there exists p ∈ f−1(c) such that p is a
critical point of f .

(3) If p is an isolated critical point of f , we define the index of f at p by

ind(f,X, p) = 1− χ({f = f(p)− δ} ∩Bε(p)),
where 0 < δ � ε� 1.

Let us notice that if X = Rn, by [9], ind(f,X, p) = degp∇f .

Lemma 2.5. The set of critical points of f , Σf , is a closed semi-algebraic subset
of X and its set of critical values, ∆f , is finite.

Proof. To prove that Σf is closed we use Whitney’s condition (a) and to prove that
∆f is finite we use the Bertini-Sard Theorem ([2]). �

The following result gives a relation between the Euler characteristic of X and
the indices of the pi’s, when X is compact.

Theorem 2.6. ([3], Theorem 3.1) If X is compact and f has a finite number of
critical points p1, . . . , pl, we have

χ(X) =

l∑
i=1

ind(f,X, pi).

Now, we give some lemmas that we will use later on. For the proofs we refer to
[3]. We assume that f has a finite number of critical points p1, p2, . . . , pl.

Lemma 2.7. If δ < 0 is a small regular value of f and R� 1 is such that f−1(0)∩
BR is a retract by deformation of f−1(0), then

χ(f−1(δ) ∩BR) = χ(f−1(0))−
∑

pi∈f−1(0)

ind(f,X, pi).

Lemma 2.8. If f is proper then for any α ∈ R, we have

χ({f ≥ α})− χ({f = α}) =
∑

i:f(pi)>α

ind(f,X, pi).

The following lemma is a consequence of Lemma 2.8 and the Mayer-Vietoris
sequence.

Lemma 2.9. If f is proper then for α and α′ with α < α′, we have

χ({α ≤ f ≤ α′})− χ({f = α}) =
∑

i:α<f(pi)≤α′
ind(f,X, pi).

Let g : Rn → R be a C2-semi-algebraic function such that g−1(0) intersects X
transversally. Let us suppose that f|X∩{g≤0} admits an isolated critical point p in
X ∩{g = 0} which is not a critical point of f . We say that such a point is a correct
critical point. If S denotes the stratum of X that contains p, this implies that

∇(f|S)(p) = λ(p)∇(g|S)(p),

with λ(p) 6= 0.

Lemma 2.10. For 0 < δ � ε� 1, we have

χ(f−1(−δ) ∩Bε(p) ∩X ∩ {g ≤ 0}) = 1,

if λ(p) > 0 and

χ(f−1(−δ) ∩Bε(p) ∩X ∩ {g ≤ 0}) = χ(f−1(−δ) ∩Bε(p) ∩X ∩ {g = 0}),
if λ(p) < 0.
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Remark 2.11. As a consequence of the last lemma and the definition of the index
of a critical point p, we get that

ind(f,X ∩ {g ≤ 0}, p) = 0,

if λ(p) > 0, and

ind(f,X ∩ {g ≤ 0}, p) = ind(f,X ∩ {g = 0}, p),

if λ(p) < 0.

2.3. Link at infinity and adapted radius. For any closed semi-algebraic set
equipped with a Whitney stratification X = tα∈ASα, we denote by Lk∞(X) the
link at infinity of X. It is defined as follows. Let ω : Rn → R be a C2 proper
semi-algebraic positive function. Since ω|X is proper, the set of critical points of
ω|X (in the stratified sense) is compact. Hence for R sufficiently big, the map

ω : X ∩ ω−1([R,+∞[) → R is a stratified submersion. The link at infinity of X is
the fibre of this submersion. The topological type of Lk∞(X) does not depend on
the choice of the function ω (for instance, see [3], Section 3).

Definition 2.12. We will say that R > 0 is an adapted radius for X if D :
X ∩D−1([R,+∞[)→ R is a stratified submersion, where D is the euclidean norm.

Remark 2.13. We note that if R is an adapted radius for X then Lk∞(X) is
homeomorphic to X ∩ SR′ , for R′ ≥ R.

2.4. Asymptotic non-ρ-regular values. Let ρ(x) = 1 + 1
2 (x2

1 + · · ·+ x2
n). Note

that ∇ρ(x) = x, ρ(x) ≥ 1 and the levels of ρ are the spheres of radius greater than
or equal to 1. Let Γf,ρ be the polar set

Γf,ρ =
{
x ∈ Rn | rank[∇f|S(x),∇ρ|S(x)] < 2

}
,

where S is the stratum that contains x. We have Σf ⊂ Γf,ρ.

