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Abstract: Electricity plays a significant role in daily life and is the main component of countless
applications. Thus, ongoing research is necessary to improve the existing approaches, or find new
approaches, to enhancing power generation. The thermoelectric generator (TEG) is among the
notable and widespread technologies used to produce electricity, and converts waste energy into
electrical energy using the Seebeck effect. Due to the Seebeck effect, temperature change can be
turned into electrical energy; hence, a TEG can be applied whenever there is a temperature difference.
The present paper presents the theoretical background of the TEG, in addition to a comprehensive
review of the TEG and its implementation in various fields. This paper also sheds light on the new
technologies of the TEG and their related challenges. Notably, it was found that the TEG is efficient in
hybrid heat recovery systems, such as the phase change material (PCM), heat pipe (HP), and proton
exchange membrane (PEM), and the efficiency of the TEG has increased due to a set of improvements
in the TEG’s materials. Moreover, results show that the TEG technology has been frequently applied
in recent years, and all of the investigated papers agree that the TEG is a promising technology in
power generation and heat recovery systems.

Keywords: power generation; heat recovery; thermoelectric generator; gradient temperature; wasted heat

1. Introduction

Electricity is one of humankind’s most significant scientific discoveries and is now
integral to our daily lives. In addition, the development of electricity is an essential
milestone in scientific progress, and ongoing research aims to identify new electrical energy
sources or improve the existing methods of generating electricity [1,2]. The crucial role of
electricity and the necessity to be environmentally friendly have encouraged investments in
the use of green resources and waste energy for generating electricity [3–5]. These ambient
energy sources are considered to be accessible sources of energy, and are classified into two
categories: natural energy and energy recovery resources.

1. Natural energy comprises several sources of energy that can be transformed into
electricity, as presented in Figure 1. For instance, wind, hydro energy, waves, and
mechanical vibration [6,7] create motion that can be converted into electrical energy
using the piezoelectric effect or turbines. Similarly, the temperature gradient, chemical
energy, electromagnetic radiation, and light are forms of green energy that can be
used to generate electricity via thermoelectric generators (TEGs), and the reaction,
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induction, and photoelectric effects, respectively. Renewable energy sources constitute
25% of the power generation sector, and this proportion is expected to increase to 85%
by 2050 [8];

2. Energy recovery resources comprise waste energy, in the form of kinetic energy or
heat from applications, that is recovered and reused. The related approaches include
flue gas heat recovery, the recovery of kinetic energy using a flywheel, and hybrid
pneumatic power systems. Thus, the main advantage of these systems is the recovery
of waste energy that would otherwise be lost.

In general, renewable energy and other applications or systems are integrated with
energy recovery systems. Thus, the energy lost from the primary system is captured and
reused. This method creates a new source of reliable, clean, renewable, regenerated, and
environmentally friendly energy that produces minimal waste products. As a result, these
renewable energy recovery systems have an advantage compared to non-renewable power
plants [9,10], which are not favored because they create pollution and gradually deplete
resources. However, the disadvantages of free sources of energy are their low efficiency,
their complete reliance on weather conditions and geographical location, as well as the
unpredictability of the ambient energy source [11].
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Figure 1. Ambient energy sources converted into electricity.

Due to the increase in energy demand, energy harvesting methods have gained
significant interest and should be considered in most energy applications. Engineers and
researchers are escalating their efforts to identify new sources of energy that are simple to
use and productive. When it is able to be recovered, waste energy, such as heat energy, is
considered to be an alternative source for the production of electricity. This is of particular
interest because the percentage of waste energy is significant, as shown in Figure 2. For
example, in the energy consumption of vehicles and automobiles, around 36% of the input
energy is lost as heat from the internal combustion engine, about 38% is lost in the exhaust,
and 6% is lost as friction [12]. In addition, the energy loss of power plants is 60% prior
to applying heat recovery [13]. A considerable percentage of energy is also lost through
the condenser in heating, ventilation, and air-conditioning (HVAC) systems. Thus, the
percentage of waste energy differs depending on the use. In each of these uses, recovering
the energy so that it can be reused in the same application or in another way (i.e., another
application) is crucial.

So, as noticed, energy is not the problem, but rather sustainability is. With that being
said, this problem can be solved through energy recovering units (ERU). Recently, ERU is a
must in most applications due to its effectiveness in saving and recovering the lost energy.
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A thermoelectric generator (TEG) is one of the existing tools used to recover wasted
heat. The main advantage of TEG over other heat recovery devices is that it is applicable for
small-scale discrete energy sources. TEG contains no moving parts, making it noiseless; and
it is known for its simplicity, low cost, and effectiveness when used for applications with
low temperatures. However, TEG has low efficiency, wherein it does not exceed 7% [14,15].
TEG performance is related to two main factors: (1) Material’s thermoelectric properties,
which affects the efficiency of TEG [16], and (2) temperature gradient, which is related to
sink’s mass flow rate and heat source, properties of flowing fluid, inlet temperature, and
the heat exchangers design [17].

The scientific concern is not to just increase the efficiency; however, the challenge of
using TEG is to find a suitable gradient temperature proportional to the electrical energy
produced. This paper presents a comprehensive review of the theoretical background
and development of TEG over the years, as well as, it investigates around 180 published
papers to study the effectiveness of TEGs in various applications. Furthermore, this review
straightens out the challenges that the researchers have faced throughout the development
of thermoelectric devices (TED).

Scope of the Paper

Among the recent review papers, it is noticed that TEGs are highly recognized for
research projects, where the review papers tend to investigate TEGs from various aspects,
such as Zoui et al. [18], who conducted a review on the progress and applications of TEG;
Kumar et al. [19], who held a review about TEG design and its medical applications; and
likewise, Indira et al. [20], who took a review on several dispositions of hybrid concentrator
photovoltaic (CPV) and TEG systems.

Although the mentioned papers have indeed reviewed TEG through different aspects,
there was a lack of information about the exact starting time of TEGs’ applications and the
challenges that they have faced. Hence, the novelty of the recent review is:

1. Presenting the history of main milestones that TEG passes through since its first invention;
2. Displaying the applications of thermoelectric (TE) in the past, starting from 1985, and

the expectations of TE applications for the foreseeable future, specifically 2030;
3. Reviewing over 180 papers and classifying them into specific categories;
4. Demonstrating the challenges that the researchers have faced during the study. This

section is crucial as it is noticed that the progress of TEG development was by working
on solving the challenges of the previous studies.

2. Theoretical Background

The thermoelectric effect was first discovered in 1822 by Thomas Johann Seebeck, who
discovered that a thermal gradient formed between two dissimilar conductors produces
a voltage. At the heart of the thermoelectric effect is that a temperature gradient in a
conducting material results in heat flow, which results in the diffusion of charge carriers.
The flow of charge carriers between the hot and cold regions, in turn, creates a voltage
difference. The output produced was initially a small magnitude and was of no value in
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electric power generation [21]. With the discovery of semiconductors, it was found that
the output could be magnified significantly, and new concerns arose in the middle of the
20th century.

Conversion between thermal and electrical energy occurs due to three main ther-
moelectric phenomena: the Seebeck effect [22], the Peltier effect [23], and the Thomson
effect [24]. The Seebeck effect is the conversion of a temperature gradient to electricity; the
Peltier effect indicates that an electric current would generate temperature difference at
the joint of two different materials, and the Thomson effect is an extension to the Peltier–
Seebeck model [25,26]. In conclusion, in the Peltier effect, the current is the driving work to
heat, whereas in Seebeck, the difference in heat is the driving work to current.

2.1. Seebeck Effect

In 1821, the German physicist Thomas Johann Seebeck (1770–1831) [27] discovered
that the needle of a compass would be deflected by a loop made from two linked materials
of different temperatures: cold temperature (Tc) and hot temperature (Th) between the
joints [28]. This deflection is due to the different responses of the materials to the gradient
temperature, creating a current and magnetic field through the loop. Thus, the Seebeck
effect refers to the presence of a potential electric current through a thermoelectric material
when subjected to a temperature difference [27,29].

