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With the advent of high-throughput sequencing technologies, the genomic platforms generate a vast amount of high dimensional 
genomic profiles. One of the fundamental challenges of genomic medicine is the accurate prediction of clinical outcomes from these 
data. Gene expression profiles are established to be associated with overall survival in cancer patients, and this perspective the univariate 
Cox regression analysis was widely used as primary approach to develop the outcome predictors from high dimensional transcriptomic 
data for ovarian cancer patient stratification. 
Recently, the classical Cox proportional hazards model was adapted to the artificial neural network implementation and was tested with 
The Cancer Genome Atlas (TCGA) ovarian cancer transcriptomic data but did not result in satisfactory improvement, possibly due to 
the lack of datasets of sufficient size. Nevertheless, this methodology still outperforms more traditional approaches, like regularized Cox 
model, moreover, deep survival models could successfully transfer information across diseases to improve prognostic accuracy. We aim 
to extend the transfer learning framework to “pan-gyn” cancers as these gynecologic and breast cancers share a variety of characteristics 
being female hormone-driven cancers and could therefore share common mechanisms of progression. 
Our first results using transfer learning show that deep survival models could benefit from training with multi-cancer datasets in the 
high-dimensional transcriptomic profiles. 
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1. Introduction 
The recent development of high-throughput sequencing 
technology and machine learning methodology resulted in 
a great progress in the field of oncology research based on 
genomic profiles. However, while the high-dimensional 
data generated, such as RNA-seq, keep growing, a real 
need for appropriate machine learning techniques, capable 
of dealing with mass data, has appeared. 

Ovarian cancer is a complex, heterogeneous genetic 
disease. Because of the high risk of recurrence in high-
grade serous ovarian carcinoma (HGS-OvCa), the 
development of outcome predictors is important not only 
for patient stratification but also to recognize categories of 
patients that are more likely to respond to particular 

therapies (Verhaak et al. 2012). The lack of successful 
treatment strategies for ovarian cancer led The Cancer 
Genome Atlas (TCGA) researchers to gather the HGS-
OvCa genomic profiles in order to identify molecular 
abnormalities that influence pathophysiology, affect 
outcome and constitute therapeutic targets (Bell et al. 
2011). 

Gene expression profiles are considered to reflect the 
cancer progression driven by mutations and epigenetic 
modifications. These profiles were established to be 
associated with overall survival and the study (Bell et al. 
2011) developed the prognostic signatures for ovarian 
cancer based on the TCGA microarray gene expression 
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profiles using a univariate Cox regression analysis, and 
validated them on external datasets. 

Recently, artificial neural networks (ANN) caught 
attention to solve problems with genomic profiles. 
(Yousefi et al. 2017; Ching, Zhu, and Garmire 2018) used 
ANN to construct survival models using the TCGA gene 
expression data. The authors (Ching, Zhu, and Garmire 
2018) used the high-throughput transcriptomic data of the 
different TCGA cancer types and compared survival 
methods such as regularized Cox model, Random Survival 
Forests, CoxBoost and the proposed Cox-nnet method. 
Their approach Cox-nnet gave satisfactory results for some 
cancer types, especially for TCGA Kidney Renal Cell 
Carcinoma (KIRC), and insufficient results for other types, 
for example, in the OV dataset. The study of (Yousefi et 
al. 2017) applied the ANN to the survival analysis of the 
TCGA-BRCA transcriptional and integrated features 
datasets, exploring at the same time the benefits of transfer 
learning with multi-cancer datasets. 

The objective of this work is to experiment the 
transfer learning strategy in the task of ovarian cancer 
prognostication with the up-to-date harmonized (aligned to 
hg38) RNA-sequencing (RNA-seq) data from the TCGA-
OV project in order to detect significant prognostic 
features. 