Definition 2.14. The set of asymptotic non-ρ-regular values of f is the set defined
as follows:

Λf = {α ∈ R | ∃{xn}n∈N ∈ Γf,ρ such that |xn| → +∞ and f(xn)→ α}.

The set Λf was introduced and studied by Tibăr [14] when X = Rn and f :
Rn → R is a polynomial. By Lemma 2.2 in [3], we can assume that Γf,ρ \ Σ(f) is
a curve and so, that Λf is a finite set {d1, d2 . . . , dm}.

2.5. Some others sets of special values. We define four sets of special values.
They are values where some changes in the topology of the fibres of f may occur.

Definition 2.15. Let ∗ ∈ {≤,=,≥}.
(1) We define Λ∗f by

Λ∗f = {α ∈ R | β 7→ χ(Lk∞({f ∗ β})) is not constant

in a neighborhood of α}.
(2) We define B̃(f) by B̃(f) = ∆f ∪ Λ≤f ∪ Λ≥f .

Proposition 2.16.

(1) The sets Λ∗f and B̃(f) are finite. Moreover Λ=
f ⊂ Λ≤f ∪ Λ≥f .

(2) If α /∈ B̃(f), the functions

β 7→ χ({f ∗ β}), ∗ ∈ {≤,=,≥},

are constant in a neighborhood of α.
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Proof. The first point is proved in [3]. Let α /∈ B̃(f) and let α− < α be a value
close enough to α. Let Rα (resp. Rα−) be an adapted radius for f−1(α) (resp.
f−1(α−)). We can choose them in such a way that they are also adapted to {f ≤ α}
and {f ≤ α−} respectively. The critical points of f|{α−<f<α}∩BR

α−
can only lie on

SRα− , and they point outwards. By Lemma 2.9, this implies that

χ({f ≤ α−}) = χ({f ≤ α}),

because Rα− is also adapted for {f ≤ α}.
Similarly, we can consider the critical points of −f|{α−<f<α}∩BR

α−
. Applying

Lemma 2.9 twice, we obtain that

χ({f ≥ α−})− χ({f ≥ α}) = χ(Lk∞({f ≥ α−}))− χ(Lk∞({f ≥ α})) = 0,

since α /∈ Λ≥f . By the Mayer-Vietoris sequence, we see that

χ({f = α−}) = χ({f = α}).

The same proof works for α+ > α, a value close enough to α. �

Remark 2.17. Taking into account Proposition 2.16 and basic properties of χc, if
we have inclusions

Λ∗f ⊂ {c1, c2, . . . , cs},
with c1 < c2 < · · · < cs and

B̃(f) ⊂ {d1, d2, . . . , dk},

with d1 < d2 < · · · < dk, we can express the Euler integral
∫
R χ(Lk∞(X ∩ {f ∗

t}))dχc(t) as∫
R
χ(Lk∞(X∩{f ∗t}))dχc(t) =

s∑
i=1

χ(Lk∞(X∩{f ∗ci}))−
s∑
i=0

χ(Lk∞(X∩{f ∗c+i })),

the Euler integral
∫
R χ(X ∩ {f ∗ t})dχc(t) as∫

R
χ(X ∩ {f ∗ t})dχc(t) =

k∑
j=1

χ(X ∩ {f ∗ dj})−
k∑
j=0

χ(X ∩ {f ∗ d+
j }),

and the Euler integral
∫
R χc(X ∩ {f ∗ t})dχc(t) as∫

R
χc(X ∩ {f ∗ t})dχc(t) =

k∑
j=1

χc(X ∩ {f ∗ dj})−
k∑
j=0

χc(X ∩ {f ∗ d+
j }),

where c0, d0 = −∞, cs+1 = +∞, dk+1 = +∞, c+i ∈]ci, ci+1[ and d+
j ∈]dj , dj+1[.

3. Formulas for the Euler characteristic of a closed semi-algebraic
set in the general case

Let X be a closed semi-algebraic set, equipped with a finite semi-algebraic Whit-
ney stratification X = ta∈ASa. Let F : Rn → R be a C2 semi-algebraic function.
We call f = F|X , the restriction of F to X. Let ∆(f) = {c1, c2, . . . , ck} be the set
of critical values of f .

Let ci be a critical value of f . The partition f−1(ci) = ta∈Af−1(ci) ∩ Sa may
not be a Whitney stratification, but since Whitney conditions are stratifying, we
can refine it in order to get a Whitney stratification f−1(ci) = tb∈BTB of f−1(ci)
such that

X = ta∈A(Sa \ f−1(ci))
⊔
tb∈BTB

is still a Whitney stratification of X.