In this section, three main terms are described and demonstrated as follows: (1) the
link between two dissimilar metals is called a thermocouple, (2) electromotive force (emf)
produced in a thermocouple is called thermo emf, and (3) the current that flows through
the closed circuit is called thermoelectric current.

For a specific range of temperature and different material combinations, thermo emf
is different. The direction and magnitude of thermo emf are related to the nature of
the materials used in thermocouples ∆T between hot and cold junctions. Thus, Seebeck
organized a series of 35 metals between 0 and 100, so that the current flows over the cold
junctions from the metal put first to the one put later. A selection from Seebeck’s series
showing the symbol of the element with its atomic number and mass is organized as shown
in Figure 3 [30]. The larger the distance between the two chosen metals, the higher thermo
emf will be obtained; this is why TEG of Bismuth telluride base is mainly used [31,32].
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2.2. Peltier Effect

The Peltier effect was revealed in 1834 by the French physicist Jean Charles Athanase
Peltier (1785–1865). He discovered that applying current at a junction between two dif-
ferent materials leads to the release and absorption of heat, as shown in Figure 4. At
the atomic level, this is due to the different energy states of materials, which are P- and
N-type materials. As electrons shift from P-type to N-type material, they reach a higher
energy level, leading to absorption of heat from the surroundings. On the other side, as
electrons shift from N-type to P-type material, electrons break down into the lower energy
level, leading to releasing heat to the surrounding. So, the Peltier effect is related to heat
absorption on one end of a thermoelectric material, and heat release from the other end
due to the current flow over the material, as shown in Figure 4 [33]. If the current direction
is inverted in the thermocouple, the absorbed or evolved heat is exchanged, consequently
Peltier effect is reversed.
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2.3. Thomson Effect

The Thomson effect was developed by William Thomson (1824–1907), better known
as Lord Kelvin, who stated in 1851 that as a current passes along the length of the same
metal from one cold end to the other hot end or vice versa, absorption and evolution of
heat would occur as shown in Figure 5 [34]. The amount of heat energy evolved and
absorbed when a current of 1 A (one ampere) passes through a metal between two points
of temperature difference ∆T = 1 °C, is called the Thomson Coefficient τ.
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Thomson’s effect undergoes three different cases: positive, negative, or null. These
effects are related to the materials used, as shown in Table 1.

Table 1. Definition and examples on Thomson’s three different effects [35,36].

Thomson’s positive effect

When the current passes from the hot end to the cold end, the heat is developed, so the
conductor becomes hot.

When the current passes from the cold end to the hot end, the heat is absorbed, so the
conductor becomes cold.

Antimony, Silver, Zinc, Cadmium

Thomson’s negative effect

When the current passes from the hot end to the cold end, the heat is absorbed, so the
conductor becomes cold.

When the current passes from the cold end to the hot end, the heat is evolved, so the
conductor becomes hot.

Platinum, Bismuth, Cobalt, Nickel, Mercury.

Thomson’s null effect
Used for the standard metal in thermoelectricity.

Lead

2.4. Thermoelectric Generators Working Process

A thermoelectric generator (TEG) is a solid-state device that converts heat energy
into electrical energy using the Seebeck effect. TEG is obtained by a cascade connection of
multiple thermocouples. TE materials’ performance is obtained by three thermoelectric
properties: Seebeck coefficient ∝, electrical resistivity ρ, and thermal conductivity K [37].
TEG’s design is based on the Seebeck effect in which temperature gradient between the
current-carrying conductors P- and N-types of semiconductors produce a voltage ∆V [38].
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The thermoelectric semiconductor has two main components: P-type, which holds
free holes, and N-type, which holds electrons. In P-type, due to temperature gradient,
the holes move from the hot side to the cold side (low density of holes to higher density),
which causes a density charge difference [39]. This density charge difference will repel
electrons to the hot side, as illustrated in Figure 6 [40]. During the steady-state, the
charge density difference will be adjusted by temperature difference. Emf generated
across the material, which causes electrical current, is called Seebeck voltage. The formed
voltage is proportional to ∆T by the Seebeck coefficient. N-type semiconductors follow
the same effect, however, the heat and charge carriers are electrons rather than holes [41].
Electrons will move towards the cold side, which becomes negatively charged, as shown
in Figure 7 [42,43]. Now, if the hot sides are connected electrically and the cold sides are
linked by a load, a current would be created, and it would pass over the load. The higher
heat flow from the hot to the cold side will increase the current flow [44].
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Accordingly, thermoelectric modules can be used in two different modes [45,46]:

1. Power generation mode to produce electricity, which is called thermoelectric generator
(TEG) and follows Seebeck effect, shown in Figure 7a [47];

2. Active refrigeration mode (temperature controller), which is called thermoelectric
cooler (TEC) and follows Peltier effect, shown in Figure 7b [48,49].
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More N-P type pairs should be connected in series to obtain higher output voltage,
as shown in Figure 8. A thermoelectric module, illustrated in Figure 8, is formed when P
and N legs are connected electrically in series and thermally in parallel. The thermoelectric
elements N- and P-types carry the current, whereas the couple made out of the two
conductors is called a thermoelectric couple.
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2.5. Figure of Merit (ZT)

The efficiency of a TEG is proportional to a dimensionless parameter called the figure
of merit (ZT), which was developed in 1949 by the Russian scientist Abram Fedorovich Ioffe
(1880–1960) [51,52]. ZT indicates the total performance of TEG, which is optimized when
ZT is maximized. A good thermoelectric material should have a high Seebeck coefficient,
high figure of merit, and low thermal conductivity K and resistivity. Thus, both a high
figure of merit of materials and high-temperature differences are preferred to attain high
efficiency. Since the material’s thermoelectric properties, which are Seebeck coefficient ∝,
electrical resistivity ρ, and thermal conductivity K fluctuate with temperature, it is not
practical to utilize identical material through an absolute high-temperature difference. To
reach an approximate ideal state, dissimilar high efficient materials are used to segment
the first material at a higher temperature with the second material at a lower temperature.
Through this approach, both materials are functioning in their utmost efficient range of
temperature [53].

3. Historical Notes

As mentioned previously, TEG is capable of generating electricity and providing a
source of cooling and heating. The high interest in research in improving TEG is dissipated
through the past years. Figure 9 shows the milestones of TEG, which means the innovation,
addition, or development of TEG that remarkably affects the development of TEG and
the direction of its spreading in applications. Table 2 shows the chronological history of
TEG development since the discovery of Seebeck, where the effect of the milestones is
remarkably noticed through the applications that follow each new development.
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Table 2. Development of TEG in chronological order.

Year Research Finding

1821 The main concept of Seebeck effect was discovered [54]

1834 Peltier developed TEG phenomena [55]

1852 Thomson added his observation [54]

1909 Altenkirch stated that mathematically, the relationship between the physical properties of thermoelectric materials and
the efficiency of a simple TEG [52].

1911 Altenkirch (1880–1953) initiated the concept of maximum efficiency of TEG and the performance of a cooler

1928 Semiconductor concept is introduced in thermoelectric energy [56]

1930 The first thermoelectric operated radio was stated [56]

1947 Maria Telkes (1900–1995) built the first thermoelectric power generation of a 5% efficiency [56]

1949 Abram Fedorovich Ioffe developed the figure of merit (ZT) [52]

1954 H. Julian Goldsmid froze to 0 ◦C a surface by a TE Peltier cooler using Bismuth telluride (Bi2Te3) [56]

1968 The first radioisotope ISNAP19 TEG flew on a NASA spacecraft due to its reliability and remote power generation.
Another TE SNAP generator was prepared to travel to the moon in the following year [56].

1970 * The healthcare company “Medtronic” prolonged the use of TEGs in the biomedical sector [57].

