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Abstract: Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through 
its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The 
genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one 
man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not 
agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα 
(Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In 
C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, 
FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated 
perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production 
and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability 
through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent 
manner.

Editor's evaluation
Using multiple genetically modified mouse models, the authors have demonstrated a novel role 
of membrane associated estrogen receptor alpha (ERα) signaling to modulate flow-mediated 
dilation (FMD) in a ligand-independent manner. Specifically, the results indicate that non-nuclear 
actions of membrane estrogen receptor α in endothelial cells support flow-mediated vasodi-
latation in animals of both sexes via mechanisms that are independent of estrogenic ligands, 
involving NO production and an attenuation of the NO-inactivating effects of reactive oxygen 
species. These findings highlight a novel role of ligand-independent activation of membrane 
estrogen receptor α in regulation of vascular physiology and possibly in disease, adding to the 
recently introduced paradigm shift in the understanding of estrogen and estrogen receptor 
function.
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Introduction
Resistance arteries are the small blood vessels located upstream of capillaries. Alteration of their 
structures or functions can raise capillary pressure, which exacerbates organ damage due to cardio- 
and cerebro-vascular risk factors and associated organ disorders. The basal tone of resistance arteries 
allows for tight control of local blood flow. This tone results from the interaction between pressure-
induced smooth muscle contraction and flow-mediated dilation (FMD) due to the activation of 
endothelial cells by shear stress. FMD measured in the human forearm depends mainly on the acute 
production of NO by endothelial cells in response to an acute increase in shear stress (Joannides 
et al., 1995; Green et al., 2014; Zhou et al., 2014) and reduced FMD is a hallmark of endothelium 
dysfunction (Zhou et al., 2014; Rizzoni and Agabiti Rosei, 2006; Stoner and Sabatier, 2012).

Epidemiological investigations have shown that, prior to menopause, women are less affected by 
cardiovascular disorders than men (Simoncini, 2009; Arnal et al., 2017). Estrogens protect against 
atherosclerosis (Billon-Galés et al., 2009) and neointimal proliferation (Smirnova et al., 2015), and 
accelerate re-endothelialization of injured arteries (Brouchet et  al., 2001). Numerous actions of 
17-beta-estradiol (E2) are mediated by estrogen receptor alpha (ERα), which acts in the nucleus as a 
transcription factor. E2 is strongly involved in the outward remodelling of the uterine blood vessels 
during pregnancy (Mandala and Osol, 2012). Indeed, we have previously shown that E2 and ERα, and 
more precisely its nuclear activating function AF2, are both essential for the arterial outward remod-
eling induced by a chronic rise in blood flow in vivo (Tarhouni et al., 2013; Tarhouni et al., 2014a; 
Tarhouni et al., 2014b).

However, a subpopulation of ERα is also associated with the plasma membrane and activates 
non-nuclear signaling (Arnal et al., 2017; Banerjee et al., 2014; Lu et al., 2017). The acute effect 
initially described in 1967 was a rapid increase in AMPc production in the rat uterus in response to 
E2 (Szego and Davis, 1967). E2 binding to the plasma membrane was subsequently reported in 
endometrial cells and hepatocytes (Pietras and Szego, 1977), suggesting that a fraction of ERα could 
be located to the membrane and contributes to the rapid effects of E2, possibly through the rapid 
activation of G proteins and kinases such as ERK1-2, PI3K, or P21ras (Arnal et al., 2017). In ovine fetal 
pulmonary artery endothelial cells, E2 stimulates eNOS activity through activation of ERα leading to 
increased intracellular Ca2+ within minutes (Lantin-Hermoso et al., 1997). By contrast, in HUVECs, E2 
induces a rapid production of NO and cGMP independent of an increase in intracellular Ca2+ (Caulin-
Glaser et  al., 1997). This rapid nongenomic activation of eNOS involves Akt/PKB (Florian et  al., 
2004) and MAP kinase-dependent mechanisms (Chen et al., 1999). Estradiol-induced endothelium-
independent dilation was also described in canine coronary arteries (Sudhir et al., 1995) and in rat 
cerebral microvessels (Florian et al., 2004). This dilation is also mediated by ERα located at the level 
of the plasma membrane. Using a mouse model lacking membrane-associated ERα, we demonstrated 
that the acute vasodilator effect of E2 and its accelerative effect on re-endothelialization are mediated 
by membrane-associated ERα (Adlanmerini et  al., 2014; Zahreddine et al., 2021). On the other 
hand, E2 exerts protective effects against atheroma, angiotensin 2-induced hypertension, and neoin-
timal hyperplasia through its nuclear effects (Guivarc’h et al., 2018).

The 7-transmembrane G-protein-coupled estrogen receptor (GPER, formerly known as GPR30) 
is another receptor located not only at the plasma membrane but also on the membrane of the 
endoplasmic reticulum that can be activated by E2. It was found in both human and animal arteries 
(Prossnitz and Barton, 2011; Barton et al., 2018). The combination of GPER-selective agonists and 
antagonists with the use of GPER-knock-out mice allowed to elucidate more specifically its biological 
effects arteries (Prossnitz and Barton, 2011; Barton et al., 2018). In the rat, GPER activation by 
its agonist G-1 reduces uterine vascular tone during pregnancy through activation of endothelium-
dependent NO production (Tropea et al., 2015). Likewise, the G-1-induced relaxation of the mesen-
teric resistance arteries in both male and female rats is mainly mediated by the PI3K-Akt-eNOS 
pathway (Peixoto et al., 2017). Noteworthy, GPER partly contributes to E2-dependent vasodilation 
of mouse aortae (Fredette et al., 2018). Thus, both ERα and GPER could contribute to the rapid 
actions of E2, although their respective roles according to vessel type, species and pathophysiological 
context remain to be established.

The risk of cardiovascular diseases differs between men and women, and the protection of women 
is progressively lost after menopause. For instance, endothelium-dependent dilation of subcutaneous 
arteries is reduced in post-menopausal women compared to pre-menopausal women (Kublickiene 
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et al., 2005; Kublickiene et al., 2008). This protection involves NO production in response to estro-
gens. Similarly, diet phytoestrogens could have protective actions in postmenopausal women suffering 
coronary artery disease (Cruz et al., 2008) and selective estrogen receptor modulators (SERMs) such 
as raloxifene exert protective actions in female rats through eNOS activation (Chan et al., 2010). 
Besides the activation of eNOS, hormonal replacement therapy also activates endothelium-derived 
hyperpolarizing factor (EDHF)-mediated vasodilation as shown in rat mesenteric and uterine arteries 
(Burger et al., 2009) as well as in the rat gracilis muscle artery with increased Epoxyeicosatrienoic 
acids (EETs) production involved in E2-mediated increase in FMD in hypertensive or old rats (Huang 
et al., 2001; Sun et al., 2004). Furthermore, estrogen therapy reduces pressure (myogenic) (Kublick-
iene et al., 2005; Kublickiene et al., 2008) and adrenergic-dependent contraction (Meyer et al., 
1997). FMD is also improved by E2 in rat gracilis muscle arteries (Huang et al., 1998). Although there 
is an increase in the amplitude of FMD in women among the menstrual cycle with a greater dilation 
during the luteal or follicular phase (Hashimoto et al., 1995), FMD is similar in healthy young men and 
women (Sullivan et al., 2015). Importantly, the first disruptive mutation in the gene encoding ERα, 
reported in 1994 in a man who was only 30 years old (Smith et al., 1994), was found to be associated 
with a total absence of FMD (Sudhir et al., 1997). This single yet major clinical observation suggests 
that ERα-dependent signal transduction could play a role in FMD in males. Of note, conversion of 
testosterone into estradiol by aromatase which is expressed in the arterial wall has been shown to 
reduce early atherogenesis in male mice (Nathan et al., 2001).