Semi-algebraic functions with non-compact critical set 7

Definition 3.1. We define the index of a critical value ci of f as

indg(f,X, f
−1(ci)) = χ(f−1(ci))− χ(f−1(ci − α) ∩BRci )

with 0 < α� 1 and Rci is an adapted radius for f−1(ci).

Theorem 3.2. We have

χ(X) =

k∑
i=1

indg(f,X, f
−1(ci))−

∫
R
χ(Lk∞({f ≤ t}))dχc(t).

Proof. By Hardt’s theorem [8], there exists a finite set ∆̃f ⊂ R such that over each

connected component of R \ ∆̃f , f is a semi-algebraic trivial fibration. Let us write

Λf ∪ B̃f ∪ ∆̃f = {b1, . . . , bl},
where b1 < · · · < bl.

Note that, by Lemma 2.7, indg(f,X, f
−1(bj)) = 0 if bj /∈ ∆(f).

By Corollary 2.3, we have

χc(X) =

∫
R
χc(f

−1(t))dχc(t) =
l∑

j=1

(χc(f
−1(bj)− χc(f−1(b−j ))− χc(f−1(b+l )),

where b−j = bj − α and b+j = bj + α, with 0 < α� 1.
To compute the right-hand side of the above equality, we work with each differ-

ence χc(f
−1(bj)−χc(f−1(b−j )) for j = 1, . . . , l. Let us set b−j = b− and bj = b with

b− = b − δ, 0 < δ � 1
Rb−

, where Rb− > Rb � 1 are adapted radius for f−1(b−)

and f−1(b). We have

χc(f
−1(b))− χc(f−1(b−))

= χ(f−1(b))− χ(Lk∞(f−1(b))− χ(f−1(b−) ∩BRb) + χ(f−1(b−) ∩ SRb)
−χc(f−1(b−) ∩ {|x| ≥ Rb})

= indg(f,X, f
−1(b))−χ(Lk∞(f−1(b))+χ(f−1(b−)∩SRb)−χc(f−1(b−)∩{|x| ≥ Rb}).

As explained above, we can assume that f−1(b) is a union of strata of our
stratification. If Rb is sufficiently big and b− is sufficiently close to b, then the
(stratified) critical points of −ρ|{b−≤f≤b} lying in {Rb ≤ ρ ≤ Rb−} appear on

{f = b−}. Moreover they are correct and points outwards (Figure 1).
Therefore, by Lemmas 2.9 and 2.10, we have

χ({Rb ≤ |x| ≤ Rb−} ∩ {b− ≤ f ≤ b})

= χ({b− ≤ f ≤ b}∩SRb− ) = χ({f ≤ b}∩SRb− )−χ({f ≤ b−}∩SRb− )+χ({f = b−}∩SRb− )

= χ(Lk∞({f ≤ b}))− χ(Lk∞({f ≤ b−})) + χ(Lk∞({f = b−})),
applying the Mayer-Vietoris sequence and the definition of the link at infinity.

Let us compute χ({Rb ≤ |x| ≤ Rb−} ∩ {b− ≤ f ≤ b}) in another way. Let b̃ be

a regular value of f such that b− < b̃ < b and f|{Rb≤|x|≤Rb−} has no critical point

on {b̃ ≤ f < b}. This implies that f−1(b) ∩ {Rb ≤ |x| ≤ Rb−} is a deformation

retract of {Rb ≤ |x| ≤ Rb−} ∩ {b̃ ≤ f ≤ b}. Applying the same argument as
above, considering the function f|{Rb≤|x|≤Rb−} and applying Lemmas 2.9 and 2.10,
we obtain that

χ({b− ≤ f ≤ b̃} ∩ {Rb ≤ |x| ≤ Rb−}) = χ({f = b−} ∩ {Rb ≤ |x| ≤ Rb−}).
By the Mayer-Vietoris sequence and the deformation retract argument, we get that

χ({b− ≤ f ≤ b} ∩ {Rb ≤ |x| ≤ Rb−}) = χ({f = b−} ∩ {Rb ≤ |x| ≤ Rb−})

+χ({f = b} ∩ {Rb ≤ |x| ≤ Rb−})− χ({f = b̃} ∩ {Rb ≤ |x| ≤ Rb−}).
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Figure 1

Moreover if we choose b̃ close enough to b, then the intersection

Γf,ρ \ Σf ∩ [f−1([b̃, b]) ∩ {Rb ≤ |x| ≤ Rb−}]
is empty (see Figure 2).