The outline of the paper is as follows: section 2 
presents the Cox survival analysis technique based on 
neural networks and the different aspects of deep learning, 
section 3 describes materials and methods and section 4 
present the results and discusses the future work. 
2. Survival analysis and deep learning 
2.1. Cox proportional hazards and neural networks 
Survival analysis, one of the statistics subfields, deals with 
the time-to-event as outcome. When the outcome is 
unknown during the observation period, it is called 
censoring and it is one of the major difficulties in survival 
analysis. Recently Wang et al (Wang, Li, and Reddy 2017) 
have created a taxonomy of different approaches in this 
branch of statistics, distinguishing the traditional statistical 
and machine learning methods. One of the commonly used 
statistical method is a semi-parametric Cox regression or 
Cox proportional hazards. In this model each data instance 
is described by a triplet (Xi,, ti,, δi), where Xi = (xi1, xi2, …, 
xiP) is the feature vector for instance i, ti is the observed 
time, time of failure if δi is 1 or right-censoring if δi is 0. 
We note here the number of observations N and the 
number of features P. In this framework the rate of event 
at time t given that no event occurred before time t, i.e. the 
hazard function is: 

h(t,Xi) = h0(t)exp( β) (1) 

where h0(t) is the baseline hazard function (an 
arbitrary nonnegative function of time), and βT = (β1, β2, 
…, βP) is the coefficient vector. To note that the features 
are assumed to have an exponential influence on the 
outcome but the baseline hazard function, h0(t), is 
unspecified, thus resulting in a semi-parametric model. 
This makes it impossible to fit the model using standard 
likelihood function, instead the partial likelihood is used: 

L(β) =
exp( β)

exp( β)i Rj

N
j=1

δj
 (2) 

where Rj is the set of indices, i, with yi ≥ tj (those at 
risk at time tj). The coefficient vector is estimated by 
maximizing this partial likelihood, or equivalently, 
minimizing the negative log-partial likelihood for 
improving efficiency: 

LL β = - δj
N
j=1 β-log exp( β)i Rj  (3) 

The extension of Cox regression with artificial neural 
networks was first proposed by (Faraggi and Simon 1995), 
who replaced the linear predictor of the Cox regression 
model, by a one hidden layer multilayer perceptron (MLP). 
This work was further explored by (Yousefi et al. 2017) 
(SurvivalNet), (Ching, Zhu, and Garmire 2018) (Cox-
nnet), (Katzman et al. 2018) (DeepSurv) and who 
proposed to incorporate the advances of deep learning 
framework and demonstrated that their methods 
outperform the classical Cox method. The linear predictors 
in their models become: 

θi=G(WXi+b)Tβ (4) 
where W is the coefficient weight matrix between the 

input and hidden layer of size H x P, H is the number of 
neurons in the hidden layer, b is the bias vector of size H 
and G is the nonlinear activation function. The partial log 
likelihood (3) can be written as: 

PL β, W = θj-log exp(θi)i Rjδj=1  (5) 

2.2. Regularization 
When applied to high-dimensional transcriptomic data, the 
major issue of this model is overfitting which can be 
overcome with the help of different regularization 
techniques such as ridge regularization, dropout, early 
stopping and to a lesser extent batch normalization. 

Adding the ridge regularization term to the partial log 
likelihood (5) gives the following cost function: 
 cost β, W =PL β, W + λ ||W||2+|| ||2  (6) 

where || ||2 designates L2 norm penalty function and λ is a 
regularization coefficient leading to a weight decay. 

In addition to ridge regularization, when using ANN 
it is common to employ dropout regularization(Srivastava 
et al. 2014). During training, this approach randomly 
zeroes some of the elements of the input with probability p 
(dropout rate or fraction). This has proven to be an 
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effective technique for regularization and preventing the 
co-adaptation of neurons as described in the paper (Hinton 
et al. 2012). 

Early stopping means stopping the training as soon as 
performance on a validation set starts to get worse. If 
regularization methods like weight decay that update the 
loss function to encourage less complex models are 
considered “explicit” regularization, then early stopping 
may be thought of as a type of “implicit” regularization, 
much like using a smaller network that has less capacity 
(Zhang et al. 2017). 

Batch normalization (also known as batch norm) is a 
method used to accelerate the training of artificial neural 
networks. It draws its power from normalizing activations, 
and from incorporating this normalization in the network 
architecture itself. It was proposed by (Ioffe and Szegedy 
2015) and offers small regularization effect as well. 
2.3. More data and transfer learning 
Another possibility to deal with a substantial 
generalization error is to get more data and apply transfer 
learning strategy as in the study of (Yousefi et al. 2017). 

Indeed, gynecologic cancers share a variety of 
characteristics, their development is influenced by female 
hormones, and they are managed by a particular medical 
specialty, gynecologic oncology as underlined by (Berger 
et al. 2018). In this study, the authors refer to the following 
multi-cancer group as “pan-gyn” and focus on five TCGA 
tumor types: high-grade serous ovarian 
cystadenocarcinoma (OV), uterine corpus endometrial 
carcinoma (UCEC), cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), uterine 
carcinosarcoma (UCS), and invasive breast carcinoma 
(BRCA). They found molecular features that differed in 
the “pan-gyn” group and the TCGA non-gynecologic 
tumor types. 