1970 Medtronic has developed the first cardiac pacemaker driven by a TEG and was implanted into a human in France [56].

1972 Units of TE cooling were established in Japan for Satellite Communication Ground [58].

1975 Lead Telluride (PbTe) TEG technology was formed to generate terrestrial power remotely, forming Global TEG [56].

1977 NASA used MHW-RTG3, a Silicon Germanium (SiGe) TEG, to power two voyagers 1 and 2 [56].

2001 A noteworthy stepped forward in TEG by introducing nanotechnology scale materials [56,59]

2004 TEG was integrated into automotive through a program fund by the US Department of Energy and General Motors, like
Caterpillar, BMW, and others [56,60]

2005 * TEG for Industrial Waste Heat Recovery (WHR) was developed [61]

2006 * Flexible TEG technology [62]

2013 Voyager 1 developed the first manmade piece powered continuously by TEG to depart the solar system and go into
interstellar [56].

* There was no specific year for introducing nanotechnology or flexible TEG; the years were obtained by going back to all review papers
related to nanotechnology and polymers for TEG and find the first time they were mentioned.

Table 2 shows that TEGs have been spread widely and developed dramatically, es-
pecially after each milestone. These remarkable events and innovative ideas opened the
opportunity for new fields and added value to the TEGs’ development, where TEG devel-
opment helped in being more involved in applications. In addition, the spread of TEGs in
applications allows the research to go further in developing TEG materials.

As shown previously, TEG technologies had exhibited a high share in the research
work on the theoretical and experimental scales [63]. For instance, in 2004, Crane et al. [64]
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conducted an experiment by investigating the heat transfer over TEG and expecting the
electric and contact resistance. A counter flow liquid to the air system was applied for
thermoelectric heat recovery. The model entailed an aluminum tube for the hot water
to flow with three TEG modules that were directly contacted. This research concludes
that the temperature of fluid and air affect the output power of the TEGs system. A heat
exchanger of counter flow system that transfers heat from the liquid to air was applied,
where a hot fluid is pumped inside the tube and the cooled air is blown through the heat
exchanger. The model entailed an aluminum tube for the hot water to flow with three,
directly contacted TEG modules. This research concludes that the temperature of fluid and
air affect the output power of the TEGs system.

Nowadays, TEG is requested by many industrial sectors, where it fills great needs
in the military [65], sensors [66], and cars [67]. In addition, TEG has gained a significant
standard, especially after being integrated into nanotechnology or the medical domain [68].
TEG is also used for running personal electronics through body heat, such as mobile phones
and wearable sensor systems [18]. It must be mentioned that TEGs are also used as heat
pumps or as generators in domestic plants for air conditioning or heating [69].

Parallel to integrating TEG in useful applications, research on TEG is still in progress.
However, it is directed towards going further beyond performance level by either increasing
the gradient temperature such as TEG, finding any source of wasted heat or increasing the
efficiency, which means editing the material used.

TEG is expected to expand its application in industrial instrumentations. In the
USA, there is a strategy to apply TEG in automobile industries. By working more on the
molecular level of TEG and trying to increase the figure of merit, thermoelectric device
(TED) will have considerable potential in much more regions of applications.

4. TEG in Applications and Classifications

Despite being less efficient than mechanical heat engines on ample output power,
TEG takes the lead when it comes to small output power somewhere less than 100 W.
Moreover, TEG’s simplicity, unmatched dependability, and durability make it a substantial
and valuable device in various applications, where the aim is unattended operations rather
than efficiency. These applications include power supplies for spacecraft that operate too
far from the sun to take advantage of the photovoltaic effect, or automotive uses that
take advantage of the heat that engines shed, or generators for oil-producing installations,
including ocean platforms. In addition, being fully quiet is a virtue of the TEDs in many
cases, where noise would be disturbing or as intolerable as aboard submarines.

Considerably, TEGs have been widely used throughout commercial and industrial
levels. Starting from watches, automobiles, and ending in spacecraft [70]. A great example
of a low power thermoelectric generator application that ranges between 5 µW to 1 W
would be the thermoelectric wristwatch, which uses thin bulk TEDs; the watch works
by converting body heat into electrical power through TEG. At least two models have
been built, one by Seiko and another by Citizen. Internationally, there is a wide variety
of commercial and custom-made TEGs, such as micro TEGs that generate low power
energy, wearable devices, body-mounted devices, thin-film TEGs, which use solid-state
semiconductors that are compatible with microelectromechanical systems (MEMS) [71].
A. S. Korotkov [72] conducted a study on TEGs types and classified TEGs into bulk and
thin-film TEGs. The paper presented the main advantage of TEGs employed in MEMS,
where the specific power (power per unit area, P/S) is elevated by around 3 to 5 times more
than that of bulk TEGs. Thin-film TEG technology has shown promising outcomes and
gotten the attention of the researchers through different studies [73], consequently helped it
spread widely over low applications in various fields, such as wearable devices, electronics,
sensors, and others [74]. However, high power generations that generate about 1 kW are
involved in larger applications, such as the automotive field (BMW [75], Volkswagen [76],
Volvo, and others [18]), where TEG can extract waste heat from the exhaust that delivers
DC electrical power to recharge the battery. By reducing or even eliminating the need for
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the alternator, the load on the engine is reduced. This improves fuel efficiency by around
10%. For instance, a TEG system integrated into a semi-truck automotive system may
produce a power of 1.25 kW, representing 20% of the engine’s power need [77].

In addition, a TEG with 1.25 ZT and 10% efficiency might be utilized to retrieve
35–40% of the energy from the exhaust. It manifolds at an average temperature of 250 ◦C,
where a significant energy value can be produced to contribute up to a 16% escalation
in efficiency [49]. Researches have shown high interest in TEG, where many researchers
have investigated applications using TEG [78,79], such as being integrated into cooling
applications [80], computational modeling [81], and parametric changes [82]. It was also
used as a hybrid system with all-air HVAC systems [83] or solar photovoltaic [84,85].

According to the investigated papers, TEG was used in various applications. Figure 10
classifies the use of TEG according to three main categories:

1. TEG in applications: TEG has been publicized widely and rapidly in various fields,
electronics, vehicles, industries, and renewable energy;

2. TEG in hybrid systems: according to the studied papers, TEG has a considerable share
when involved with other energy recovery systems such as storage, piezoelectric, and
heat exchangers;

3. Design and material improvement: research has also discussed the design and mate-
rial development to reach an optimum output of a TEG unit.

This review studied over 180 published papers, starting from 2008 to 2021. The
studied papers are classified TEG with four categories: integrated with building and
vehicles, material development (MD), installed with other heat recovery methods (hybrid
heat recovery), and joined with electronics or renewable energy. Figure 11 shows the
number of investigated papers according to years and the above-mentioned categories.

As shown in Figure 11, TEG has been well-known in various fields, especially com-
bined with renewable energy and electronics and buildings and vehicles that have a high
share in the studied papers. In addition, TEG installed with other heat recovery methods,
such as phase change material (PCM) [86], heat pipe (HP) [87], proton exchange membrane
(PEM) [88] started to grow noticeably; which means that it is worthwhile to investigate it,
even more especially with other heat recovery methods. Among the investigated papers, it
is noticed that TEG with HE is well known and employed in different applications, which
leads to the introduction of TEG with other HE technologies.

Electricity 2021, 2, FOR PEER REVIEW 10 
 

 

that of bulk TEGs. Thin-film TEG technology has shown promising outcomes and gotten 
the attention of the researchers through different studies [73], consequently helped it 
spread widely over low applications in various fields, such as wearable devices, electron-
ics, sensors, and others [74]. However, high power generations that generate about 1 kW 
are involved in larger applications, such as the automotive field (BMW [75], Volkswagen 
[76], Volvo, and others [18]), where TEG can extract waste heat from the exhaust that de-
livers DC electrical power to recharge the battery. By reducing or even eliminating the 
need for the alternator, the load on the engine is reduced. This improves fuel efficiency by 
around 10%. For instance, a TEG system integrated into a semi-truck automotive system 
may produce a power of 1.25 kW, representing 20% of the engine’s power need [77]. 