Figure 2

This implies that

χ({f = b̃} ∩ {Rb ≤ |x| ≤ Rb−}) = χ({f = b̃} ∩ SRb).
Finally we obtain that

χ({b− ≤ f ≤ b} ∩ {Rb ≤ |x| ≤ Rb−}) = χ({f = b−} ∩ {Rb ≤ |x| ≤ Rb−})
+χ(Lk∞(f−1(b)))− χ({f = b′} ∩ SRb).
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Comparing the two expressions for χ({Rb ≤ |x| ≤ Rb−} ∩ {b− ≤ f ≤ b}) leads to

χ({f = b−} ∩ {Rb ≤ |x| ≤ Rb−) = χ(Lk∞({f ≤ b}))− χ(Lk∞({f ≤ b−}))

+χ(Lk∞({f = b−}))− χ(Lk∞(f−1(b))) + χ({f = b′} ∩ SRb).
Then we can write

χc({f = b−} ∩ {|x| ≥ Rb}) = χ({f = b−} ∩ {|x| ≥ Rb})− χ(Lk∞(f−1(b−)))

= χ({f = b−} ∩ {Rb ≤ |x| ≤ Rb−})− χ(Lk∞(f−1(b−)))

= χ(Lk∞({f ≤ b}))− χ(Lk∞({f ≤ b−}))− χ(Lk∞(f−1(b))) + χ({f = b′} ∩ SRb).
Finally we obtain

χc(f
−1(b))− χc(f−1(b−)) = indg(f,X, f

−1(b))

−χ(Lk∞({f ≤ b})) + χ(Lk∞({f ≤ b−})),
and so

χc(X) =

l∑
j=1

indg(f,X, f
−1(bj))−

l∑
i=1

χ(Lk∞({f ≤ bj}))

+

l∑
i=1

χ(Lk∞({f ≤ b−j }))− χc(f
−1(b+l )).

Let Rb+l
be an adapted radius for f−1(b+l ). We can write

χc(f
−1(b+l )) = χ(f−1(b+l ) ∩BR

b
+
l

)− χ(Lk∞(f−1(b+l )))

= χ({f ≥ b+l } ∩BRb+
l

)− χ(Lk∞(f−1(b+l ))),

because by Lemma 2.8, χ(f−1(b+l ) ∩BR
b
+
l

) = χ({f ≥ b+l } ∩BRb+
l

). Hence,

χc(f
−1(b+l )) = χ({f ≥ b+l })− χ(Lk∞(f−1(b+l ))) =

χc({f ≥ b+l }) + χ(Lk∞({f ≥ b+l }))− χ(Lk∞(f−1(b+l ))).

But since χc([bl+ ,+∞[) = 0 and f|[bl+ ,+∞[ is a trivial fibration, we get that χc({f ≥
b+l }) = 0. We conclude that

χc(f
−1(b+l )) = χ(Lk∞(X))− χ(Lk∞({f ≤ b+l })),

by the Mayer-Vietoris sequence.
Putting b+l = b−l+1, where bl+1 = +∞, we have

χc(X) = χ(X)− χ(Lk∞(X)) =

l∑
j=1

indg(f,X, f
−1(bj))−χ(Lk∞(X))+

l+1∑
i=1

χ(Lk∞({f ≤ b−j }))−
l∑
i=1

χ(Lk∞({f ≤ bj})) =

l∑
j=1

indg(f,X, f
−1(bj))− χ(Lk∞(X))−

∫
R
χ(Lk∞({f ≤ t}))dχc(t),

obtaining the desired result.
�

Corollary 3.3. If f has a finite number of critical points p1, p2, . . . , pl then

χ(X) =

l∑
i=1

ind(f,X, pi)−
∫
R
χ(Lk∞({f ≤ t}))dχc(t).
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Proof. Let bi be a critical value such that f−1(bi) has a finite number of singularities
p1, . . . , pri . By Lemma 2.7, we know that

ri∑
i=1

ind(f,X, pi) = χ(f−1(bi))− χ(f−1(b−i ) ∩BRbi )

where Rbi is an adapted radius for f−1(bi). �

Corollary 3.4. We have

χ(X) =

k∑
i=1

indg(−f,X, f−1(ci))−
∫
R
χ(Lk∞({f ≥ t}))dχc(t).