In the present study, we investigated the role of ERα and its different subfunctions on FMD in 
isolated mouse resistance arteries. To this aim, we used different mouse models that were: (i) fully 
deficient in ERα (Esr1-/- mice), (ii) deleted in seven amino acid in the helix 12 and thus deficient in 
activation function (AF)–2 necessary for the nuclear transcriptional activity of ERα (AF20ERα mice), and 
(iii) invalidated for plasma membrane-associated signaling. To explore the role of membrane ERα, we 
used: (1) mice that carry a mutation of the codon encoding the cysteine (Cys) 451 palmitoylation site 
of ERα to alanine (C451A-ERα mice) so that the anchoring of the receptor to the plasma membrane 
is impossible (Adlanmerini et al., 2014) and (2) a knock-in mouse model of ERα mutated for the argi-
nine 264 (R264A-ERα mice) so that the interaction of the membrane-located ERα with Gαi involved 
in rapid NO production is suppressed (Adlanmerini et al., 2020). Moreover, because the absence of 
membrane-associated ERα strongly reduced FMD, additional experiments were conducted to investi-
gate: (i) the involved mechanisms, (ii) its counterpart in female mice, and (iii) the potential role of ERα 
activation by its ligands.

Results
FMD is reduced in mice lacking ERα but unaffected by exogenous 
estrogens
In mice lacking ERα (see the scheme in Figure 1A), FMD was significantly reduced in resistance arteries 
isolated from male Esr1-/- mice compared to littermate Esr1+/+ mice (Figure 1B). Precontraction prior 
to FMD (Figure 1C) and arterial diameter (Figure 1D) were not significantly affected by the absence 
of ERα. Agonist-mediated endothelium-dependent (acetylcholine and insulin) and endothelium-
independent (SNP) dilation were not significantly affected by the absence of ERα (Figure 1E–G).

To directly investigate the influence of estrogens on FMD, mesenteric resistance arteries isolated 
from male WT mice were incubated (20 min) with E2, which activates both membrane-associated 
and nuclear ERα, or with another natural estrogen, estetrol (E4), which activates only nuclear ERα 
(Abot et al., 2014). These exogenous estrogens did not affect FMD (Figure 1H). Furthermore, the 
estrogen receptor downregulator and GPER agonist fulvestrant (ICI-182780) (Meyer et  al., 2010; 
Jacenik et al., 2016) did not alter FMD after 20 min of incubation with isolated arteries (Figure 1H). 
Similarly, the GPER antagonist G-36 did not alter FMD (Figure 1I) although G-36 inhibited the dilation 
induced by both E2 and the GPER agonist G-1 (Figure 1J).

We also found that FMD in mesenteric resistance arteries was similarly reduced in both intact 
(Figure 1K) and ovariectomized female Esr1-/- mice (Figure 1L) compared to their respective Esr1+/+ 
littermate controls. The similar levels of FMD in intact and ovariectomized female WT mice, as well as 
in male mice, suggest that circulating endogenous estrogens do not influence FMD in young healthy 
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Figure 1. Involvement of ERα in flow-mediated dilation (FMD). FMD was measured in mesenteric resistance arteries isolated from male mice lacking 
ERα (Esr1-/-) and male wild-type littermates (Esr1+/+) (A). (B) FMD was determined in response to stepwise increases in luminal flow in male Esr1-/- and 
Esr1+/+ mice. (C) Precontraction with phenylephrine (Phe) before measurement of FMD. (D) Basal diameter of the arteries used for FMD measurment. 
Besides FMD, acetylcholine- (E), insulin- (F), and sodium nitroprusside- (SNP, G) mediated dilation was measured in mesenteric resistance arteries 

Figure 1 continued on next page
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mice. FMD was also reduced in the uterine artery isolated from female Esr1-/- mice in comparison with 
Esr1+/+ mice (Figure 1M).

FMD was not altered by the inactivation of Esr2, encoding ERβ in mice (Figure 2A). Similarly, arte-
rial precontraction, basal diameter and acetylcholine-mediated dilation were not significantly affected 
by the absence of ERß (Figure 2B–D).

As FMD depends on the response of the endothelium to shear stress, we next investigated FMD 
in mice lacking ERα in endothelial cells (TekCre/+: Esr1f/f mice). FMD was reduced in arteries isolated 
from these mice compared to littermate WT mice (Figure 2E). Arterial precontraction, basal diameter 
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Figure 2. Involvement of ERβ and endothelial ERα in flow-mediated dilation (FMD). (A to D) FMD, precontraction, basal diameter and acetylcholine-
mediated dilation measured in male mice lacking ERβ (Esr2-/-) and their littermate control (Esr2+/+). (E to H) FMD, precontraction, basal diameter and 
acetylcholine-mediated dilation measured in TekCre/+:Esr1-/- male mice lacking endothelial ERα (EC-ERα) and TekCre/-:Esr1lox/lox their littermate controls 
(WT). Flow rate rate was 3, 6, 9, 12, 15, 30, and 50 µl/min corresponding to 0.8, 1.2, 2, 2.8, 4, 8, and 12 dyn/cm2.+ source data 2. Means ± the SEM are 
shown (n = 6 or 7 mice per group). Two-way ANOVA for repeated measurements: p = 0.0273 (interaction: p = 0.0069**, E). NS: two-way ANOVA for 
repeated measurements, panel A, D, and H. NS: two-tailed Mann-Whitney test, B, C, F, and G. Data and analysis in Figure 2—source data 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Source data 1. Data and statistical analysis from experiments plotted in Figure 2A—H.

isolated from male Esr1-/- and Esr1+/+ mice. FMD was also measured in wild-type (WT) mice in the presence (20 min incubation) or absence of 
17-β-estradiol (E2, 0.01 µmol/L, H), estetrol (E4, 1 µmol/L, H), ICI 182 780 (1 µmol/L, H) and the GPER antagonist G-36 (10 µM, I). (I) G-1 (10 µM)- and 
E2 (0.01 µM)-mediated dilation in the presence or absence of G-36 (1 µM). FMD was then measured in mesenteric arteries isolated from intact (K) and 
ovariectomized (OVX, L) female Esr1-/- and Esr1+/+ mice as well as in and uterine arteries from Esr1-/- and Esr1+/+ mice (M). Flow rate rate was 3, 6, 9, 12, 
15, 30, and 50 µl/min corresponding to 0.8, 1.2, 2, 2.8, 4, 8, and 12 dyn/cm2. Means ± the SEM are shown (n = 7–18 mice per group). Two-way ANOVA for 
repeated measurements: p = 0.0072 (interaction: p < 0.0001, B), p = 0.0087 (interaction: p < 0.0001, K), p = 0.0030 (interaction: p < 0.0001, L), p = 0.0119 
(interaction: 0.0107, M). NS: two-way ANOVA for repeated measurements, panel E to I. NS: Two-tailed Mann-Whitney test, panels C and D. See source 
data in Figure 1—source data 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Source data 1. Data and statistical analysis from experiments plotted in Figure 1B—M.

Figure 1 continued
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and acetylcholine-mediated dilation were not significantly affected by the absence of endothelial ERα 
(Figure 2F–H).

Altogether, these results demonstrate a crucial role of ERα in FMD in both males and females and 
probably in a ligand independent manner. We, therefore, decided to use male mice for the remainder 
of the study.
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Figure 3. Flow-mediated dilation in mice lacking nuclear or membrane-associated ERα. Esr1 expression level in aortic endothelial cells (expression 
relative to the housekeeping genes Gapdh, Hprt and Gusb), flow-mediated dilation (FMD) acetylcholine-mediated dilation were measured in mesenteric 
resistance arteries isolated from AF2-WT and AF20ERα male mice (A to D), C451A-WT and C451A-ERα male mice (E to H) and R264A-WT and R264A-
ERα male mice (I to L). Means ± the SEM is shown (n = 13 AF20ERα, n = 5 AF2-WT mice, n = 8 C451A-ERα, n = 6 C451A-WT mice, n = 9 R264A-WT and 
n = 10 R264A-ERα mice). Flow rate rate was 3, 6, 9, 12, 15, 30, and 50 µl/min corresponding to 0.8, 1.2, 2, 2.8, 4, 8, and 12 dyn/cm2. Two-way ANOVA for 
repeated measurements: panel C, p = 0.2681 (interaction: p = 07302), panel G, p = 0.0114 (interaction: p = 0.002), panel K, p = 0.0015 (interaction: p = 
0.0002). Panels D, H, and L: NS. NS, two-tailed Mann-Whitney test (panels B, F and J).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Markers of endothelial and smooth muscle cells in mouse aortic endothelial cells.

