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Abstract: The temperature of an electronic device is one of the most important parameters to deal
with. Any increase above the temperature limits results in a failure in the device. Thus, to ensure
good operation, an electronic device should be cooled. One promising technique is the use of Phase
Change Materials (PCMs) for their well-known ability to absorb the heat dissipated by the device,
thanks to their high latent heat of fusion. Arachidic acid is a fatty acid that, when mixed with sodium
decanoate and potassium oleate salts, can be used as a promising PCM due to its high latent heat.
This paper aims to shed light on the use such mixtures of Arachidic acid for cooling in a heat sink.
An experimental setup was built for this purpose. The results show that the Arachidic acid mixtures
are suitable for applications requiring intermediate heat dissipation.

Keywords: phase change material; fatty acids; Arachidic acid; mixtures; thermophysical properties;
melting range; heat sink

1. Introduction

Economic development and environmental problems have been two opposing aspects
of technological advancement throughout human history, but the recent peak in technolog-
ical development has shed more light on environmental issues; therefore, it has become
important to improve energy use, for example, through thermal energy storage techniques.
This fact has led thermal management to become a critical feature of successful system
design, and finding new cooling techniques, especially passive ones, has subsequently
become much more valuable.

Electronic devices such as computers, mobile phones and toys have found their way
into almost every aspect of human life. The reliability of any system is a function of the
reliability of the electronics of that system. An increase in the amount of heat generated per
unit volume can be harmful to electronic devices. Electronic devices’ failure rates increase
with increasing temperature. There are many ways in which excess heat can be extracted
from electronic devices.

In electronics, the increase in processing demands and data clock frequencies has
forced manufacturers to increase the performance and functionality of integrated elec-
tronic chips, increasing component power consumption and reducing design tolerances,
while also minimizing their size for portability purposes, leading to the necessity of the
dissipation of large amounts of power through smaller packages; electronic components
such as micro-processors, integrated circuit (IC) boards, transistors, resistors, batteries,
etc., generate heat. The high efficiency required and the fast calculation speeds demand
effective cooling to maintain good performance and to minimize failure risk.
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The high temperature of electronic devices reduces their effectiveness and life span, as
shown in Figure 1. As shown in this figure, a small increase in the operating temperature
causes a sharp decrease in lifetime. Various cooling mechanisms are used to prevent the
malfunction of electronic devices, including microchannels [1], natural convection [2],
forced-air cooling [3], immersion cooling [4], and heat pipes [5].
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Because of the heat transfer ability restrictions with respect to conventional coolants
like oil, air, and water, along with dire heat transfer characteristics, especially thermal
conductivity and the convective heat transfer coefficient, the majority of cooling methods
are not able to attain the required efficiency. In this project, PCMs are used for cooling
electronic devices in order to reduce their temperature when carrying out their preferred
applications. PCM is used to retain energy to prevent the enclosure from overheating.

The use of PCMs as thermal energy reservoirs [7] or temperature regulators appears to
be a promising passive cooling technique that benefits from their thermophysical properties,
mainly the latent heat of fusion and the melting temperature. The higher the latent heat of
fusion, the more energy can be absorbed by the material during melting.

PCMs possess high latent heat storage capacity, which can be used to absorb the ther-
mal energy of the surroundings as latent energy and change it from one phase to another [8].
Usually, solid–liquid phase change materials are used, but other types, such as solid–solid,
solid–gas, and liquid–gas, also exist. PCMs have been used in many applications, such as
thermal cooling of photovoltaic panels [9,10], thermal comfort of buildings [11], water heat-
ing [12], thermal management in batteries [13], and cooling of electrical equipment [14,15].

During the phase change, the PCM’s temperature remains constant until all the
material is completely melted; then, the temperature increases again, in theory to what it
would have increased to without the PCM. When the heat source is turned off, the material
re-solidifies and emits the absorbed heat. This is why PCMs are recommended for use
in applications with non-continuous operation [16]. For example, when cooling portable
devices such as palm pilots, cellular phones and personal digital assistants, these devices
are not used for more than a few hours continuously at peak load. In addition, their ‘idle’
time is typically long enough to solidify the molten PCM for reuse.