In addition, a TEG with 1.25 ZT and 10% efficiency might be utilized to retrieve 35%–
40% of the energy from the exhaust. It manifolds at an average temperature of 250 °C, 
where a significant energy value can be produced to contribute up to a 16% escalation in 
efficiency [49]. Researches have shown high interest in TEG, where many researchers have 
investigated applications using TEG [78, 79], such as being integrated into cooling appli-
cations [80], computational modeling [81], and parametric changes [82]. It was also used 
as a hybrid system with all-air HVAC systems [83] or solar photovoltaic [84,85]. 

According to the investigated papers, TEG was used in various applications. Figure 
10 classifies the use of TEG according to three main categories: 
1. TEG in applications: TEG has been publicized widely and rapidly in various fields, 

electronics, vehicles, industries, and renewable energy; 
2. TEG in hybrid systems: according to the studied papers, TEG has a considerable share 

when involved with other energy recovery systems such as storage, piezoelectric, and 
heat exchangers; 

3. Design and material improvement: research has also discussed the design and mate-
rial development to reach an optimum output of a TEG unit. 

This review studied over 180 published papers, starting from 2008 to 2021. The stud-
ied papers are classified TEG with four categories: integrated with building and vehicles, 
material development (MD), installed with other heat recovery methods (hybrid heat re-
covery), and joined with electronics or renewable energy. Figure 11 shows the number of 
investigated papers according to years and the above-mentioned categories. 

 
Figure 10. Classification of TEG usage. Figure 10. Classification of TEG usage.



Electricity 2021, 2 369Electricity 2021, 2, FOR PEER REVIEW 11 
 

 

 
Figure 11. Investigated papers according to categories and years. 

As shown in Figure 11, TEG has been well-known in various fields, especially com-
bined with renewable energy and electronics and buildings and vehicles that have a high 
share in the studied papers. In addition, TEG installed with other heat recovery methods, 
such as phase change material (PCM) [86], heat pipe (HP) [87], proton exchange mem-
brane (PEM) [88] started to grow noticeably; which means that it is worthwhile to inves-
tigate it, even more especially with other heat recovery methods. Among the investigated 
papers, it is noticed that TEG with HE is well known and employed in different applica-
tions, which leads to the introduction of TEG with other HE technologies. 

4.1. TEG in Heat Recovery Systems 
As noticed from the results in the previous section, interest integer energy has snow-

balled. This leads to the development of green technologies and creates a new sustainable 
energy resource. This widespread of TEG in various fields encourages investigating the 
impact of TEG on applications [89]. Table 3 shows the previous studies and applications 
of TEGs. 

Table 3 shows the number of TEG in applications. The results of the most investigated 
cases agreed on the effectiveness and reliability of TEG, where the common conclusion 
was that TE is a promising technology. In addition, TEG has offered a remarkable effect 
when integrated into various fields. Table 2 shows that TEC cooling systems have benefits 
over conventional cooling devices, which is due to multicriteria that TEG owns, such as 
providing a new source of power from wasted thermal energy, small size, lightweight, no 
mechanical moving parts, high reliability, no working fluid, direct current power-driven, 
and swapping between heating and cooling modes easily. 

  

0

2

4

6

8

10

12

14

16

18

2008 - 2015 2016 2017 2018 2019 2020 - 2021

TEG - Building/Vehicles TEG - MD TEG - Hybrid TEG-Electronics /Renewable Energy

Figure 11. Investigated papers according to categories and years.

4.1. TEG in Heat Recovery Systems

As noticed from the results in the previous section, interest integer energy has snow-
balled. This leads to the development of green technologies and creates a new sustainable
energy resource. This widespread of TEG in various fields encourages investigating the
impact of TEG on applications [89]. Table 3 shows the previous studies and applications
of TEGs.

Table 3 shows the number of TEG in applications. The results of the most investigated
cases agreed on the effectiveness and reliability of TEG, where the common conclusion
was that TE is a promising technology. In addition, TEG has offered a remarkable effect
when integrated into various fields. Table 2 shows that TEC cooling systems have benefits
over conventional cooling devices, which is due to multicriteria that TEG owns, such as
providing a new source of power from wasted thermal energy, small size, lightweight, no
mechanical moving parts, high reliability, no working fluid, direct current power-driven,
and swapping between heating and cooling modes easily.

Furthermore, it is noticed that some of the applications offer novel ideas with remark-
able results. Other applications were not very practical [102,103], which could be attributed
to various factors, such as the material of the TEG, design, and environment. Still, in
both cases, however, the system offers or does not offer desirable results. Researchers are
trying to improve the design and enhance TEG-to enhance the growth of TEDs. Recently,
researchers recommend integrating TEG with some heat recovery methods, such as heat
exchangers, PCM, and HP, where the benefits that this hybrid heat recovery system may
offer are worth further experimental studies. In addition, commercially developing this
system may result in agreeable outcomes, as noticed in various researches [104]. Further-
more, it is noticed that HEs with TEG are highly recommended. This could be attributed to
the fact that HEs transfer the heat to the TEG, which helps in creating better circumstances
to higher gradient temperature, and consequently higher power output.
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Table 3. Summary of the investigated papers related to TEG integrated into different applications.

Authors Methodology Results

Tabar et al.,
2021 [90]

A non-conventional wasted energy recovery system is
proposed. This novel framework contains a transformation of
excess power, capturing energy loss, helps in reducing
pollution and operational cost.

Results obtained assure the ability of the novel design to
achieve an almost zero energy configuration, where the
environmental pollution and total cost are cut by 170.7% and
83.5% per day, respectively.

Babu et al.,
2017 [91]

Performance of various solar panel thermal hybrid systems
was studied under different configuration such as design,
location, TEG junction, additional parameters of design
(active or passive cooling), and integration with phase change
materials (PCM). Then, the best configurations and future
expectation for the PV-TEG design system were presented.

The performance of the PV-TEG system is highly affected by
the parameters of TEG results in additional energy that varies
from 10% to 20% with overall efficiency that ranges between
40% and 50%. One of the optimum configurations was the
hybrid system PV-TEG combined with PCM, which enhances
the overall efficiency by 1 to 2%. TEG-PV shows a promising
technology for the future; the progress in the TEG can affect
significantly any µ grid networks.

Bayendang
et al., 2020 [88]

A review of 18 diverse studies on TE and a polymer
electrolyte membrane fuel cell (PEMFC) of a hybrid
combined cooling heating and power (CCHP) system for
domestic/commercial uses was held. To accomplish this,
assorted studies on thermoelectricity were investigated. A
comparison of TEG and solar energy analysis was held
as well.

Results of these studies show that the power efficiency of TE
augmented by transforming waste heat into power as for TEGs,
and power into cold as for TECs. Furthermore, in TEC and
PEMFC hybrid CCHP system, the prime mover was the
PEMFC and TEC was the cooler, which was able of producing
2.79 kW of electricity, 26.8 W of cold, and 3.04 kW of heat,
resulting in 43.3% of fuel saving and ~77% of total efficiency.
The comparison study shows that TEG produces higher power
in comparison to solar cells (SC) of equivalent sizes, although
more expensive.

Darkwa et al.,
2019 [86]

Theoretical, numerical, and experimental studies were held
on a hybrid system model of TEG that generates limited
output power due to small gradient temperature and PCM
that has impact on the raise of temperature of the PV through
the process of heat storage. The result of different PCM
parameters conductivities, thicknesses, and phase change
temperatures were calculated.

Simulation results proved the significance of high conductivity
of PCM and thickness of PCM layer has impact on layers of
TEG and PV. The optimum heat performance for the model
PV/TEG/PCM was attained at a 50 mm PCM layer thickness
with 5 W/mK thermal conductivity and a phase change
temperature that ranges from 40 to 45 ◦C.