Figure supplement 1—source data 1. Data and statistical analysis from experiments plotted in Figure 3B–D,F–H, and J–L and for Figure 3—figure 
supplement 1A–F.
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FMD in mice lacking the nuclear activation function 2 (AF2) of ERα
As the AF2 nuclear function mediates several protective effects of ERα on the vasculature (Guivarc’h 
et al., 2018), we first investigated FMD in AF20ERα mice (Figure 3A). The gene expression level of 
Esr1 (encoding ERα) in endothelial cells was not affected by invalidation of the AF2 function of ERα 
(Figure 3B). Quality of mRNA endothelial enrichissment was attested using analysis of Tek expression 
as a marker of endothelial cells and Cnn1 expression as a marker of smooth muscle cells (Figure 3—
figure supplement 1).

We observed that FMD was not significantly reduced in mesenteric resistance arteries isolated from 
AF20ERα male mice compared to littermate AF20WT animals (Figure 3C). Acetylcholine-mediated 
dilation (Figure 3D) was not altered by loss of the nuclear AF2 function of ERα. Thus, we demon-
strated that FMD was preserved despite the loss of AF2 nuclear function of ERα.

FMD in mice lacking membrane-located ERα effects
We thus evaluated the role of the membrane ERα in FMD, thanks to two complementary models, 
C451A-ERα mice[24] and R264A-ERα mice (Adlanmerini et al., 2020), that allowed us to previously 
investigate the ERα membrane-initiated steroid signaling (MISS) pathway in the accelerative effect of 
E2 on re-endothelialization following arterial injury and in the acute dilation induced by E2 through 
rapid eNOS activation.

First, we investigated FMD in C451A-ERα male mice that lack the capacity to anchor ERα to the 
plasma membrane through palmitoylation (Adlanmerini et al., 2014; Figure 3E). The gene expres-
sion level of Esr1 was not significantly altered in aortic endothelial cells isolated from C451A-ERα 
mice compared to wild-type mice (Figure 3F). FMD was significantly reduced compared to WT litter-
mate animals (Figure 3G) while acetylcholine-mediated dilation was not significantly affected by the 
absence of membrane-associated ERα (Figure 3H).

We then investigated FMD in R264A-ERα male mice that lack the capacity to activate the Gαi 
involved in acute NO production upon membrane-ERα activation (Figure  3I; Adlanmerini et  al., 
2020). The gene expression level of Esr1 was not significantly altered in aortic endothelial cells isolated 
from R264A-ERα mice compared to wild-type mice (Figure 3J). We found that FMD was significantly 
reduced in R264A-ERα male mice compared to WT littermate controls (Figure 3K). On the other 
hand, acetylcholine-mediated dilation was not significantly affected by the absence of membrane-
associated ERα effects in R264A-ERα male mice (Figure 3L).

Thus, we demonstrated that FMD was altered as a consequence of either the inactivation of palmi-
toylation site of ERα (C451A-ERα mice) or the impairment of the activation of the Gαi protein by ERα 
(R264A-ERα mice), thus preventing membrane-associated ERα activation of FMD in male mice.

Role of ERα in the activation of the NO pathway in FMD
As NO produced by endothelial NOS plays a key role in endothelium-dependent dilation and thus in 
FMD, we investigated the effect of the inhibition of NO synthesis by L-NNA on FMD and acetylcholine-
mediated dilation. FMD was significantly reduced by L-NNA in mesenteric resistance arteries of the 
four groups of littermate WT mice (Figure 4A–D), whereas L-NNA had no significant effect on FMD in 
Esr1-/- (Figure 4A), C451A-ERα (Figure 4B), and R264A-ERα mice (Figure 4C). In contrast, FMD was 
reduced to a similar extent by L-NNA in AF20ERα and WT mice (Figure 4D).

L-NNA strongly and similarly reduced acetylcholine-mediated relaxation in Esr1-/- (Figure  4E), 
C451A-ERα (Figure 4F), R264A-ERα (Figure 4G), AF20ERα (Figure 4H) and the corresponding litter-
mate WT mice (Figure 4E–H), thus showing that the alteration of membrane ERα activation affected 
selectively the flow-mediated NO-dependent dilation, but not the acetylcholine-mediated NO-de-
pendent dilation. The addition of either the inhibitor of cyclooxygenase indomethacin (Figure 4A–H) 
or the inhibitor epoxyeicosatrienoic acids (EETs) synthesis MSPPOH (Figure 4—figure supplement 
1A–F) did not further reduced FMD or acetylcholine-mediated relaxation in all the groups.

Western-blot analysis of eNOS and phosphorylated eNOS was then performed on isolated resis-
tance arteries that had been mounted in an arteriograph and then submitted or not to flow during 
2 min (Figure 5). This flow rate is equivalent to the maximal response to flow observed in arteriog-
raphy. In WT mice, the phosphorylation of eNOS at Ser1177 by flow (shear stress) was greater in 
arteries submitted to flow than in control (no flow) arteries as evidenced by a greater ratio of phos-
phorylated eNOS/total eNOS (Figure 5A). This ratio was not significantly greater in arteries submitted 
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Figure 4. with one supplement: Effect of the blockade of NO synthesis and cyloxygenase on flow-mediated dilation. Flow-mediated dilation (FMD) 
was determined in pressurized mesenteric resistance arteries isolated from male Esr1+/+ and Esr1-/- (A), C451A-WT and C451A-ERα (B), R264A-WT 
and R264A-ERα (C), AF20WT and AF20ERα mice (D), before and after addition of the NO synthesis blocker L-NNA (100 µM, 30 min) and then of the 
combination of L-NNA plus indomethacin (indo, 10 µM, 30 min). Acetylcholine-mediated relaxation was measured in the same groups in the presence 
and in the absence of L-NNA and of L-NNA plus indomethacin (E to H). Flow rate rate was 3, 6, 9, 12, 15, 30, and 50 µl/min corresponding to 0.8, 1.2, 
2, 2.8, 4, 8, and 12 dyn/cm2. Means ± the SEM are shown (n = 6–8 per group). ***p < 0.001, two-way ANOVA for repeated measurements, L-NNA or L-
NNA+ indo versus untreated arteries within each group. Data and analysis in Figure 4—source data 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page
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to flow than in unstimulated arteries in C451A-ERα mice (Figure 5A). The expression level of total 
eNOS was similar in C451A-ERα and in WT mice (Figure  5B). A similar pattern was observed in 
R264A-ERα mice (Figure 5D and E). By contrast, the ratio of phosphorylated eNOS/total eNOS was 
similarly increased by flow in WT and AF2-ERα mice without any change in total eNOS level between 
the two strains (Figure 5G and H).

Western-blot analysis of Akt and phosphorylated Akt was then performed on the same samples 
and a similar pattern was observed (Figure 5C,F,I). All the blots are shown in Figure 5—source data 
2.

These results show that the absence of membrane-associated ERα affects flow-mediated eNOS 
activation pathway, at least in part, by preventing the activation of its upstream activator Akt/PKB.