Studies on PCMs have focused on the thermal management of electronic devices
at the system level. Mjallal et al. [2] performed a numerical study of the distribution of
temperature of a heat sink filled with two types of PCMs: salt-hydrate and wax. After
performing multiple simulations, they concluded that an increase of heat flux leads to a
reduction in the melting time of PCM. Moreover, they found that the salt-hydrate delayed
the peak temperature more effectively than the wax. They also checked the significance of
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the density and thermal conductivity in delaying the steady state temperature. Experiments
and numerical simulations of PCMs in cooling chips were performed by [17], where they
discovered that this method decreases the resistance of thermal heat transfer from the chip
to the ambient. Various configurations of heat sinks with two PCMs—namely paraffin wax
and n-ecoisane—were studied in [18]. It was also found that circular pipes embedded with
wax or n-ecoisane were more effective than a 2-mm-square pin fin heat sink. A numerical
study of several configurations of a micro-channel heat sink with four PCMs (paraffin wax,
n-eicosane, p116 and RT4) was performed by [19]. They concluded that PCM placed inside
the base and channels of the heat sink grants a lower temperature. Another numerical
and experimental study was conducted by [20] focusing on a PCM-based heat sink in the
transient thermal management of plastic quad flat package electronic devices. The results
showed that the presence of PCM in the cavities of the heat sinks increased the cooling
performance more than the case without PCM. The usage of four heaters placed on the top
of a heat storage unit filled with PCM (n-ecoisane) to cool a mobile electronic device was
investigated by [21]. They concluded that using a larger amount of PCM could stabilize
the mobile electronic device’s temperature for a longer time.

Previously, the heat was stored in the form of sensible heat, such as by heating water,
oil, or rocks, but with developments in the energy domain, it was found that latent heat
storage was one of the most efficient ways to store thermal energy [22], in addition to
the various possible enhancements that could be applied to increase efficiency. Despite
that latent heat storage techniques store a higher amount of heat compared to sensible
heat storage ones, the charging and discharging processes of the former are slower. The
hyper system takes advantage of the properties of both sensible and latent heat storage
systems. In this paper, different thermal management techniques for chips using PCMs
will be applied [23,24], bearing in mind that the usage of PCMs in electronic devices leads
to improved efficiency as well as reliability in electronic devices.

In this work, the focus will be on the use of Arachidic acid (C20H40O2) as a PCM. The
use of the Arachidic acid mixed with some salts was investigated by [25] and found to be
a promising PCM in a variety of applications. Arachidic acid was mixed with different
salts: ammonium acetate, potassium oleate, sodium decanoate, sodium oleate, and sodium
hydroxide. The thermophysical properties of the mixtures were measured using differential
scanning calorimetric (DSC). As a continuation of that work, the promising mixtures of
Arachidic acid will be used to experimentally test the thermal performance of a heat sink.
Thus, the novel contribution of this paper lies in the investigation of fatty acids as potential
PCM candidates in the cooling of electronic devices.

2. Experimental Setup

As stated in the objectives, an experiment is performed on a heat sink (THOMSON
TELECOM BELGIUM NV, Edegem, Belgium) in order to study and compare its temper-
ature profile with and without PCM. The heat sink presented in Figure 2 has an area of
20 × 20 mm2 with a bottom thickness of 1 mm. The fins are 5 mm long.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

Figure 2. Heat sink used in the experimental setup. 

2.1. Apparatus and Instruments 

As shown in Figures 3 and 4, the heat sink of a modem is used in the experimental 

setup. At the bottom of the heat sink, a Peltier thermo-electric heater (Transfer Multisort 

Electronik Sp. Z o. o., Lodz, Poland)with a resistance of 0.4 Ω is used. The heater is placed 

at the top of the electric board. A K-type thermocouple touching the tip of the center fin 

of the heat sink with accuracy ±0.5 °C is used to measure the instantaneous temperature 

of the sink which is connected to an Arduino device to record these temperatures. Two 

other thermocouples (YU FUNG COMPANY LIMITED, Hong Kong, China)are used to 

measure the ambient temperature in and outside the modem. A DC power supply 

(XinYue Electronic Technology CO., Guangzhou, China) is used to regulate the heater’s 

temperature with a significant amount of power. For the case with PCM, the PCM will be 

added between the fins of the sink. 

 

Figure 3. Three-dimensional drawing of the experiment. 

 

Figure 4. Schematic of the experiment. 

Figure 2. Heat sink used in the experimental setup.