This lets us hypothesize that augmenting OV training 
data with other datasets from the “pan-gyn” group could 
improve OV prognostication. The transfer learning rule of 
thumb being that while adding more training data, the 
validation and training sets should still come from the 
same target distribution, OV cancer in our case. 

2.4 Automated hyperparameter optimization 
Deep neural networks’ prediction accuracy is highly 
dependable on many hyperparameters (number of layers, 
number and type of activation functions in each layer, and 
choices for optimization/regularization techniques). These 
details of algorithm tuning are crucial to judging whether a 
given technique is genuinely better, or simply better tuned. 

The naïve approach of the exhaustive grid search of 
the hyperparameters space is time consuming, so other , 
more intelligent strategies have appeared recently for 
automated hyperparameter optimization using Bayesian 
optimization supported by Sequential Model-Based Global 

Optimization (SMBO) methodology (Bergstra, Yamins, 
and Cox 2013; Martinez-Cantin 2014). 

SMBO algorithms have been used in many 
applications where evaluation of the fitness function is 
expensive. In an application where the true fitness 
function, as PL in our case, is costly to evaluate, model-
based algorithms approximate it with a surrogate that is 
cheaper to evaluate. A point that maximizes the surrogate 
becomes the proposal for where the true function PL 
should be evaluated, thus resulting in a fewer fitness 
function evaluations and a faster hyperparameter 
optimization (Bergstra, Yamins, and Cox 2013). 

3. Materials and methods 
3.1. Gene expression and clinical data 
TCGA RNA-sequencing data and clinical data were 
downloaded from Genomics Data Commons (GDC) portal 
(https://portal.gdc.cancer.gov/) using the pipeline of the 
R/Bioconductor package TCGAbiolinks (Colaprico et al. 
2016). The harmonized RNA-seq data (HTSeq counts) 
were normalized using the existing TCGAbiolinks 
normalization function which is recommended for 
differential expression analysis. 

Supplemental survival data were downloaded from 
the standardized dataset named the TCGA Pan-Cancer 
Clinical Data Resource (TCGA-CDR) (Liu et al. 2018). 
We merged the OV survival data from TCGA-CDR with 
the GDC clinical data. We made a choice to perform our 
tests on OS endpoint. The corresponding TCGA-CDR 
columns included OS for status and OS.time for time-to-
event data. OS column contained the value 0 encoding for 
alive (censored) status and 1 for deceased (failure) and 
OS.time contained numbers of days from the date of 
diagnosis to either the date of last follow up if OS was 0 or 
time to death if OS was 1. 

We downloaded the RNA-seq data for the following 
TCGA projects: TCGA-OV, TCGA-BRCA, TCGA-
UCEC, TCGA-CESC, TCGA-UCS. After merging RNA-
seq and clinical data and discarding cases without survival 
information, we obtained 372 samples for OV, 1076 for 
BRCA, 541 for UCEC, 291 for CESC, 55 for UCS. All the 
datasets contained 17,000 + gene expression features in 
common. 
3.2. Performance metric 
The widely used in survival analysis Concordance-index 
(C-index) measures the concordance between predicted 
risk score and observed survival time. This measure is 
computed for all comparable pairs in the test set and the 
number of times the predictions are concordant is 
summarized. The C-index value of 0.5 is equivalent to 
random guess and 1 is the perfect concordance, so higher 
C-index means better model performance. 

3.3. Data pre-processing 
For our tests, we (log2+1) transformed the 

normalized values and split our dataset into 5 folds using R 
package MTLR (Yu et al. 2011) thus constructing 5 
different splits into training and test sets with respectively 
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p

80% and 20% of samples for a further 5-fold cross-
validation. As the accuracy obtained on one test set could 
be very different from the accuracy obtained for a different 
test set, the widely used K-fold cross-validation technique 
ensures that each fold is used as a test set at some point 
and provides the solution to the reliability problem. The 
split was done using the stratification by the OS.time and 
OS features in order to have similar distributions of 
survival times and censoring in training and test sets. To 
compare the survival of training and test set splits, we 
plotted Kaplan-Meier curves and calculated the log-rank 
test p-value and concluded that the difference of survival 
between our generated training and test sets was not 
significant.In order to facilitate the training procedure, the 
training data were standardized to zero-mean and unit-
variance to comply with best practices for training deep 
learning algorithms. The training data included the 
samples from OV-only and different combinations of OV 
and the datasets among BRCA, UCEC, CESC and UCS. 
For our tests we used the DeepSurv implementation of the 
Python package pycox (Kvamme, Borgan, and Scheel 
2019).. 