Flow-mediated dilation and NO2/NO3 production in the isolated 
perfused kidney
As the kidney is a well-known autoregulated organ with a dense microvascular network, we inves-
tigated flow-mediated responsiveness in perfused kidneys isolated from C451A-ERα and WT mice 
(Figure 6A). First, the flow-pressure relationship was shifted leftward in C451A-ERα mice compared to 
WT mice (Figure 6B), suggesting reduced endothelial responsiveness to flow. Acetylcholine-mediated 
dilation in perfused kidneys was equivalent in C451A-ERα and WT mice (Figure  6C), suggesting 
that the response to flow was probably selectively reduced in perfused kidney of C451A-ERα mice, 
as shown above for the mesenteric artery. Similarly, phenylephrine-mediated contraction was not 
affected by the absence of membrane-ERα (51.1 ± 2.9 vs 57.4% ± 5.7% contraction, C451A-ERα and 
WT mice, n = 5 per group, p > 0.9999, Mann-Withney test).

Then, we measured nitrate and nitrite concentration in the kidney perfusate and found that it was 
reduced in C451A-ERα compared to WT mice (Figure 6D). Interestingly, ATP production measured in 
the kidney perfusate was also reduced in C451A-ERα mice (Figure 6E) whereas H2O2 production was 
higher in C451A-ERα than in WT mice (Figure 6F).

Thus, these results suggest that FMD reduction due to the absence of membrane-ERα also affects 
the capacity of the renal vasculature to produce NO and ATP, whereas the increased H2O2 production 
suggests an excessive oxidative stress in response to flow in C451A-ERα mice.

Loss of membrane-associated ERα did not affect gene expression
Finally, we analyzed in mesenteric resistance arteries the expression of 44 genes that may be involved 
in the rapid endothelial response to acute changes in flow (FMD). No significant difference was 
observed between C451A-ERα and WT mice (Figure 7—figure supplements 1 and 2), in line with 
the prominent or even exclusive role of rapid, non genomic, membrane-ERα.

Acute pharmacological ROS reduction restored FMD in C451A-ERα 
mice
As the production of H2O2 in the kidneys from C451A-ERα mice was higher than in WT mice, we 
measured FMD in arteries from C451A-ERα and WT mice after pretreatment with various antioxidants. 
First, the addition of PEG-SOD plus catalase to the bath containing mesenteric resistance arteries 
isolated from WT mice did not alter FMD (Figure 7A). By contrast, PEG-SOD plus catalase enhanced 
FMD in arteries from C451A-ERα mice (Figure 7B).

Catalase alone did not alter FMD in arteries from WT mice (Figure 7C), whereas it reduced FMD in 
arteries from C451A-ERα mice (Figure 7D).

Inhibition of mitochondrial ROS production by Mito-Tempo did not affect FMD in arteries from 
WT mice (Figure 7E), while it enhanced FMD in arteries isolated from C451A-ERα mice (Figure 7F).

Source data 1. Data and statistical analysis from experiments plotted in Figure 4A–H.

Figure supplement 1. Effect of the blockade of NO synthesis (L-NNA), cyclooxygenase (indomethacin) and EETs production (MSPPOH) on flow-
mediated dilation.

Figure supplement 1—source data 1. Data and statistical analysis from experiments plotted in Figure 4—figure supplement 1A–G.

Figure 4 continued

https://doi.org/10.7554/eLife.68695
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The acute response to ATP and to the Piezo1 agonist YODA-1 were not affected by the absence 
of membrane ERα (C451A-ERα mice). In addition, the mechanosensitive channel blocker GsMTx4 
similarly affected FMD in C451A-ERα and WT mice, suggesting that the defect in FMD is located 
downstream flow sensing (Figure 7—figure supplement 3).

This pharmacological approach suggests that reactive oxygen species could reduce FMD in arteries 
from C451A-ERα, while H2O2 could maintain in part the dilatory response induced by flow in the 
absence of membrane ERα.
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Figure 5. eNOS and Akt phosphorylation in response to flow in perfused isolated mesenteric resistance arteries. As illustrated on the scheme shown on 
the top of the figure, mesenteric resistance arteries were cannulated in vitro on glass micropipettes and perfused with physiological salt solution. Flow 
(50 µl/min or 12 dyn/cm2) was applied for 2 min before quick freezing of the artery. In control experiments no flow was applied. Western-blot analysis of 
eNOS, phospho (Ser1177)-eNOS (P-eNOS), Akt, phospho-Akt and β-actin in mesenteric arteries isolated from male C451A-ERα mice (C451A, A to C), 
R264A-ERα (R264A, D to F), AF20ERα (AF2, G to I) and their littermate control (WT) was then performed. The ratio of P-eNOS / eNOS is shown in A, 
D and G. The expression level of eNOS/β-actin in unstimulated arteries is shown in B, E and H. The ratio of P-Akt / Akt is shown in C, F and I. Means ± 
the SEM are shown (n = 6 C451A-WT, n = 9 C451A-ERα, n = 5 R264A-ERα, n = 5 R264A-WT, n = 6 AF20ERα and n = 4 AF2-WT mice). *p < 0.05 (panel C: 
p = 0.0374, panel D: p = 0.015, panel F: p = 0.0177, panel G: WT, p = 0.0234, AF2, p = 0.0465, panel I: p = 0.0152) and **p < 0.01 (panel A: p = 0.0045), 
two-tailed Mann-Whitney test. Data and analysis in Figure 5—source data 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Source data 1. Data and statistical analysis from experiments plotted in Figure 5A–I.

Source data 2. All the blots for Figure 5.

https://doi.org/10.7554/eLife.68695
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In vivo pharmacological ROS reduction restored FMD inC451A-ERα 
mice
As acute antioxidant drugs restored FMD in mesenteric arteries isolated from C451A-ERα mice, 
we further explored the involvement of oxidative stress in the alteration of FMD by the use of two 
different antioxidant treatments in vivo.

After 2 weeks of treatment with the antioxidant TEMPOL, there was no longer a discernible differ-
ence between the response of WT and C451A-ERα mice to flow (Figure 8A). Mice body weight, 
arterial diameter, phenylephrine-, and KCl-mediated contraction as well as acetylcholine-mediated 
dilation were not different between TEMPOL-treated WT and C451A-ERα mice (Figure 8B–F).

A similar pattern was observed in mice treated for 4 weeks with vitamin E and vitamin C with no 
difference in FMD between WT and C451A-ERα mice (Figure 8G to L).

Thus, antioxidant treatment normalized FMD in C451A-ERα mice to the level of FMD in WT mice. 
Altogether, these data suggest that the absence of membrane-associated ERα increases oxidative 
stress, which in turn could be responsible for a large part of the alteration of NO-dependent FMD.
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Figure 6. Isolated and perfused kidney from C451A-ERα mice. In the isolated and perfused kidney (A), the flow-pressure relationship was determined 
in C451A-ERα and WT mice (B). (C) Acetylcholine (1 µM)-mediated relaxation. The levels of nitrate-nitrite (D), ATP (E) and H2O2 (F) level were quantified 
in the perfusate collected from the kidney. Means ± the SEM are shown (n = 5 C451A-WT and 7 C451A -ERα mice). *p < 0.05, two-way ANOVA for 
repeated measurements (panel B, C451 vs WT: p = 0.0308 Interaction: p = 0.0008). Two-tailed Mann-Whitney tests (panels C to F: p > 0.999, p = 0.0317, 
p = 0.0079 and p = 0.0317, respectively). Data and analysis in Figure 6—source data 1.

The online version of this article includes the following figure supplement(s) for figure 6:

Source data 1. Data and statistical analysis from experiments plotted in Figure 6B–F.
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Discussion
We report here that endothelial membrane-associated ERα contributed to optimize flow (shear stress)-
mediated dilation in young healthy mouse resistance arteries in a ligand-independent manner.