Appl. Sci. 2021, 11, 9201 4 of 12

2.1. Apparatus and Instruments

As shown in Figures 3 and 4, the heat sink of a modem is used in the experimental
setup. At the bottom of the heat sink, a Peltier thermo-electric heater (Transfer Multisort
Electronik Sp. Z o. o., Lodz, Poland) with a resistance of 0.4 Ω is used. The heater is placed
at the top of the electric board. A K-type thermocouple touching the tip of the center fin
of the heat sink with accuracy ±0.5 ◦C is used to measure the instantaneous temperature
of the sink which is connected to an Arduino device to record these temperatures. Two
other thermocouples (YU FUNG COMPANY LIMITED, Hong Kong, China)are used to
measure the ambient temperature in and outside the modem. A DC power supply (XinYue
Electronic Technology CO., Guangzhou, China) is used to regulate the heater’s temperature
with a significant amount of power. For the case with PCM, the PCM will be added between
the fins of the sink.
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2.2. Experimental Procedure

The DC power supply is turned on and regulated to 1.12 A in order to dissipate heat
equal to 0.5 W. At the same time, the Arduino device is turned on to record the temperature
of the heat sink and the surrounding. The power supply is kept turned on until the heat
sink temperature becomes constant despite the continuous supply of power. This defines
the steady-state temperature of the heat sink. The time to reach the steady state is recorded
during the experiment. The same procedure is repeated for 1.58 A and 2.23 A, which are
equivalent to 1 W and 2 W of heat dissipated, respectively.

The PCM is embedded in the heat sink in order to study its influence on the thermal
performance of the heat sink. The PCM is melted externally, then poured in between the
fins and secured sideways by a strap of aluminum. After the PCM re-solidifies and its



Appl. Sci. 2021, 11, 9201 5 of 12

temperature becomes equal to the ambient temperature, the same power input procedure
as that of the case without PCM is repeated.

2.3. Uncertainty Analysis

To evaluate the trust in the outcomes, an uncertainty analysis is performed. The
uncertainty in the experiments can be due to: the temperature measurements, the DC
power supply, and heater temperature stability, as summarized in Table 1.

Table 1. Experimental uncertainty.

Equipment Experimental Error

Thermocouple ±0.5 ◦C
Power supply ±1%

Heater temperature stability ±0.1 ◦C

The absolute uncertainty in percentage is calculated using Equation (1):

e =
absolute uncertainty

value read by the equipment
(1)

For the thermocouple, the minimum value that can be read is equal to 23 ◦C; thus, the
thermocouple uncertainty (et) is equal to:

et =
0.5
23

= 2.17%

Similarly, the heater temperature stability is equal to eh = 0.43%. The uncertainty of
the power supply (ep) is equal to 1%.

The total uncertainty is the norm of all uncertainties and is calculated using Equation (2):

e =
√

e2
t + e2

h + e2
p (2)

Substituting all the above values in the equation for e, the total uncertainty was
e = 2.4%, which is in the acceptable range.

3. PCM Thermophysical Properties

A wide study has been performed on Arachidic acid [25] in which different mixtures
were produced to enhance thermophysical properties. The promising mixtures of Arachidic
acid suitable for electronic applications were: Arachidic acid +10% potassium oleate; and
Arachidic acid +10% sodium decanoate.

3.1. Differential Scanning Calorimetric Study

A Differential Scanning Calorimetric (DSC) study was performed to find the latent
heat, specific heat and melting range for the Arachidic acids and the two mixtures.

As shown in Table 2, the pure Arachidic acid had the highest latent heat of 257.4 kJ/kg.
Meanwhile, the mixture with 10% sodium decanoate had the highest specific heat for
the solid phase and 10% potassium oleate had the highest specific heat for liquid phase
of 2.33 kJ/kg K and 2.36 kJ/kg K, respectively. Finally, for the melting points, and the
solidus and liquidus temperatures for the Arachidic acid were equal to 73.3 ◦C and 80.1 ◦C,
while the melting range for the mixtures was much wider and was equal to 50.0 ◦C and
83.3 ◦C for the 10% potassium oleate mixture and 48.0 ◦C and 82.7 ◦C for the 10% sodium
decanoate mixture.
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Table 2. Latent heat, specific heat and melting range of the Arachidic acid and its mixtures.

Materials Latent Heat
(J/kg)

Specific Heat
for Solid Phase

(kJ/kg K)

Specific Heat
for Liquid Phase

(kJ/kg K)

Solidus
Temperature

(◦C)

Liquidus
Temperature

(◦C)

Arachidic acid (AA) 257.4 1.90 2.19 73.3 80.1
AA + 10% potassium oleate 214.0 1.90 2.36 50.0 83.3

AA + 10% sodium decanoate 222.1 2.33 2.30 48.0 82.7

It is worth noting that different mol percentages of salts were considered, and were
generally kept low (<15 mol%), since the added chemicals were considered to be impu-
rities. After a wide study, it was found that the 10% mixture was suitable for electronic
cooling application, since it decreased the melting temperature to the allowable range and
maintained considerably high latent heat of fusion [25].