Sarveshwar
et al., 2018 [92]

A wide investigation for summer and winter solar radiation
on the thermodynamics assessment of an irretrievable
CPV-TEG cogenerating system was held through different
modules Siemens SP75 PV and Bi2Te3 TE, which is
commercially accessible. The hybrid system has been
demonstrated and simulated to comprehend the viability of
the system and to govern the irreversibility’s existent in the
hybrid system.

Results displayed that TEG has adversative impact on the
hybrid system act and the irreversibility’s rise with growth of
concentration ratio, C. In addition, the output power of the
hybrid system rises by 86% with the increase in C from 1 to 3
and the efficiency of exergy is greater than the energy efficiency
by 8%. The greater values of the irreversibility’s leads to a less
inefficient system, thus, substantial developments are required
since the higher temperature may lead to formation of hot
spots.

Ghude et al.,
2013 [93]

A study on alternative cooling methods is done, due to the
high demand on HVAC and its hazardous effect, where the
conventional HVAC system utilizes harmful cooling system
that drains the ozone layer. So, the paper presents a
comparison study between conventional HVAC and novel
cooling system concept HVAC TEC.

Results show that in order to improve conventional HVAC to
be ecofriendly requires a long time. Although refrigerant used
is HFCs that have lower effect than CFCs over the ozone layer,
yet it also affects negatively the ozone layer. On the other hand,
HVAC (TEC) model proved superior advantages and
better alternative.

Patyk 2013 [94]

A study on TEG for improving the efficiency of power
generation in ICE and motor generators. Furthermore, a
study of environmental and economical values of TEG
was held.

Results reveal that TEG saves energy costs and has negligible
environmental burden, (eco-efficient). However, it has low
production compared to other methods.

Hiang et al.,
2018 [95]

This paper presents the history and the achievement of TEG
development in vehicles during a 7 year program on waste
heat recovery incorporating TEG in a BMW X6 and a Lincoln
MKT. Throughout this program, several models of TEG were
demonstrated, and examined. A comparison analysis on the
performance of the vehicle with and without TEG was
then concluded.

Results showed that the generated power exceeded 700 W. The
Department of Energy (DOE) program was successful, which
results in leading a DOE-sponsor of TE WHR program for
automotive that is concentrated on declaiming technical and
business-related issues. This process is destined to permit TEGs
to be more involved in the future automotive products and
enhances this field.

Zheng et al.,
2016 [96]

A simulation of TEG integrated in vehicle power system on
ADVISOR software is being modeled by building a relation
between the speed of engine and gradient temperature to
study the possibility of the TEGs to enhance the fuel
efficiency for both conventional vehicles and hybrid electric
vehicles (HEVs). The simulations are held out on a
conventional automobile and a hybrid TEG-based
automobile power structure for 4 representative driving
cycles and 6 electrical loads.

The consumption of fuel in both cases were compared and
investigated to calculate the fuel economy. Results display that
fuel economy was enhanced in both cases, a greater
enhancement was noticed in conventional vehicle.
Furthermore, an endeavor to integrate TEG more in vehicles is
made and an effort is exerted to improve this technology to
take bigger share in waste heat recovery fields.
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Table 3. Cont.

Authors Methodology Results

Chen et al.,
2020 [97]

Experimental and actual study on thermoelectric elevator car
air conditioner (TE-ECAC) is held. The performance and
cooling characteristics were examined experimentally in an
Enthalpy Lab, and the performance of TE-ECAC was
enhanced after the analysis. In addition, the weight of
TE-ECAC was measured of 10 kg; however conventional air
elevator was 38 kg at least.

Results show that ECAC can reach a steady working state at
about 200 s. Highest capacity of air-cooling of 324 W and an
optimum cooling coefficient of 1.24 can be attained at
1.75 m3/min of the cold side flow rate and 28 ◦C of ambient
temperature. In addition, studies show that TE-ECAC has
superior potentials than conventional; where TE-ECAC is much
more economical with less weight.

Kishore et al.,
2020 [98]

Experimental and numerical studies were established to
prove the presence of a critical coefficient for heat transfer
that drastically impacts the performance of TEGs. In addition,
exterior thermal resistances and boundary conditions (BCs)
have strong impact on the behavior of TE materials.

Results ensure that BCs effect substantially on the design of TE,
where the performance of a TEG differs with the variation of
the BCs. For low-grade WHR, the optimized TEG produced
28% greater power and compared to saleable modules
optimized, TEG produce 162% greater power per unit mass of
TE materials.

Shen et al.,
2019 [99]

An intensive review on automotive exhaust thermoelectric
generators (AETEGs) was held from various perspectives.
The feasibility of AETEGs has been demonstrated and a
considerable progress has been made. In addition, the review
presents some challenges and recommendations that may
direct the future work to a great extent such as integrating
TEG with some other heat recovery methods and improving
TE materials.

Integrating heat pipes (HP) in TEG would offer extra benefits to
the system such as enhancing heat transfer to avoid the damage
of TEG from high temperature.
Integrating phase change materials (PCM) in TEG would offer
extra benefits as well and it is worth to be developed and
employed commercially, as it protects TEG from damage due to
high temperature, uses depleted heat efficiently and decreases
the pollutant emission and the fuel consumption.

Li et al., 2016
[100]

A simulation study under the same operational conditions on
tube and fin heat exchangers (HE) using ANSYS is held. A
number of factors were studied such as the variation of the
temperature and the Reynolds number.

Both HEs show an agreeable thermal performance with TEG.
The fin HE shows better thermal performance due to its
compactness. In addition, it displays creation of vortex from
the inlet of the pipes to the outlet. Consequently, this structure
results in various increases in the temperature even at low
Reynolds number.

Min et al., 2020
[101]

A mathematical model is established to design a TEG for
recovering heat loss from exhaust of a diesel engine.

Results show that the efficiency of the TEG ranges between
1.41% to 4.12%, which is very low. Thus, further improvement
should be held.

4.2. TEG in Hybrid Heat Recovery Systems

As noticed from Table 3 in the previous section, TEG integrated with other heat
recovery methods shows desirable results. Thus, a deeper investigation on this section is
held. The heat recovery methods discussed in the previous section lead to an increase in
the power output: this could be attributed to the heat that the HEs recover, consequently
increasing gradient temperature, which raises the power output.

TEG combined with other recovery methods was illustrated in various previous
studies [105,106], where throughout the research, it is noticed that TEG with specific heat
recovery methods that are shown in Figure 12 was investigated repeatedly.
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TEG integrated into HE is a widespread technology. For instance, Seo et al. [107]
proved the effectiveness of TEG with HEs. In addition, Zaher et al. [108] showed that
the power was increased by 1.2 in axial conduction HE at even low flow rates of around
0.02 kg/s. Moreover, Wang et al. [109] performed an experimental study on the TEG-
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HE hybrid system to result in an efficiency of around 84%. Another study was done by
Bélanger et al. [110] to investigate the performance of TEG sandwiched in a crossflowed HE.
Additionally, Catalan et al. [111] conducted a study on TEG integrated with thermosiphon
HE to conclude that the power generated per module was 3.29 W with ∆T of 180 ◦C, and
the design was 54% better with fin dissipaters. Araiz et al. [87] concluded that the hybrid
TEG thermosiphon and PCM system is very effective and highly reliable in waste heat
recovery applications.