Proof. By replacing f by −f and applying an analogous procedure as in the last
theorem, we arrive to the desired result. �

Corollary 3.5. We have
2χ(X)− χ(Lk∞(X))

=

l∑
i=1

indg(f,X, f
−1(ci)) +

l∑
i=1

indg(−f,X, f−1(ci))

−
∫
R
χ(Lk∞({f = t}))dχc(t).

Proof. It follows from Theorem 3.2 and Corollary 3.4 by applying the Mayer-
Vietoris sequence. �

Lemma 3.6. We have
∫
R χc({f ≤ t})dχc(t) = 0.

Proof. Let us take b in Λf ∪ B̃f ∪ ∆̃f and b+ = b + δ, with δ > 0 small enough, a
regular value. Since f|X∩]b,b+] is trivial and χc(]b, b

+]) = 0, we conclude that

χc({f ≤ b+})− χc({f ≤ b}) = χc({α < f ≤ b+}) = 0.

Therefore, ∫
R
χc({f ≤ t})dχc(t) =

l∑
j=1

χc({f ≤ bi})−
l∑

j=0

χc({f ≤ b+i })

= −χc({f ≤ b+0 }) = 0.

�

Corollary 3.7. We have

χ(X) =

k∑
i=1

indg(f,X, f
−1(ci))−

∫
R
χ({f ≤ t})dχc(t).

Proof. We have

χ(X) =

k∑
i=1

indg(f,X, f
−1(ci))−

∫
R
χ(Lk∞({f ≤ t}))dχc(t),

and ∫
R
χc({f ≤ t})dχc(t) =

∫
R
χc({f ≤ t} ∩BRt)dχc(t)

−
∫
R
χc(Lk∞({f ≤ t}))dχc(t) = 0.

Then, ∫
R
χ({f ≤ t})dχc(t) =

∫
R
χ({f ≤ t} ∩BRt)dχc(t)
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=

∫
R
χc({f ≤ t} ∩BRt)dχc(t) =

∫
R
χ(Lk∞({f ≤ t}))dχc(t),

arriving to the desired result. �

Corollary 3.8. We have

χ(X) =

k∑
i=1

indg(−f,X, f−1(ci))−
∫
R
χ({f ≥ t})dχc(t).

Proof. By replacing f by −f and applying an analogous procedure as in the last
corollary, we arrive to the desired result. �

Corollary 3.9. We have

χ(X) =

k∑
i=1

indg(f,X, f
−1(ci)) +

k∑
i=1

indg(−f,X, f−1(ci))−
∫
R
χ({f = t})dχc(t).

Proof. It follows from the last two corollaries by applying the Mayer-Vietoris se-
quence. �

Remark 3.10. Since indg(f,X, f
−1(t)) = 0 if t is not a critical value of f , we

can replace
∑k
i=1 indg(±f,X, f−1(ci)) with

∫
R indg(±f,X, f−1(t))dχc(t) in all our

statements.

Application 3.11. Let us apply these results to the case of a function given as the
quotient of two semi-algebraic functions. Let f, g : X → R be two semi-algebraic
functions, where X a closed semi-algebraic set and f (resp. g) is the restriction
to X of a C2 semi-algebraic function F (resp. G). We consider their quotient
φ := f/g : X \ V (g) → R which is also a semi-algebraic function. Let Y be the
following closed semi-algebraic set:

Y = {(x, y) ∈ X × R | f(x)− yg(x) = 0}.
We cannot apply Corollary 3.9 since φ is not defined in X, so we work with Y to
obtain a formula for the sum of the global indices of the function φ.

Let y : Y → R be the linear function defined by y(x, y) = y. By applying
Corollary 3.9, we have that

χ(Y ) =

∫
R

indg(y, Y, y
−1(t))dχc(t) +

∫
R

indg(−y, Y, y−1(t))dχc(t)

−
∫
R
χ(Y ∩ {y = t})dχc(t).

We have that, if t 6= 0,

Y ∩ {y = t} = {(x, t) | f(x)− tg(x) = 0} = {x | φ(x) = t} t {f = g = 0},
and so,

χ(Y ∩ {y = t}) = χ({φ(x) = t}) + χ({f = g = 0}).
When t = 0, we have that

Y ∩ {y = 0} = {x | f(x) = 0},
and so,

χ(Y ∩ {y = 0}) = χ({f = 0}).
Let us study the global index of y at the non-zero critical value t. We recall that

indg(y, Y, y
−1(t)) = χ(Y ∩ y−1(t))− χ(Y ∩ y−1(t− α) ∩BRt),

where Rt is an adapted radius for y−1(t) and 0 < α� 1
Rt

.
We have

(x, t) ∈ Y ∩ y−1(t)⇔ f(x)− tg(x) = 0⇔
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φ(x) = t if g(x) 6= 0,

f(x) = 0 if g(x) = 0,

then,
χ(Y ∩ y−1(t)) = χ({φ = t}) + χ({f = g = 0}).