3.2. Thermal Conductivity Measurement

The thermal conductivity of the PCMs was measured using a device manufactured
in [26]. The experiment was repeated three times, and the average value for the three
experiments was taken as the thermal conductivity of the PCM. As shown in Figure 5, the
average thermal conductivity for the pure Arachidic acid was 0.181 W/m K.
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Figure 5. Thermal conductivity for Arachidic acid.

Figure 6 shows the thermal conductivity of pure Arachidic acid, potassium mixture
and sodium mixture. For the potassium mixture, the thermal conductivity increased by
66%, reaching 0.300 W/m K, while the thermal conductivity decreased by 20% for the
sodium mixture, reaching 0.145 W/m K.
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4. Results

The first experiment was performed for the case without PCM at a generated heat
of 0.5 W. Figure 7 shows the temperature variation over time of the heat sink. As seen
in Figure 7, the temperature started to increase, from an ambient temperature of 23 ◦C,
until it reached a steady-state temperature of 50 ◦C. At the beginning, the temperature
increased remarkably; then, its rate of increase decreased over time until the temperature
became constant at a steady state. The reason behind this variation is that the heat rejected
by convection increases when the temperature of the sink increases; and at steady state,
the heat rejected from the sink is equal to the heat gained by the heater—0.5 W in this case.
The time taken by the sink to reach the steady state was about 900 s.
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Figure 7. Temperature distribution for the heat sink at 0.5 W.

As shown in Figure 8, when the heat generated by the chip increased, the steady-state
temperature increased. In this experiment, the steady-state temperature increased from
50 ◦C at 0.5 W to 72 ◦C and 109 ◦C at 1 W and 2 W, respectively.
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Figure 8. Temperature distribution for the heat sink for 0.5, 1, and 2 W.

To investigate the effect of Arachidic acid and its mixtures on the cooling of the heat
sink, a set of experiments was performed. By adding the Arachidic acid (being considered
as a PCM), the stead-state temperatures for 0.5, 1 and 2 W were 41.75 ◦C, 65 ◦C and 104.5 ◦C,
respectively. As one can see from Figure 9, the PCM does not melt at 0.5 and 1 W, because
the steady-state temperature for those powers is lower than the melting temperature of
Arachidic acid. It took 500 s and 1000 s to reach the steady-state temperature for the cases
of 0.5 W and 1 W, respectively. Meanwhile, in the case of 2 W, the PCM melted completely
after about 1180 s, delaying the peak temperature of the sink by 300 s. It can be seen that
the stead-state temperatures of the three cases, even without the melting of PCM, were
decreased compared to that without PCM.
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Figure 9. Temperature distribution for the heat sink with Arachidic acid for 0.5, 1 and 2 W.

The temperature profiles for the heat sink without PCM, the heat sink with potassium
mixture as PCM, the heat sink with sodium mixture as PCM and the heat sink with
Arachidic acid as PCM for 0.5, 1 and 2 W of heat dissipated are depicted in Figures 10–12,
respectively.
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Figure 10. Temperature distribution for the heat sink without and with PCMs at 0.5 W.
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For 0.5 W, the Arachidic acid and its mixtures did not melt, but it can be seen that the
peak temperature reached by the heat sink without PCM (50 ◦C) was much higher than
that for the heat sink with PCM (approximately 42 ◦C).

As for the case at 1 W, the temperature profile for the heat sink without PCM and the
heat sink using Arachidic acid and potassium mixture as the PCM continued to increase
until reaching a steady-state temperature, while for the sodium mixture, the PCM melted,
and the temperature decreased during melting, delaying the steady-state time by 320 s.
The steady-state temperature for the sodium mixture and the sink without PCM was
approximately the same. For the cases of Arachidic acid and potassium mixture, they did
not melt, but the steady-state temperature (59 ◦C) was lower than the case without PCM
(72 ◦C).

Finally, for the case 2 W, all PCMs melted, with differences in the peak temperatures
and delay times. For the Arachidic acid, the peak temperature (104.5 ◦C) was lower than in
the case without PCM (109 ◦C), with a time delay equal to 300 s. For the sodium mixture,
the peak temperature (111 ◦C) was higher than in the case without PCM, with a delay
equal to 900 s. The best results were obtained for the potassium mixture, which achieved
the lowest peak temperature of 95.25 ◦C and the highest time delay of 1050 s.