Previous experimental studies have reported the vascular benefit of estrogens on blood flow 
homeostasis, and E2 improves endothelium-dependent relaxation when it is reduced in diseased 
conditions. (Huang et al., 2001; Al-Khalili et al., 1998; Huang et al., 2000; Svedas et al., 2002; 
LeBlanc et al., 2009). Nevertheless, no difference in FMD has been observed between healthy men 
and women (Sullivan et al., 2015). In agreement, our results show that acute (20 min) incubation with 
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Figure 7. Flow-mediated dilation and oxidative stress. Flow-mediated dilation was determined in mesenteric 
resistance arteries isolated from male WT and C451A-ERα mice before and after addition of PEG-SOD and 
catalase (SOD-catalase, A and B), catalase (C and D) or Mito-Tempo (E and F). Flow rate was 3, 6, 9, 12, 15, 30, and 
50 µl/min corresponding to 0.8, 1.2, 2, 2.8, 4, 8, and 12 dyn/cm2. Means ± the SEM are shown (n = 3–9 mice per 
group, see details in Figure 7—source data 1). *p < 0.05, two-way ANOVA for repeated measurements (panel A 
to F: p = 0.5887, p = 0.0321, p = 0.7170, p = 0.0311, p = 0.7641 and p0.0354, respectively).

The online version of this article includes the following figure supplement(s) for figure 7:

Source data 1. Data and statistical analysis from experiments plotted in Figure 7A–L.

Figure supplement 1. Gene expression profile in the mesenteric isolated from mice lacking membrane-ERα.

Figure supplement 1—source data 1. Data from experiments plotted in Figure 7—figure supplement 1A–X 
and in Figure 7—figure supplement 2A–T.

Figure supplement 2. Gene expression profile in the mesenteric isolated from mice lacking membrane-ERα.

Figure supplement 3. Mechanosensitive channels and ATP in FMD. 

Figure supplement 3—source data 1. Data and statistical analysis from experiments plotted in Figure 7—figure 
supplement 3A–C.

https://doi.org/10.7554/eLife.68695
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Figure 8. FMD after antioxidant treatments in mice lacking membrane-ERα. FMD was determined in mesenteric resistance arteries isolated from male 
WT and C451A-ERα mice treated for 2 weeks with the anti-oxidant TEMPOL (A to F) or with a combination of vitamin E and vitamin C for 4 weeks (G 
to L). At the end of the treatments arteries were collected and mounted in an arteriograph for the measurement of FMD (A and G), body weight (B 
and H), arterial diameter (C and I), phenylephrine (1 µM, D and J)- and KCl (80 mM, E and K)-mediated contraction and acetylcholine (1 µM)-mediated 

Figure 8 continued on next page
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exogenous E2, E4, or ICI-182780 did not affect FMD. Similarly, incubation with the GPER antagonist 
G-36 did not affect FMD, excluding ligand-activated GPER actions in FMD. In addition, endogenous 
estrogens in female WT mice had no impact on FMD as it was equivalent in male, female and ovariec-
tomized female mice. These data suggest that FMD involves unliganded ERα activation in response 
to shear stress. In agreement, a recent study has reported another action of unliganded ERα, namely 
its inhibitory action on endothelial cell proliferation and migration (Lu et al., 2017).

Although FMD was reduced in Esr1-/- mice, agonist-mediated endothelium dependent (acetylcho-
line and insulin) and independent (SNP) dilation was not affected suggesting a selective reduction in 
flow (shear stress)-dependent signaling without a change in receptor-dependent dilation in the endo-
thelium and in the smooth muscle.

The present study also showed that FMD involves membrane-associated ERα. FMD was similarly 
reduced in Esr1-/- mice and in both C451A-ERα and R264A-ERα mice. Although acute response (FMD 
and agonist-dependent dilation) can only be attributed to membrane-associated events, the expres-
sion level of the enzymes involved in the process could be modulated by the nuclear effects of ERα. 
Thus, endothelium-dependent dilation was investigated in mice lacking either the nuclear activating 
function AF2 of ERα or membrane-dependent action of ERα. Membrane-ERα is located at the level of 
the caveolae through either a binding to caveolin-1 or to striatin, thus creating a link with the Gαi and 
Gβγ proteins (Arnal et al., 2017). In order to abrogate the membrane effects of ERα, we used two 
different models. First, we used C451A-ERα mice that lack the palmitoylation site (cysteine at position 
451) of the receptor so that the anchorage of ERα to the plasma membrane and the link to caveolin-1 
is prevented (Adlanmerini et al., 2014). We also used a knock-in mouse model of ERα mutated for 
the arginine 264 (R264A-ERα mice) suppressing its interaction with Gαi involved in rapid eNOS acti-
vation (Adlanmerini et al., 2020). The fact that FMD was similarly reduced in Esr1-/-, C451A-ERα, and 
R264A-ERα mice without change in receptor-dependent dilation, strongly supports that membrane-
associated ERα is involved in FMD. This is further supported by the absence of reduction in FMD 
observed in AF2-ERα mice which only lack the AF2 nuclear function of ERα. AF2 is also involved in 
the vascular response to a chronic increase in flow (flow-mediated remodeling) which is absent in 
AF20-ERα mice but fully present in C451A-ERα and R264A-ERα mice (Guivarc’h et al., 2018). This 
remodeling is a chronic adaptation of the vascular wall associated with changes in arterial diameter 
and wall mass within 2 weeks after a chronic rise in blood flow in vivo (Chehaitly et al., 2021). A 
chronic increase in blood supply, such as that needed for collateral growth in ischemic disorders, 
induces an increase in diameter together with wall thickening so that both shear and tensile stress are 
normalized within 1 week following the flow increase (Silvestre et al., 2001). This remodeling involves 
an early inflammatory phase allowing cell growth and reorganization in the arterial wall (Caillon et al., 
2016) and a dilatory phase involving NO, prostaglandins and CO production (Dumont et al., 2007; 
Belin de Chantemèle et al., 2010; Freidja et al., 2011). Noteworthy, flow-mediated remodeling is 
absent in ovariectomized rats and mice and in Esr1-/- mice (Tarhouni et al., 2013) whereas this remod-
eling is preserved in ovariectomized rats treated with E2 (Tarhouni et al., 2014b) or resveratrol (Petit 
et al., 2016). More recently, we have shown that this remodeling requires activation of AF2 and is 
independent on membrane-located ERα (Guivarc’h et al., 2018).

Another membrane receptor for E2 located at the plasma membrane is GPER (Prossnitz and 
Barton, 2011). Both ligand-dependent and ligand-independent activation of GPER have been 
reported (Meyer et al., 2016). GPER is involved in regulation of reproductive functions, endocrine 
regulation and metabolism, cardiovascular, kidney, neuroendocrine and cerebral functions function 
as well as immune cell function. Furthermore, previous studies suggest a role for GPER in hyper-
tension, kidney diseases, diabetes, and immune diseases. Consequently, GPER is a potential thera-
peutic target for the treatment of these diseases (Prossnitz and Barton, 2011). In the present study, 

dilation (F and L). Flow rate was 3, 6, 9, 12, 15, 30, and 50 µl/min corresponding to 0.8, 1.2, 2, 2.8, 4, 8, and 12 dyn/cm2. Means ± the SEM are shown (n 
= 4 C451A-WT and 6 C451A-ERα mice treated with TEMPOL and n = 5 mice per group treated with vitamin E and vitamin C). NS, two-way ANOVA for 
repeated measurements (panel A: p = 0.6345 and G: p = 0.6482). NS, Two-tailed Mann-Whitney tests (panels B to F and H to L). Data and analysis in 
Figure 8—source data 1.

The online version of this article includes the following figure supplement(s) for figure 8:

Source data 1. Data and statistical analysis from experiments plotted in Figure 8A–L.

Figure 8 continued
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Figure 9. Schematic representation of the known E2-mediated ERα-dependent protective effects (upper panel) and of the new pathways described in 
the present study (lower panel). Previous works (upper panel) have demonstrated the role of E2 and the nuclear activating function AF2 of ERα against 
atherosclerosis and hypertension (Guivarc’h et al., 2018) as well as in flow-mediated outward remodeling (Tarhouni et al., 2013; Guivarc’h et al., 
2018). E2-stimulated membrane-located ERα is involved in E2-dependent NO production and in endothelial healing (Adlanmerini et al., 2014). New 

Figure 9 continued on next page
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incubation with the GPER antagonist G-36 did not affect FMD, ruling out the role of ligand-activated 
GPER in FMD. However, a possible role of unliganded GPER activation cannot be excluded in case of 
a crosstalk between membrane-dependent ERα and GPER activation.