Let us study χ(Y ∩ y−1(t− α) ∩BRt). We have

(x, t− α) ∈ Y ∩ y−1(t) ∩BRt ⇔

{
f(x)− (y0 − α)g(x) = 0

|(x, t− α)| ≤ Rt
⇔

{
φ(x) = t− α, |x| ≤

√
R2
t − (t− α)2 if g(x) 6= 0

f(x) = 0 if g(x) = 0
.

If Rt is big enough and α small enough, then R̃ =
√
R2
t − (t− α)2 is an adapted

radius for {φ = t} and {f = g = 0}. Therefore we have

χ(Y ∩ y−1(t) ∩BRt) = χ(φ = t− α) ∩BR̃) + χ({f = g = 0} ∩BR̃).

Finally, we get

χ(Y ) =

∫
R∗

indg(φ,X, φ
−1(t))dχc(t) +

∫
R∗

indg(−φ,X, φ−1(t))dχc(t)+

indg(y, Y, y
−1(0)) + indg(−y, Y, y−1(0))− χ({f = 0})

+2χ({f = g = 0})−
∫
R∗
χ(X ∩ {φ = t})dt.

Let us suppose thatX = Rn and that {f = 0} and {g = 0} intersect transversally
and that {f = 0} is regular. This implies that Y is smooth and 0 is a regular value
of y. In this case, we get

χ(Y ) =

∫
R∗

indg(φ,X, φ
−1(t))dχc(t) +

∫
R∗

indg(−φ,X, φ−1(t))dχc(t)

−χ({f = 0}) + 2χ{(f = g = 0})−
∫
R∗
χ({φ = t})dt.

4. New indices at infinity

We recall that Λf is defined by

Λf = {α ∈ R | ∃(xn)n∈N ∈ Γf such that |xn| → +∞ and f(xn)→ α},
and that it is a finite set {d1, d2 . . . , dm}.

Definition 4.1. We define the right index at infinity of di as

ind+
∞(f,X, f−1(di)) = χ(f−1(d+

i ))− χ(f−1(d+
i ) ∩BRdi ).

Analogously, we define the left index at infinity of di as

ind−∞(f,X, f−1(di)) = χ(f−1(d−i ))− χ(f−1(d−i ) ∩BRdi ),

where d+
i = di + α, d−i = di − α with 0 < α� 1 and Rdi is an adapted radius for

f−1(di).

Example 4.2. Let us consider the Broughton polynomial f(x, y) = y(xy − 1)
defined on X = R2.

We have that Λf = {0} and

ind+
∞(f,R2, f−1(0)) = χ(f−1(δ))− χ(f−1(δ) ∩BR0

) = 2− 3 = −1,

ind−∞(f,R2, f−1(0)) = χ(f−1(−δ))− χ(f−1(−δ) ∩BR0
) = 2− 3 = −1,

with R0 an adapted radius for 0 and 0 < δ � 1 (see Figure 3).
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Example 4.3. (Tibăr-Zaharia, [13]) Let us consider the polynomial f(x, y) =
x2y2 + 2xy + (y2 − 1)2 defined on X = R2. We have that 0 ∈ Λf and

ind+
∞(f,R2, f−1(0)) = χ(f−1(δ))− χ(f−1(δ) ∩BR0

) = 2− 2 = 0,

ind−∞(f,R2, f−1(0)) = χ(f−1(−δ))− χ(f−1(−δ) ∩BR0
) = 0− 0 = 0,

with R0 an adapted radius for 0 and 0 < δ � 1 (see Figure 4).
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By Proposition 2.16, there exists a finite set {e1, e2, . . . , es} such that the function
t 7→ χ(f−1(t)) is locally constant on R \ {e1, e2, . . . , es}.

Theorem 4.4. We have

χ(X) =

m∑
i=1

(ind+
∞(f,X, f−1(di)) + ind−∞(f,X, f−1(di))) +

∫
[e1,es]

χ(f−1(t))dχc(t).

Proof. We recall that

Λf ∪ B̃f ∪ ∆̃f = {b1, . . . , bl},
First of all, note that, by the definition of the indices at infinity,

ind+
∞(f,X, f−1(bi)) = ind−∞(f,X, f−1(bi)) = 0,

if bi /∈ Λ(f) and that

indg(−f,X, f−1(bi)) = indg(f,X, f
−1(bi)) = 0,

if bi /∈ ∆(f).