Table 3 summarizes the peak temperature for all cases without and with PCMs and
the time required to reach the steady state.

Table 3. Peak temperature and time to reach steady state.

Peak Temperature (◦C) Time to Steady State (s)

0.5 W 50 900
1 W 72 850
2 W 109 800

0.5 W (AA) 41.5 473
1 W (AA) 65 1120
2 W (AA) 89 1100

0.5 W (AA + Potassium) 42.5 500
1 W (AA + Potassium) 58.5 560
2 W (AA + Potassium) 95.25 1500
0.5 W (AA + Sodium) 42 908
1 W (AA + Sodium) 73 1160
2 W (AA + Sodium) 104 1607

5. Discussion

On the basis of the several experiments performed, some conclusions can be outlined.
First, when the generated heat increases, the peak temperature of the sink also increases.
The effect of the PCM with respect to delaying the peak temperature is clearly shown
in Figure 9. When the PCM melts at 2 W, it absorbs a large amount of energy during
the phase transition, leading to enhanced thermal performance of the heat sink. Another
important thermophysical criterion that affects the thermal performance of the sink is
the specific heat Cp. This is clearly shown in Figure 10, where the PCMs do not melt at
0.5 W, but have a smaller peak temperature due to the energy absorbed by the PCM as
specific heat during temperature change from ambient to peak temperature. The effect of
the thermal conductivity of the PCM is demonstrated in Figure 12, where all PCMs are
totally melted and have almost the same specific heat. The higher the thermal conductivity
is, the lower the peak temperature is reached. As the thermal conductivity increases, the
heat transfer rate between the bottom and the top surface of the PCM will increase, making
the temperature gradient uniform. In addition, when the surface temperature of the PCM
increases, the natural convection at the surface will increase, making it possible for the heat
to dissipate faster.

Moreover, the influence of the mixtures was investigated in this work. Unlike
Arachidic acid, the sodium mixture makes the PCM suitable for applications with lower
heat dissipation, as shown in Figure 11, where the sodium mixture was completely melted
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at 1 W and the peak temperature of the sink was delayed by 320 s. Thus, this PCM is
appropriate for electronic devices with intermediate heat dissipation.

Finally, for the potassium mixture, despite this PCM not melting at 1 W, it is appro-
priate for application in electronic devices with intermediate heat dissipation, because
the melting point of this mixture is 50 ◦C. The reason for it not melting significantly at
1 W is that the potassium mixture enhances the thermal performance of the heat sink by
lowering its melting peak from 72 to 59 ◦C. Therefore, the potassium mixture enhances the
performance for the pure Arachidic acid, making this PCM suitable for electronic devices
with lower heat dissipation and enhancing the thermal performance for the electronic
chip by increasing the specific heat and thermal conductivity. In addition, the potassium
mixture has a much greater time delay than pure Arachidic acid. This is shown in Figure 12,
where potassium delays the peak temperature by 1050 s instead of 300 s, as in the case of
the pure Arachidic acid, thus resulting in a 3.5 time greater delay than pure Arachidic acid,
and with better thermal performance for electronic devices with higher heat dissipation.

6. Conclusions

The goal of this paper was to investigate the effect of Arachidic acid and some mixtures
on the thermal performance of heat sinks. It shed light on the effect of the thermophysical
properties of the PCM on the thermal behavior of the heat sink.

The potassium mixture had the best effect in terms of enhancing the cooling perfor-
mance of the sink. Meanwhile, the deficiency of the thermal conductivity of the sodium
mixture negatively affected its thermal cooling performance compared to the potassium
mixture.

For electronic applications with lower heat dissipation, the pure Arachidic acid has
better performance than the potassium and sodium mixtures. However, for intermediate
applications, it was observed that only the sodium mixture melted completely at about
50 ◦C, and the peak temperature was delayed by 320 s compared to the case without PCM.
As for the potassium mixture, it exhibited a better performance for electronic applica-
tions with high heat dissipation, with a melting temperature of about 65 ◦C and a peak
temperature delay of 1050 s.

In summary, the thermal conductivity of the sodium mixture can be enhanced to
improve its thermal performance. Additionally, numerical modeling of PCMs can be
implemented to decrease the cost of the experimental setup. This model can be validated
on the basis of experimental results. This will help to study different configurations and
applications.
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