3.4. Bayesian optimization 
For each of the 5 training sets, we performed 4-fold cross-
validation for hyperparameter automated search, only the 
OV dataset samples were used in the validation sets and 16 
different combinations of cancer types as optimization 
sets. We used python library hyperopt (Bergstra, Yamins, 
and Cox 2013) for Bayesian optimization with adaptive 
Tree of Parzen Estimators algorithm and the following 
search space: number of layers (1–8), layer width (8–
2048), dropout rate (0–0.6), weight decay (0-0.9), learning 
rate for Adam optimizer (Kingma and Ba 2017) (0.00001-
0.1) and activation function among ReLU (Nair and 
Hinton 2010), SELU (Klambauer et al. 2017), hyperbolic 
tangent (tanh), sigmoid function and a maximum of 200 
trials. 

The best network design was then used to re-train a 
deep survival model using the optimization and validation 
samples, and the C-index of this best model is reported 
using the held-out OV testing samples. We repeated this 
procedure 10 times for each test dataset. To compare the 
C-index values in different experiments, we performed 
Wilcoxon rank-sum tests and report the significant (<0.05) 
p-values. 

4. Results 
Transfer learning experiments showed that ANN survival 
models could benefit from training with multi-cancer 
datasets in the high-dimensional transcriptional data. The 
results of our tests are presented in the Fig. 1. Training 
with four combined datasets OV+BRCA+UCS, 
OV+CESC+UCS, OV+BRCA+UCEC+UCS, and 
OV+BRCA+UCEC+CESC+UCS resulted in the small but 
significant improvements to the ANN survival model 
(Wilcoxon rank-sum p-values respectively of 0.018, 0.02, 
0.0033 and 0.0045). Among these results, the best C-index 

gain of 2.1% was with OV+BRCA+UCEC+UCS 
combined dataset. 

The authors (Yousefi et al. 2017) noticed that 
prediction accuracy generally decreases as the proportion 
of right-censored samples in a dataset increases. We 
measured the censoring proportion in our datasets: OV 
(38.44%), BRCA (85.97%), UCEC (83.18%), CESC 
(75.26%) and UCS (38.18%). Interestingly, the UCS 
dataset with the smallest right-censoring proportion being 
present in all the four combined datasets with improved C-
index, the best or the most significant gains are still 
obtained with the datasets with bigger censoring 
proportions than the target OV dataset itself. We 
hypothesize that although genetic alterations and 
expression patterns are often strongly associated with 
primary disease site, the “pan-gyn” group is likely to share 
common mechanisms of progression and the improved 
performance of the deep survival models with augmented 
datasets could provide additional evidence of these 
mechanisms. 

 
Fig. 1. From left to right are the boxplots of the obtained 5-fold 
cross validation C-index on the OV test datasets. Higher C-index 
means better model performance. The horizontal bars in the 
boxes represent the median values, the boundaries of the boxes 
delimit lower and upper quartiles, the values outside the boxes 
are the lowest and the highest observations. The brackets show 
the significant Wilcoxon rank-sum test p-values. 
 

As a future work, there is as a strong need to interpret 
the biological meaning of the transcriptional features 
contributing to the survival patient stratification. However, 
it is important to understand, as underlined by (Berger et 
al. 2018), that the “pan-gyn” project possibilities should be 
considered as hypothesis-generators and are to be tested 
and validated in the follow-up studies. 

5. Conclusion 
In this paper, we have presented the Cox proportional 
hazards methodology and its implementation with the 
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artificial neural networks. We have discussed the different 
deep learning techniques such as regularization, automated 
optimization, meant to overcome the obstacles when 
dealing with the high-dimensional gene expression data 
and survival analysis. Since more data is another option to 
prevent the neural networks from overfitting, we have 
explored the transfer learning framework applied to the 
deep survival analysis with the TCGA ovarian RNA-seq 
data. According to our experiments, the deep survival 
models could benefit from training with the augmented 
multi-cancer datatsets, and more data could further 
improve the survival network performance. 
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