By Corollary 3.9, we have

χ(X) =

l∑
j=1

indg(f,X, f
−1(bi)) +

l∑
j=1

indg(−f,X, f−1(bi))−
∫
R
χ({f = t})dχc(t).
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By definition,

indg(f,X, f
−1(bi)) = χ(f−1(bi))− χ(f−1(b−i ) ∩BRbi ).

Therefore, we have

χ(X) =

l∑
i=1

(
2χ((f−1(bi))− χ(f−1(b−i ) ∩BRbi )− χ(f−1(b+i ) ∩BRbi )

)

+

l∑
i=1

(
χ((f−1(b−i )) + χ((f−1(b+i ))

)
−

l∑
i=1

χ((f−1(bi))−
l−1∑
i=1

χ((f−1(b+i ))

=

l∑
i=1

χ((f−1(bi)) +

m∑
i=1

(
ind+
∞(f,X, f−1(di)) + ind−∞(f,X, f−1(di))

)
−
l−1∑
i=1

χ((f−1(b+i )) =

m∑
i=1

(
ind+
∞(f,X, f−1(di)) + ind−∞(f,X, f−1(di))

)
+

∫
[b1,bl]

χ(f−1(t))dχc(t).

To conclude, we remark that∫
[b1,e1[

χ(f−1(t))dχc(t) = 0,

if b1 < e1 and ∫
]el,bl]

χ(f−1(t))dχc(t) = 0,

if el < bl.
�

5. Relations with functions with compact critical set

We recall that ρ(x) = 1 + 1
2 (x2

1 + · · ·+ x2
n) and that

Γf,ρ = {x ∈ Rn | rank[∇f(x),∇ρ(x)] < 2} .
Note that ∇ρ(x) = x and ρ(x) ≥ 1. We have Σf ⊂ Γf,ρ.
Let Λf = {d1, d2 . . . , dm}.

Lemma 5.1. There is k ∈ N such that for all i ∈ {1, 2, . . . ,m}, for all x ∈
Γf,ρ \ f−1(di),

|f(x)− di| >
1

ρ(x)k
, 1 ≤ i ≤ m,

for |x| � 1.

Proof. Note that 1 is the greatest critical value of ρ. We set S̃r = ρ−1(r). Let
β :]1,+∞[→ R be defined by

β(r) = inf
{
|f(x)− di| | x ∈ S̃r ∩ (Γf,ρ \ f−1(di))

}
.

The function β is semi-algebraic. Furthermore β > 0 because for r > 1, f|S̃r has a

finite number of critical values. Thus the function 1
β is also semi-algebraic. Hence

there exist r1 ≥ 1 and k0 ∈ N such that 1
β < rk, for r ≥ r1 and k ≥ k0. This implies

that β(r) > 1
rk

for r ≥ r1 and k ≥ k0. We can conclude that for r ≥ r1 and k ≥ k0,

|f(x)− di| >
1

ρ(x)k
,

for x ∈ S̃r ∩ (Γf,ρ \ f−1(di)). �
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Let G−(x) = F (x)− 1
ρ(x)k

and let g− = G−|X .

Lemma 5.2. We have Λf = Λg−

Proof. By definition of g−(x), we have that Γf,ρ = Γg−,ρ. So if {xn} is a sequence
of points in Γf,ρ such that {xn} → ∞ then {f(xn)} → di if and only if {g−(xn)} →
di �

Lemma 5.3. For R� 1, χ({g− ≤ di} ∩ S̃R) = χ({f ≤ di} ∩ S̃R).

Proof. Let R� 1 be such that for all x ∈ (Γf,ρ\f−1(di))∩{ρ(x) ≥ R}, |f(x)−di| >
1

ρ(x)k
. Set N≤f = {x ∈ S̃R | f(x) ≤ di} and N≤g− = {x ∈ S̃R | g−(x) ≤ di}. For

x ∈ S̃R, we have

g−(x) ≤ di ⇔ f(x)− 1

Rk
≤ di ⇔ f(x) ≤ di +

1

Rk
,

and so N≤f ⊂ N≤g− . Furthermore if 0 < f(x)− di ≤ 1
Rk

then x /∈ Γf,ρ \ f−1(di) and

therefore {f(x) ≤ di + 1
Rk
} ∩ S̃R retracts by deformation to {f(x) ≤ di} ∩ S̃R. We

get the result. �

Corollary 5.4. We have χ(Lk∞({g− ≤ di})) = χ(Lk∞({f ≤ di})).
Lemma 5.5. Let α /∈ Λf . We have χ(Lk∞({g− ≤ α})) = χ(Lk∞({f ≤ α})).
Proof. Let us study first the case when α belongs to an interval of R \Λf bounded
from above. We can assume that 0 ∈ Λf and that b < 0 is the greatest negative
element of Λf (b can be −∞).