To characterize the effect of membrane-ERα on the NO pathway which is involved in FMD, we 
investigated the effect of L-NNA-mediated inhibition of NO-synthesis on FMD. L-NNA inhibited FMD 
in arteries from WT and AF20ERα, but not arteries from Esr1-/-, C451A-ERα and R264A-ERα mice, 
suggesting that membrane-associated ERα is involved in NO-dependent FMD. This is in agreement 
with a previous study that used the ERα Neo-KO model with incomplete deletion, thereby showing 
that the NO pathway (dilation sensitive to L-NAME) was reduced in response to flow in the gracilis 
artery of male mice (Sun et al., 2007). In contrast to FMD, L-NNA strongly reduced acetylcholine-
mediated dilation in WT, Esr1-/- AF20ERα, C451A-ERα and R264A-ERα mice. Thus, the NO-pathway 
can be activated in response to receptor stimulation in C451A-ERα and R264A-ERα mice, whereas 
only its activation by flow was reduced in these mice lacking only membrane-ERα signaling. FMD can 
involve prostaglandins and EDHF such as EETs (Sun et al., 2007) and EDHF was shown to mediate 
estrogen-mediated dilation of the uterine arteries (Burger et al., 2009). Nevertheless, in the present 
study, cyclooxygenase inhibition with indomethacin and EETs production inhibition with MSPPOH 
did not affect FMD in both WT and Esr1-/-, AF20ERα, C451A-ERα and R264A-ERα mice, suggesting 
a limited role of the pathway in mesenteric arteries of male mice. Consequently, the remaining FMD 
following the addition of L-NNA, indomethacin and MSPPOH relies probably on other hyperpolar-
izing agents. Indeed, endothelium-dependent hyperpolarization (EDH) has a major role in resistance 
arteries homeostasis (Brandes et al., 2000; Garland and Dora, 2017) and COX-derivatives can also 
induce EDH in resistance arteries and in the carotid when submitted to flow (Ohlmann et al., 2005; 
Bergaya et al., 2001). In humans, FMD measured in the brachial artery relies mainly on the produc-
tion of NO (Alexander et al., 2021). Furthermore, changes in FMD in the brachial artery predict well 
the endothelial dysfunction in human resistance arteries (Park et al., 2001). Nevertheless, the differ-
ence in the nature of the agents involved in FMD besides NO between humans and mice could be a 
limitation of the present study. As stated above, the involvement of EDH in FMD is greater in mouse 
resistance arteries than in humans when measured at the level of the brachial artery.

As FMD has a key role in blood flow delivery to organs (Hill et al., 2010), we investigated the flow-
pressure relationship in the mouse kidney. In agreement with the reduction in FMD observed in resis-
tance arteries, we found a leftward shift of the flow-pressure relationship in C451A-ERα mice further 
confirming the decreased sensitivity to flow of the resistance vasculature. Recent studies have shown 
that flow activates Piezo1-dependent release of ATP through pannexin hemi-channel followed by P2Y2 
activation and NO production by endothelial cells (Wang et al., 2015; Wang et al., 2016). We found 
that both nitrate-nitrite and ATP productions were lower in the kidney perfusate from C451A-ERα 
than in WT mice, in agreement with the reduced NO-dependent FMD (sensitive to L-NNA) observed 
in isolated arteries. As in mesenteric arteries, we have previously shown that eNOS expression level 
in the kidney is not altered by the absence of membrane ERα in C451A-ERα (Guivarc’h et al., 2020). 
Although NO and ATP production were reduced in kidneys from C451A-ERα, the acute response to 
ATP and to the Piezo1 agonist YODA-1 was not affected by the absence of membrane ERα. In addi-
tion, the mechanosensitive channel blocker GsMTx4 similarly affected FMD in C451A-ERα and WT 
mice, suggesting that the defect in FMD associated with the absence of membrane ERα is probably 
located downstream flow sensing.

The reduction in NO-dependent FMD found in arteries from mice lacking membrane-ERα could be 
due to an excessive ROS production as the chronic treatment of C451A-ERα mice with an antioxidant 
treatment restored FMD to control level. In agreement, we found that H2O2 production by the kidney 
was higher in C451A-ERα than in WT mice. This observation is in agreement with a previous work that 
has shown that E2 increases the release of bioactive NO by inhibition of superoxide anion production 

pathway described in the present work (lower panel): Flow, by stimulation of the surface of the endothelial cell by shear stress, activates the NO pathway 
(e.g. phosphorylation of eNOS: P-eNOS). This results in the production of NO, which in turn induces relaxation of the smooth muscle and thus dilation. 
In parallel, flow activates membrane-associated ERα, which reduces oxidative stress (O2-. and H2O2) due to NADPH-oxidase activity or of mitochondrial 
origin. This results in enhanced NO bioavailability. The absence of membrane-associated ERα could lead to the production of O2-., which attenuates 
NO-dependent dilation despite a remaining dilation due to a rise in H2O2 production.

Figure 9 continued
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in bovine endothelial cells (Arnal et al., 1996). Accordingly, we found that reducing total ROS or 
mitochondrial ROS production improved FMD in C451A-ERα mice. By contrast, catalase which elim-
inates H2O2 reduced FMD in C451A-ERα mice suggesting that an excessive ROS production due to 
the absence of membrane-associated ERα had a dual effect with (1) a reduction of NO bioavailability 
and (2) an increase in H2O2 production contributing to some vasodilating effect. Noteworthy, kidney 
perfusates showed higher levels of H2O2 in C451A-ERα mice. An excessive ROS production could also 
alter eNOS activation as previously shown through increased phosphatase activation (Ding et  al., 
2020). Previous studies have also shown that shear stress induces a more quiescent and less oxida-
tive phenotype in endothelial cells (Doddaballapur et al., 2015; Wu et al., 2018), thus reducing the 
oxidative products of mitochondrial origin. Nevertheless, in a context of known dysfunctional FMD, 
a previous work has shown that H2O2 could mediate FMD in human coronary arteries from patients 
suffering coronary artery disease although H2O2 remains deleterious (Freed et al., 2014).

Conclusion
To conclude, these data demonstrate for the first time a major role of ERα, and more precisely of non 
liganded endothelial membrane-located ERα for optimal FMD and thereby a potential role in local 
blood flow homeostasis. The mechanism appears to involve an optimization of NO activation and/
or a decrease in ROS production as depicted in Figure 9. The functional consequences in terms of 
arteriolar and tissue protection should now be investigated.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Strain, strain 
background
(Mus musculus, males 
and females)

Esr1-/-
C57BL/6 J
(Symbol: Esr1tm1.1Mma, Synonyme: ERalpha Knockout)

Mouse Clinical Inst., 
Strasbourg, France, Dupont 
et al., 2000 MGI:2386760

Strain, strain 
background
(Mus musculus, males)

AF2°ERα,
C57BL/6 J
(Symbol: Esr1tm1.1Ohl Synonym: ERalpha-AF2°)

Mouse Clinical Inst., 
Strasbourg, France, Billon-
Galés et al., 2009 MGI:4950046

Strain, strain 
background
(Mus musculus, males)

C451A-ERα, C57BL/6 N
(Symbol: Esr1tm1.1Ics Synonyme: C451A-ERalpha knock-
in)

Mouse Clinical Inst., 
Strasbourg, France, 
Adlanmerini et al., 2014 MGI:5574591

Strain, strain 
background
(Mus musculus, males)