Furthermore, Catalan et al. [112] held a study on TEG integrated with a PCM in a
5000 m2 geothermal plant. The model was first studied as a computational model. The error
between the experimental and computational models was less than 8%. Thus, based on
the obtained model, a geothermal TEG (GTEG) system was performed as a computational
study, where the GTEG system provided annual electric output of 681.5 MWh. Moreover,
Tuoi et al. [113] conducted research that shows the significant potential of TEG integrated
with PCM, especially with the rise of the new era of the Internet of Things (IoT). Such
potential is illustrated more in research held [114] that studied a complete self-powered
wireless sensor nodes (WSNs) system. This system consists of TEG and heat pipe heat
exchanger and is considered to operate successfully. Furthermore, various researches
illustrated the effectiveness of TEG combined with HEs [115–117]. Thus, it is recommended
to do further studies on TEG in heat exchangers, as this system shows high reliability
and agreement.

5. TEG New Technologies in Applications and Challenges

In this section, three prominent aspects will be studied: (1) Materials used in TEG that
have a high impact on efficiency [118], since studying the material properties is crucial
to the development of the system. (2) TEG new technologies, wherewith the increasing
demand of the global for alternative energy sources, TEG technologies have shown a high
share in the research work and has become a need in the modern world. (3) Challenges,
wherewith all the benefits that TEG offer, it holds many challenges, such as low efficiency.

5.1. Materials Properties

While choosing TEG, several factors should be taken into consideration. Ideally,
throughout the process, temperature grade across TEG is significant to the extent that
the thermal expansion will create stress. Consequently, a fracture may occur inside the
device, thus, the mechanical properties of the materials should be studied, and the thermal
expansion coefficient of the P-and N-type material should be reasonably harmonized [119].
In addition, the optimum TEG should fulfill the requirement, such as electrically conductive
as a single crystal, thermally non-conductive as glass. These characteristics are presented in
phonon-glass electron-crystal (PGEC), which are high electrical conductivity (crystal), and
small lattice thermal conductivity (glass). That is why the optimum TEG materials were
defined as PGEC [120]. Thus, to obtain a reliable TEG, the characteristics of the materials
used are likely to be reached, where the more close the materials get to the desirable
properties presented in Table 4, the higher the efficiency of TEG will be attained [121]. For
instance, semiconductors are much more efficient than metals, where heat is conveyed
entirely by free electrons, whereas in a semiconductor’s lattice, vibration is a surplus
mechanism for transporting heat.

As can be seen from Table 4, efficient TEG requires materials with high electrical and
low thermal conductivity, two contradictory features, where no material ideally has these
two characteristics simultaneously. Semiconductors constitute a turning point in develop-
ing the TEDs [124], where the employment of TE was constrained before semiconductor
materials were established [125]. Three semiconductors that are shown in Figure 13 are
identified to have both low thermal conductivity and high electrical conductivity (presented
by the high power factor) [126].
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Table 4. Desirable properties of materials for an efficient TEG.

Material’s Requirements Physical Meaning Effect on ZT

High thermoelectric power (θ) To generate maximum voltage in the circuit.

High ZT [122]
α2σ T

Ke + KL

Power factor

High Seebeck coefficient
(∝) [123]

∆V
∆T

=
VA − VB

TA − TB

It is the ratio of electromotive force to the
gradient temperature between the two

sides of the TEG. The material should be of
low thermal conductivity and high

electrical conductivity.
The power factor affects

directly on ZT, the higher
power factor, the higher

ZT will be.
High electrical

conductivity (σ) To decrease losses due to temperature
Joule heating.Low electrical

resistivity (Ω)

Operating temperature The operating or mean temperature.
T affects positively on ZT,

which means higher T
leads to higher ZT

Low thermal conductivity (κe)
To minimize the transfer of heat from the

hot side to the cold side, thus maintaining a
large gradient temperature.

(κL + κe) is inversely
proportional to ZT, for
instance, as (κL + κe)

increase ZT decreases
Lower scatter phonons (κL) Lattice component

Accumulating phonon scattering decreases
thermal conductivity consequently

increases ZT.
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Recently, organic semiconductors (OSCs) were comprehensively studied in various
fields [127]. OSCs possess a wide bandgap and weak intrinsic charge carrier density, which
limited its widespread [128]; besides, N-type materials have more tendency to acquire high
ZT than P-type materials. However, N- types have more limitations in terms of stability
and availability, making P-type materials better than N-type materials. Fortunately, after
excessive effort in research doping method was introduced on N-type materials to evolve
higher ZT by developing air-stable and high-mobility N-type [129]. Montgomery et al. [130]
presented a new spray doping technique that brings out a thin film carbon nanotube (CNT)
polymer controllable TE properties. Electrical conductivity and Seebeck were tested and
compared with a conventional system to show that the capability to adjust the length of
these regions via the mask ultimately allows the developer to have higher control over
device dimensions. Using this technique results in an active axis through the thickness of a
low-profile and a high-density layered CNT-based TEG. The replacement of solution-based
doping with spray doping has significant implications to the viability of the production of
CNT TEGs, showing that with a proper design, organic TEG can be closer in performance
to inorganic TEG than intrinsic ZT values.
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Furthermore, Toan V et al. [131] conducted experimental research on achieving high-
performance TEG through electrochemical disposition. The results show that the nickel-
doped bismuth telluride is more than five times higher than that of the electrodeposited
pure bismuth telluride under similar evaluation conditions. Moreover, the highly scalable
thermoelectric material’s synthesis has been proven, which could open the possibility
toward the mass production for the low cost and high performance electrochemically
deposited thermoelectric materials.

Although semiconductors are widely applied in commercial and practical applications,
substantial developments have been set in finding or fabricating novel material structures
with improved thermoelectric performance. Lately, there has been much research on har-
vesting higher energy from the TEG by dropping lattice thermal conductivity to improve
ZT, which is done by working on the material. Research has gone so far in improving the
materials, such as silicon-nanowire of high power TEG, nanotechnology [36], or nanostruc-
tures [132]. Over the recent period, a promising technology renowned as nano-inclusion,
which is the formation of nano-composite, is proved to enhance the power factor electrical
or thermal conductivity [133], where merging inorganic–organic nano-materials conquer
the limitation of mono-phase TEG to attain higher ductile strength and manageable See-
beck coefficients in nanocomposite materials [134]. Furthermore, porous thermoelectric
nanocomposites are a new effective method because of their excellent electrical conductiv-
ity and low thermal conductivity due to the phonon diffusion at the boundaries. These
materials are lightweight, thus unlocking the opportunities to be used in portable devices,
yet, achieving such materials requires much effort [135,136]. Subsequently, TEG is consid-
ered as a fundamental technique for waste energy, mainly on a low scale. Although the
crucial profits of TEGs are their low maintenance and compactness, the cost of TEGs of the
available materials is still too high.

High gradient temperature across TEG results in higher efficiency outcomes. However,
this might damage the TEG. To overcome this problem, some researchers have offered
to integrate distinct TE materials to construct what are called segmented TEGs [137].
Segmented TEGs re made up of two or more courses of TE materials sorted in series. This
combination leads TEGs to function at a high thermal gradient, consequently expanding
the power output and efficiency compared to the single TEGs under the same temperature
difference [138]. Hu et al. [139] conducted a comparative study between a nanostructured
PbTe-BiTe segmented TEG module and a single TEG that is just nanostructured PbTe based
material. The results showed that at a temperature gradient of 590 K, segmented TEG had
11% efficiency, however single TEG had an efficiency of 8.8%.

Regardless of the favorable outcomes offered by segmented TEGs, they have not been
extensively investigated due to inherent complexity in their design optimization and manu-
facturability. Segmentation introduces additional thermal and electrical interfaces between
different TE layers, which increases contact resistances. The electrical contact resistance
generates extra Joule heat, and the thermal resistance leads to abrupt temperature drop
at the interface. Both these effects are undesired as they adversely affect the performance
of TEGs.

In addition to studying the selection of the materials, it is concluded from the investi-
gated papers that the performance of TEG depends on various factors other than materials
used, as shown in Figure 14. These factors include achieving a high figure of merit (ZT),
which is an essential factor that the scientists are working on increasing [140], durability
that lasts for a significant duration with low maintenance, mass flow rate, and gradient
temperature, which are affected by the design and application used, reliability that is
affected by all the studied factors. All these factors are interrelated and affect each other.
For example, material properties constitute one of the factors that affect ZT. Enhancing ZT
has an impact on durability and reliability, and so on.