Let α be such that b < α < 0. We can find Rb � 1 such that b < 1
2 + 1

Rkb
< 0.

If {xn} ⊆ Γg−,ρ is a sequence such that b < g−(xn) ≤ 1
2α, then {g−(xn)} → b. If

ρ(xn) ≥ Rb then f(xn) = g−(xn) + 1
ρ(xn)k

≤ g−(xn) + 1
Rkb
≤ 1

2α + 1
Rkb

< 0. Then,

{f(xn)} tend to b as well. As a consequence, there exists R0 � 1 such that for all

R ≥ R0 and x ∈ S̃R ∩ Γg−,ρ ∩ {g− ≤ 1
2α} , f(x) ≤ b+α

2 and g−(x) ≤ b+α
2 .

To conclude, we have that Lk∞({g− ≤ α}) is homeomorphic to {g− ≤ α} ∩ S̃R,

Lk∞({f ≤ α}) is homeomorphic to {f ≤ α} ∩ S̃R, and that

{g− ≤ α} ∩ S̃R = {f ≤ α+
1

Rk
} ∩ S̃R

is homeomorphic to {f ≤ α} ∩ S̃R, since S̃R ∩ Γf,ρ ∩ {α ≤ f ≤ α+ 1
Rk
} = ∅.

Similarly if α belongs to the interval of R \Λf not bounded from above, we can
suppose that 0 is the biggest bifurcation value and that α > 0. The proof is the
same, replacing {g− ≤ b+α

2 } with {g− ≥ α
2 } and taking R such that α+ 1

Rk
< 2α.

�

Let g+(x) = f(x) + 1
ρ(x)k

. Note that Λf = Λg+ .

Lemma 5.6. For R� 1, χ({g+ ≥ di} ∩ S̃R) = χ({f ≥ di} ∩ S̃R).

Corollary 5.7. We have χ(Lk∞({g+ ≥ di})) = χ(Lk∞({f ≥ di})).
Lemma 5.8. Let α /∈ Λf . We have χ(Lk∞({g+ ≥ α})) = χ(Lk∞({f ≥ α})).
Lemma 5.9. The sets (∇g−)−1(0) and (∇g+)−1(0) are compact.

Proof. Let us suppose that (∇g−)−1(0) is not compact. Therefore, there exists α
a critical value of g− such that (∇g−)−1(0) ∩ g−1

− (α) is not compact. Then, there

exists {xn} ⊂ (∇g−)−1(0) ∩ g−1
− (α) such that {xn} → ∞. Then {f(xn)} → α and

0 = ∇f(xn) + k
ρk+1(xn)

∇ρ(xn). This implies that xn ∈ Γf,ρ \ f−1(α). Therefore α

is a bifurcation value of f and |f(xn)− α| = 1
ρk(xn)

, which contradicts Lemma 5.1.

�
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Corollary 5.10. We have∫
R
χ(Lk∞({g− ≤ t}))dχc(t) =

∫
R
χ(Lk∞({f ≤ t}))dχc(t),

and ∫
R
χ(Lk∞({g+ ≥ t}))dχc(t) =

∫
R
χ(Lk∞({f ≥ t}))dχc(t).

Corollary 5.11. We have∫
R

indg(f,X, f
−1(t))dχc(t) =

∫
R

indg(g−, X, g
−1
− (t))dχc(t),

and ∫
R

indg(−f,X, f−1(t))dχc(t) =

∫
R

indg(g+, X, g
−1
+ (t))dχc(t).

If X = Rn, we have that∫
R

indg(g−, X, g
−1
− (t))dχc(t) = deg∞∇g−,

so ∫
R

indg(f,X, f
−1(t))dχc(t) = deg∞∇g−.

Moreover, if W− is the vector field defined by W− = ρk+1∇f+∇ρ, then deg∞W− =
deg∞∇g− and so, ∫

R
indg(f,X, f

−1(t))dχc(t) = deg∞W−.

We can apply the same procedure to g+ and obtain a vector field W+. We note if
f is a polynomial then W− and W+ are polynomial vector fields. This gives global
versions of results of [6] and [11].
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