TekCre/+:Esr1f/f, C57BL/6
(B6.Cg-Tg(Tek-cre)12Flv/J backcrossed with Esr1tm1.2Mma

Synonym:
Tie2Cre ERαlox/lox)

Esr1lox/lox: Mouse Clinical 
Institut, Strasbourg, France.
TekCre: Jackson Lab (Bar 
Harbor, Me), 
Billon-Galés et al., 2009
TekCre:
Koni et al., 2001
Esr1lox/lox:
Dupont et al., 2000

TekCre:

Esr1lox/lox:
MGI:3775510

Strain, strain 
background
(Mus musculus, males)

Esr2-/-,
C57BL/6 J (Symbol: Esr2tm1Mma

Synonym: ERbeta)

Mouse Clinical Inst., 
Strasbourg, France, Dupont 
et al., 2000 MGI:2386761

Strain, strain 
background
(Mus musculus, males) R264A-ERα, C57BL/6 N

Mouse Clinical Inst., 
Strasbourg, France, 
Adlanmerini et al., 2020 No MGI ID yet

Antibody Anti-eNOS, (mouse monoclonal, clone3) BD Biosciences
Cat# 610297, 
RRID:AB_397691 WB (1:1000)

Antibody
Anti-phospho-eNOS, pS1177 (Mouse 
monoclonal,Clone 19/eNOS/S1177) BD Biosciences

Cat# 612392, 
RRID:AB_399750 WB (1:1000)

Antibody Anti-beta-actin, (Mouse monoclonal, clone AC-74) Sigma-Aldrich
Cat#: 5316; 
RRID:AB_476743 WB (1:5000)

https://doi.org/10.7554/eLife.68695
https://identifiers.org/RRID/RRID:AB_397691
https://identifiers.org/RRID/RRID:AB_399750
https://identifiers.org/RRID/RRID:AB_476743
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Reagent type 
(species) or resource Designation Source or reference Identifiers

Additional 
information

Antibody Anti-Akt Pan, (rabbit monoclonal, clone C67E7)
Cell signalling technology
Ozyme

Cat#: 4691; 
RRID:AB_915783 WB (1:1000)

Antibody
Anti-phospho-Akt, S473, (rabbit monoclonal, clone 
D9E)

Cell signalling technology 
Ozyme

Cat#: 4060; 
RRID:AB_2315049 WB (1:2000)

Antibody
Anti-mouse IgG (H + L) Secondary antibody HRP (Goat 
polyclonal) Thermo scientific

Cat#: 31430; 
RRID:AB_228307 WB (1:5000)

Antibody
Anti-rabbit IgG(H + L) Secondary antibody HRP (Goat 
polyclonal) Thermo scientific

Cat#: 31460; 
RRID:AB_228341 WB (1:10000)

Chemical compound, 
drug vitamin C

Sigma Aldrich Merck, Favre 
et al., 2011 A5960

Chemical compound, 
drug vitamin E

Sigma Aldrich Merck, Favre 
et al., 2011 T3251

Chemical compound, 
drug Mito-tempo

Sigma Aldrich Merck, Freed 
et al., 2014 SML0737

Chemical compound, 
drug catalase

Sigma Aldrich Merck, 
Bouvet et al., 2007 C3155

Chemical compound, 
drug PEG-superoxide dismutase (SOD)

Sigma Aldrich Merck, 
Bouvet et al., 2007 S9549

Chemical compound, 
drug Estetrol (E4)

Sigma Aldrich Merck, Abot 
et al., 2014 SML1523

Chemical compound, 
drug ICI 182 780

Tocris Biotechne, Meyer 
et al., 2010 1047

Chemical compound, 
drug

G-1 ((±)–1-[(3aR*,4S*,9bS*)–4-(6-Bromo-1,3-
benzodioxol-5-yl)–3 a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinolin-8-yl)]- ethanone

Cayman chemical Bertin 
Bioreagent, Meyer et al., 
2010 10008933

chemical compound, 
drug

G-36 ((±)-(3aR*,4S*,9bS*)–4-(6-Bromo-1,3-benzodioxol-
5-yl)–3 a,4,5,9b-tetrahydro-8-(1-methylethyl))–3H-
cyclopenta[c]quinoline

Cayman chemical Bertin 
Bioreagent, Meyer et al., 
2016 14,397

Sequence-based 
reagent

N-(methylsulfonyl)–2-(2-propynyloxy)-
benzenehexanamide (MSPPOH)

Cayman chemical Bertin 
Bioreagent, Dietrich et al., 
2009 75,770

Chemical compound, 
drug Grammostola spatulata mechanotoxin 4 (GsMTx4)

Alomone Labs, John et al., 
2018 STG-100

Chemical compound, 
drug YODA1

Bertin Bioreagent, Lhomme 
et al., 2019 SML1558

Chemical compound, 
drug ATPγS

Tocris Biotechne, Kukulski 
et al., 2009 4080

Chemical compound, 
drug 4-hydroxy-2,2,6,6-tetramethylpiperidine (TEMPOL)

Sigma Aldrich Merck, 
Freidja et al., 2014 176,141

commercial assay or kit Nitric oxide metabolite detection kit Cayman Chemical 780,051

commercial assay or kit Hydrogen peroxide assay kit Abcam Ab102500

commercial assay or kit ATP determination kit Invitrogen Molecular Probes A22066

 Continued

Animal protocol
We used 5–6 month-old male mice lacking the gene encoding ERα (Esr1-/-) (Antal et al., 2008) or ERβ 

(Esr2-/-) (Antal et al., 2008), mice lacking ERα selectively targeted to the endothelium (TekCre/+:ERf/f) 

(Toutain et al., 2009), mice lacking the nuclear activation function AF2 (AF20ERα mice) (Billon-Galés 
et al., 2011), mice in which the codon for the cysteine (Cys451) palmitoylation site of ERα had been 

mutated to alanine (C451A-ERα mice) (Adlanmerini et al., 2014) and mice mutated for the arginine 

https://doi.org/10.7554/eLife.68695
https://identifiers.org/RRID/RRID:AB_915783
https://identifiers.org/RRID/RRID:AB_2315049
https://identifiers.org/RRID/RRID:AB_228307
https://identifiers.org/RRID/RRID:AB_228341
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264 of ERα (R264A-ERα mice) (Adlanmerini et al., 2020). Littermate +/+ mice were used as controls 

(designated wild-type, WT, or +/+) in each group.
In a separate series of experiments, 5–6 month-old female Esr1-/- and Esr1+/+ mice were used for 

FMD measurements. The mice had been ovariectomized or left intact (with only a sham surgery), as 
previously described (Toutain et al., 2009).

In another series of experiments, 5–6  month-old male C451A-ERα and C451A-WT mice were 
treated with the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine (TEMPOL, 10 mg/kg per day, 
2 weeks in drinking water) (Belin de Chantemèle et al., 2009) or with the antioxidants vitamin E (1 % 
in chow) and vitamin C (0.05 % in water) for 4 weeks. (Favre et al., 2011; Contreras-Duarte et al., 
2018).

The mice were anesthetized with isoflurane (2.5%) and euthanized with CO2. The mesentery and 
the uterus were quickly removed and placed in ice-cold physiological salt solution (PSS) (Tarhouni 
et al., 2013). Several segments of second-order arteries were collected for the functional study and 
for biochemical studies.

The experiments complied with the European Community standards for the care and use of labora-
tory animals and the Guide for the Care and Use of Laboratory Animals published by the US National 
Institutes of Health (NIH Publication No. 85–23, revised in 1996). The protocol was approved by the 
regional ethics committee (permits #14335, #16740, and #16108).