The design directly affects TEG and consists of many parts, such as the shape of TEG,
size, the thickness of the material, and additive materials. For instance, Lei et al. [141]
conducted a study of thick layer formation on bismuth telluride (Bi2Te3) and its effect.
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The results show that for the growth of a 600-micron thick layer, the structure was more
coherent, compact, uniform, and achieved good properties for TEG. On the other side,
Yin Y. et al. [142] reported the impact of thickness on electrical conductivity, Seebeck coef-
ficient, and power factor of Ca3CO4O2 thin films formation on a single-crystal sapphire
substrate. The results show that thinner films possess a higher Seebeck coefficient, however
they lower electrical conductivity, thus a critical thickness that offers optimum result was
found at the intermediate of the thicker and thinner films.
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5.2. New Technologies and Applications

Over the years, TEG has proved that it is in continuous progress; far from conventional
TEG, micro TEG was introduced due to the main advantage of TEG, which is generating
power at small grade waste. M-TEG that functions at low gradient temperature has
unlocked advanced applications in various areas, such as consumer electronics, the Internet
of Things (IoT), and biomedical engineering. With the development of further low-power
devices and the regular enhancement of figure-of-merit of TEG material, there are high
expectations on the µ-TEG that will be useful in additional applications with remarkable
effects [143]. In addition, TE modules are estimated to reach 10% to 20% efficiency with a
hot side temperature limitation that exceeds 500 ◦C [144]. Accordingly, this is considered
to be a great solution in the future to decrease the cost of power generation.

Theoretically, research succeeded in conducting thermal conductivity of the lattice.
Scientists have effectively configured materials at the nanoscale level [145]. Consequently,
TEG is considered a promising technology that will have a widespread positive effect on
various applications. Figure 15 shows TEG use in applications for power generation and
cooling starting 1980 till 2021, and the expectation of using TEG till 2030, where different
researches expected the fields where TEG and TEC will be used [146,147].

There was no specific year for the starting date of some of the applications. The starting
year was set based on revising the papers and the review papers related to applications of
TEG, then finding the first time each application was mentioned.

As noticed from Figure 15, TEG and TEC for power generation and cooling are
widespread over different applications, where it takes a significant share in various fields.
For instance, one of the major sources of energy consumption, space cooling, foretold that
the claim of TEC would amount to 80% by 2030 [158]. Likewise, the evolution of TEG
guides to more challenges, such as bio-integrated systems [159], wearable electronics [160],
micro thermoelectric generators [143], robotics [157], cybernetics, phonon glass electron
crystal (PGEC) materials [161], military [18], and others [162]. Such challenges drive
innovative engineering methodologies, where researchers are working on replacing the
battery, which is the supreme dominant source of energy, in wearable devices by TEG. This
is considered a successful step due to producing free energy and being environmentally
friendly by reducing batteries’ hazardous chemicals [163].
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Figure 15 shows that after the mid-1990s, thermoelectricity has come with the flow
of novel ideas. Furthermore, working on enhancing TEG is an ongoing process, which
also continues for future expectations, where theoretical expectations recommended that
TEG efficiency could be impressively improved due to the nanostructure engineering [152],
besides the hope for designing a better TEG has always been a target that the scientists work
on especially after the innovation of the nanometer scale. This ongoing TEG research has led
to more significant improvement in TEG and being more involved in various applications.

5.3. Challenges

Throughout the research, several challenges have come across during the study of
TEG. In this section, a review of the researchers’ challenges while researching is presented
in Table 5. Challenges are considered a vital sign that the research should try to solve to
develop the material. Over the years, solving the challenges has led to growing TEGs even
more and opening the opportunity to be involved in various applications. For instance,
one of the main challenges of TEG is acquiring higher ZT, which is due to the intrinsic
relation between thermal conductivity and electrical conductivity of most materials. An
alternative approach to intensify ZT is by dropping the total thermal conductivity, which
can be achieved through structuring materials at a nanoscale level. Another challenge is
the high output resistance, which is considered a general problem besides the high cost
and low efficiency of TEG. So, to reach a considerable output voltage, a significant Seebeck
coefficient (high V/◦C) is required. In some commercial devices, this issue is resolved by
setting fewer elements in series, more of them in parallel [119].
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Furthermore, converting waste heat in manufacturing is a big challenge for TEGs,
which can attain a percentage in the overall efficiency and drop the environmental foot-
prints, even with TNG’s low efficiency.

Table 5. Summary of the challenges during investigating TEG.

Authors Title Challenges

Chen et al.,
2012 [164]

Nanostructured thermoelectric
materials: Current research and

future challenge

• Reaching ZT values greater than 3 is hard to date. Dramatic improvements are required
in the power factor, which is related to further drop in the thermal conductivity and rise
in the electron conductivity.

• Decrease the thermal conductivity.

Davis 2018
[165]

A study on TEG materials,
applications, and challenges

• Equalize among the heat flow and maxime the gradient temperature.
• High cost with low efficiency, two main issues in TEGs.
• High output resistance and reverse heat characteristics.

Liu et al.,
2015 [166]

Current progress and future
challenges in thermoelectric

power generation: From
materials to devices

For device-level development, challenges for metallization conventional TE such as Mg2Si,
PbTe, Bi2Te3, CoSb3, and oxides were studied.

• Achieving high figure of merit is not the only issue, where high ZT with low gradient
temperature is not efficient.

• Reliable TEG contact is a challenge, where each application requires specific design.
• At least three criteria for good TEG are required: effectiveness, reliability, and efficiency.

Shen et al.,
2019 [99]

Automotive exhaust
thermoelectric generators:

Current status, challenges and
future prospects

• Automotive exhaust thermoelectric generators (AETEGs) efficiency is enhanced through
two criteria, (1) figure of merit of the materials ZTm and (2) the mean or operating
temperature. Thus, TE requires continuous development, so the challenge is to reach
optimum temperature and highest ZT.

• Other challenges for obtaining better TEG include evolving materials that tolerate high
temperature, improving the exhaust heat exchangers design, increasing the study of HP
and PCMs in AETEGs.

Goel et al.,
2020 [167]

Polymer Thermoelectric:
Opportunities and Challenges

Large gradient temperatures for TE applications, in polymers, are not favorable and thus
low-∆T and power system is required for polymer-based TE, which is suitable for several
low-cost uses such as sensors . . . . These applications do not require high ZT yet they are
sensitive to flexibility, cost, and simple in fabrication besides, they require a large voltage
output. Consequently, this quest requires higher Seebeck coefficient.

Aswa 2016
[168]

Key issues in development of
thermoelectric power

generators: High figure of merit
materials and their highly
conducting interfaces with

metallic interconnects

This review consists of researches that discussed the evolution of efficient TEGs. The
correlating challenges in the discussed researches are classified into:

• Creating higher ZT of TE that operates at various temperatures. Several researches have
studied the materials affecting ZT, which is done by either (i) enhancing the power factor
or (ii) decreasing the thermal conductivity.

• Building ohmic relation of P- and N-type metallic connection that has minimal resistance
contact. Obviously, these studies are materials specific and, in some cases, very low
contact resistances have been obtained using appropriate buffer layers. Then, further
investigations are required for the future, especially for the materials that are ecofriendly,
providing high ZT, low cost, and stability.

• Constructing TEGs with less thermal transmission among hot and cold sides.

It is counted on the industries that are sharing a part in the manufacturing of TEGs with the
augmentation of scientific and engineering research in TE. The TEG in commercial applications
is foreseen to be indispensable in the very near future.

Shuai et al.,
2017 [169]

Recent progress and future
challenges on thermoelectric

Zintl materials

Practically, there are several challenges in fabricating any module.

• Extra thermal and electrical resistance at the contact between TE materials and brazing
materials is considered as a major challenge.

• Seeking comparable P-type is a challenge, where the N-type Mg3Sb2-based materials have
shown better results than the optimum available P-type materials. However, P-type Mg3Sb2
TE performance is relatively low. Hence, another P-type Zintl could be implemented, but
this may lead to more challenges due to the complicated design of the device.

O’Dwyer
et al., 2017

[170]

Scientific and Technical
Challenges in Thermal

Transport and Thermoelectric
Materials and Devices

As noticed in Table 5, in addition to enhancing ZT, there is an accumulative effort
to improve new materials by mounting the electrical power output, declining cost, and
evolving an environmentally friendly system. Hence, research on improving or developing
new thermoelectric materials has no end. In addition, it is noticed that displaying challenges
is a beneficial procedure for the development of TEGs, where the continuous research
in resolving the previous challenges and developing TEG to become more reliable and
efficient. As a result, this development in TEG is opening novel ideas for employing TE
materials efficiently.
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5.4. Proposed Solution to Some of the Challenges

Designing a system with minimal thermal losses is a solution for balancing between
maximum temperature difference and heat flow across the modules. This design could
be illustrated by emerging another heat recovery device that captures the heat loss, such
as reliable heat exchangers (heat pipes) or storage materials (PCMs), and that is why the
efficiency of TEG integrated with HP or PCMs is higher than TEG alone, as concluded in
the previous section. This hybrid design solves the materials’ interface heat losses and
protects the TEG from damage at high temperatures.

There are solutions for some challenges that create new challenges, such as forced con-
vection [171] or vortex generators, which are solutions for low heat transfer; however, forced
convection requires a new power source, and vortex generators increase the pressure drop.

Other challenges are avoiding high pressure drops between the cooling and heating
sources, almost perfect thermal isolation, appropriate low resistance metal contacts of the
cold side and hot side, improving the design of modules, etc. [53]. In addition, the challenges
of experimental complication systems in microfabricated optical systems blocked various
groups from being interested in such fields, consequently restricting experimental work
development. Another major challenge is the lack of theoretical and simulation data of the
multiscale phonon modeling of nanocomposites. Furthermore, the manufacturing of the
device is still slow due to heat transfer concerns [172]. Thus, a more advanced scheme based
on heat transfer to increase efficiency must be studied. The growth of TE materials requires
continuous efforts by materials scientists, physicists, chemists, and theory scientists.

Another challenge is that TEG has unstable low output DC voltage around 10 to
300 mV. A step-up DC-DC power conditioning system is needed to regulate the output
voltage to a fixed high value. Thus, a step-up or a self-powered DC-DC voltage promoter
circuit is vital to adjust output voltage to a stable higher voltage [173]. For instance, DC-DC-
based TEG for automotive applications was highly considered, where Sahu S. K. et al. [174]
exhibit a DC-DC voltage booster circuit that contains an amplifier and oscillator to intensify
the output voltage supplied by a TEG. The boosting efficiency of the designed circuit
was 50%. In addition, the multilevel DC-DC conversion affects the efficiency, where
Li M. et al. [175] held a case study on multilevel DC-DC conversion based on TEGs, then
compared the suggested design with a conventional mono stage system. The conversion
efficiency of the proposed was improved by up to 400%.

As a result of the previously studied papers, the advantages and disadvantages of TEG
are summarized in Table 6. Some disadvantages can be reduced, such as the efficiency, which
varies according to the materials used. Furthermore, even though the initial cost of the TEG is
high, it is repaid after a long time, where the maintenance cost factor is null in these devices.

Table 6. Advantages and disadvantages of TEG.

Advantages Disadvantages

Design [176]

• High reliability
• Durability
• Scalability
• No moving parts
• Maintenance-free
• Small in size and weight

• Low efficiency
• No standard scheme; every project is new
• High initial cost
• Difficulty of modeling TEG for simulation [177]

Operations • Acoustically and electrically quiet
• Mountable in all orientations • High output resistance

Materials

• Direct energy conversion, no intermediate form
of energy conversion

• No working fluids
• Nontoxic materials [178]
• Abundant raw materials [179,180]

• Call for materials of both high thermal resistance and
low thermal conductivity

• Power generation efficiency of TEGs is affected by the
material [181]

• Expensive material
• P and N possess diverse mechanical properties

Applications • Vast range of power production (kW–µW)
• Extreme climate conditions

• High output resistance
• Requires relatively constant heat source



Electricity 2021, 2 379

6. Conclusions

This review has investigated the theoretical background of TEG, besides a compre-
hensive review of TEG and its implementation in various fields, as well as it sheds light
on new technologies of TEG and the manifested challenges. Throughout the research, the
following concluded outcomes are obtained:

• The distinctive nature of using TEG that provides electricity with a gradient temper-
ature even at a low scale and over a wide temperature range, scalability, quietness,
ecofriendliness, reliability, absence of moving parts, and maintenance-free, has made
TEGs a primary solution to specific energy problems concerning power generation
and recovering heat in a stationary and environmentally friendly approach;

• The small efficiency of TEG has limited its growth in some applications. The use of TE
in several regions has conquered significant accomplishments in some applications
and overall disappointment in others;

• TEG combined with HEs is an up-and-coming technology, where HEs transfer the heat
to the TEG, which helps create better circumstances to higher gradient temperature
and, consequently, higher power output, which was illustrated in various studies;

• For waste heat recovery applications, TEGs are very promising as well because the
heat is free and lost unless it is captured by a heat recovery method. However, the
payback period may be longer or shorter according to the gradient temperature and
TEG efficiency. Consequently, the research is converged on enhancing the efficiency of
TE materials and studying new strategies of TEGs that provide superior incorporation
of energy conversion systems;

• To increase the power output, TEG should under either one or both of the steps:
increase ZT or gradient temperature, as shown in Figure 16. In some cases, the
temperature cannot exceed a specific range to protect the TEG material. Thus, results
show that combining TEG with other heat recovery methods, such as heat pipes, PCM,
and PEM has augmented the desirable output, where the combined system increases
the power output and protects the TEG from overheating. Hence, it is recommended
to do further studies on TEG combined with other heat recovery methods;

• Forced convection enhances heat transfer, and consequently increases gradient tempera-
ture. However, it requires additional power. Thus, vortex generators are recommended
to enhance heat transfer. Intensive research on micro TEG opened the opportunity
to improve TEG in wearable devices, sensors, power electronics, where there are
accumulative efforts to make micro TEG a substitute for the traditional batteries;

• Throughout the research, there is an accumulative effort to develop new materials
diminish cost, and build an eco-friendly system. Even though TEGs have a high
initial cost, in the long term, TEGs may repay the initial cost and become a profit-free
energy source;

• The efficiency of TEG has been developed over the years due to design and materials
improvement. However, with all the improvements on TEGs materials, most of
the papers recommended further researches to solve the foremost challenge in TE
technology, which is enhancing and designing innovative TE materials with proper
values of the figure of merit and power factor. Hence, research on improving or
developing new thermoelectric materials has no end;

• Constructing a TEG with theoretical efficiency is an enormous progress that the
research is working on, especially with the various concrete challenges. Thus, the
growth of TE materials requires continuous efforts by material scientists, physicists,
chemists, and theory scientists.
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Figure 16. Schematic of how power output may be increased. 
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Nomenclature
BCs Boundary conditions
CPV Concentric photovoltaic
ERU Energy recovering units
HHRS Hybrid heat recovery system
HP Heat pipe
HPHE Heat pipe heat exchanger
HRS Heat recovery system
PCM Phase change material
PEM Proton exchange membrane
PV Photovoltaic
PZT Piezoelectric
RES Renewable energy system
TE Thermoelectric
TEC Thermoelectric cooler
TEG Thermoelectric generator
TED Thermoelectric device
THE Thermosiphon
WHR Waste heat recovery
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