Flow-mediated dilation in mesenteric arteries in vitro
Arterial segments, with internal diameters of approximately 200 µm, were cannulated at both ends on 
glass micro-cannulas and mounted in a video-monitored perfusion system (Living System, LSI, Burl-
ington, VT, USA) (Iglarz et al., 1998; Bolla et al., 2002). Individual artery segments were bathed in a 
5 ml organ bath containing PSS (pH: 7.4, pO2: 160 mmHg, and pCO2: 37 mmHg) and perfusion of the 
artery was carried out with two peristaltic pumps, one controlling the flow rate and the other under 
the control of a pressure-servo control system. The pressure was set at 75 mmHg and flow (3–50 µl per 
min) was generated through the distal pipette with a peristaltic pump. Flow steps were 3, 6, 9, 12, 15, 
30 and 50 µl/min which correspond to 0.8, 1.2, 2, 2.8, 4, 8 and 12 dyn/cm2.

FMD was determined before and after pretreatment with N(omega)-nitro-L-arginine (L-NNA, 
100 µM, 30 min), L-NNA plus indomethacin and then with L-NNA plus indomethacin (10 µmol/L) plus 
N-(methylsulfonyl)–2-(2-propynyloxy)-benzenehexanamide (MSPPOH, 10 µmol/L).

In a separate series of experiments, the effect the mechanosensitve ionic channels blocker Gram-
mostola spatulata mechanotoxin 4 (GsMTx4) (5 µmol/L, delivered intraluminally and incubated for 
45 min) (John et al., 2018).

The impact of ex vivo modulation of ERα on FMD was evaluated after 20 minutes of incubation with 
the ERα agonists E2 (10 nM) or E4 (1 µmol/L), the GPER agonist G-1 (1 µmol/L) (Meyer et al., 2010), 
the GPER antagonist G-36 (1 µmol/L) (Yu et al., 2018) or the estrogen receptor downregulator and 
GPER agonist ICI 182 780 (0.1 µmol/L) (Meyer et al., 2010).

In another series of experiments, FMD was measured before and after incubation (20 min) of the 
arteries with PEG-superoxide dismutase (SOD, 120  U/mL) plus catalase (80  U/mL) (Bouvet et  al., 
2007), catalase (80 U/mL), or Mito-Tempo (1 µmol/L) (Freed et al., 2014).

Pharmacological profile of isolated mesenteric arteries
Segments of mesenteric arteries were mounted in a wire-myograph (Danish Myo Technology, Denmark) 
as previously described (Loufrani et al., 2002) in order to obtain cumulative concentration-response 
curves (CRCs) to acetylcholine (ACh) before and after pretreatment with L-NNA (10 µmol/L) and then 
with L-NNA (100 µmol/L) plus indomethacin (10 µmol/L).

In a separate series of experiments, CRCs to YODA1, ATPγS (ATP) were performed.
Prior to each CRC, the arteries were submitted to phenylephrine to obtain approximately 50 % of 

the maximal contractile response of the vessel assessed by KCl (80 mM)-mediated contraction at the 
beginning of the experiment.

https://doi.org/10.7554/eLife.68695


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology

Favre, Vessieres, et al. eLife 2021;10:e68695. DOI: https://​doi.​org/​10.​7554/​eLife.​68695 � 20 of 28

Western-blot analysis
Arterial segments were cannulated under pressure (75 mmHg), and flow (50 µl/min) was applied after 
precontraction with phenylephrine (1 µM). After 2 minutes, the arteries were quick-frozen. Due to the 
limited size of the resistance arteries segments were pooled before analysis. Protein expression (eNOS, 
phospho-eNOS, Akt and phospho-Akt) was then determined using Western blot (Bouvet et al., 2007).

Perfused isolated mouse kidney
In a separated series of experiments, the right renal artery was cannulated in anesthetized mice and 
the kidney was excised and perfused at 37 °C with PSS as previously described (Begorre et al., 2017). 
The right renal artery was cannulated in anesthetized mice (as described above) with a polyethylene 
catheter (PE-10, 0.28 mm internal diameter, 0.61 mm external diameter, Intramedic, Evry, France). 
The kidney was then excised and perfused without interruption of kidney flow at 37 °C with PSS. The 
perfusion solution was dialyzed and the pH was adjusted to 7.4. Perfusion rate was 600 µl/min and 
perfusion pressure was measured continuously (PT-F pressure transductor, Living System, Burlington, 
VT). Endothelium-mediated dilation was tested using ACh (1 µmol/L) after precontraction with Phe 
(1 µmol/L). Flow-pressure relationship was assessed through an stepwise increase in perfusion flow 
associated with the continuous measurement of the perfusion pressure.

The PSS perfusing the kidney (perfusate in the scheme shown in Figure 6) was collected in baseline 
conditions (flow = 600 µl/min) and immediately frozen in liquid N2 and then stored at –80 °C.

Determination of nitrate and nitrite, ATP and H2O2 levels in the kidney 
perfusate
To determine flow-induced nitrate-nitrite, ATP or H2O2 release from the perfused mouse kidney, 500 µl 
of perfusate was collected. The perfusate was then centrifuged 10 min at 14 000 rpm and the super-
natant added into a spin column with 10 kDa molecular weight cut-off filter for ultrafiltration (10KD 
Spin Column Abcam ab93349) and centrifuged at 10 000 rpm for 10 min. The centrifuged solutions 
was then used for nitrate-nitrite, ATP and H2O2 measurement.

Nitrate and nitrite levels in kidney perfusate were determined using a nitrate/nitrite fluorometric 
assay kit from Cayman Chemical (Nitric Oxide Metabolite Detection Kit Nb°780051) according to the 
manufacturer’s instructions.

Hydrogen peroxyde (H2O2) level was determined using the fluorimetric method of a hydrogen 
peroxide assay kit from Abcam (Hydrogen Peroxide Assay Kit Colorimetric/Fluorometric NbAb102500) 
according to the manufacturer’s instructions.

ATP level was measured using ATP determination kit from Invitrogen Molecular Probes (ATP Deter-
mination Kit Nb A22066) according to the manufacturer’s instructions.

Preparation of endothelial cells enriched fraction for transcriptional 
analysis
Endothelial cells enriched fractions were obtained as previously described (Briot et al., 2014). Briefly, 
5-week-old female mice were perfused with PBS. The descending thoracic aorta was dissected and 
perfused with RLT buffer (Qiagen, Valencia, CA) containing 1 % beta-mercaptoethanol. Endothelial 
cells enrichment was confirmed by the increased endothelial marker Tek expression level and the 
absence of smooth muscle cell marker Cnn1 (Kalluri et al., 2019) compared to the total aorta.

Evaluation of gene expression by quantitative real-time PCR in 
mesenteric arteries
Gene expression was investigated using quantitative polymerase chain reaction after reverse tran-
scription of total RNA (RT-qPCR). Mesenteric arteries were stored at −20 °C in RNAlater Stabiliza-
tion Reagent (Qiagen, Valencia, CA, USA) until use. RNA was extracted using the RNeasy Micro Kit 
(Qiagen, Valencia, CA, USA) following manufacturer instructions. RNA extracted (300 ng) was used to 
synthesize cDNA using the QuantiTect Reverse Transcription Kit (Qiagen, Valencia, CA, USA). RT-qPCR 
was performed with Sybr Select Master Mix (Applied Biosystems Inc, Lincoln, CA, USA) reagent using 
a LightCycler 480 Real-Time PCR System (Roche, Branchburg, NJ, USA). Primer sequences are shown 
in the Supplementary file 1. Gapdh, Hprt and Gusb were used as housekeeping genes. Analysis was 
not performed when Ct values exceeded 35. Results were expressed as: 2(Ct target-Ct housekeeping gene).

https://doi.org/10.7554/eLife.68695
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Statistical analysis
The results are expressed as means ± the SEM. The significance of the differences between groups 
was determined by analysis of variance (two-way ANOVA for consecutive measurements) followed by 
Bonferroni’s test for the FMD and the agonist-mediated concentration-response curves. A two-tailed 
Mann-Whitney test (when comparing two groups) or a Kruskal-Wallis test (more than two groups) was 
used for the other comparisons as indicated in the figure legends. Probability values less than 0.05 
were considered significant.
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