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Abstract
We investigate the space–time dynamics of a homogeneously broadened single-mode laser
when diffraction is taken into account. It is well known that such a laser displays instability
when pumping reaches the second laser threshold. We show that the laser dynamics can be
stabilized by pumping in a domain of finite width. The analysis of stationary solutions to the
Maxwell–Bloch equations (evanescent waves, travelling waves, localized solutions) allows the
stabilization mechanism to be explained.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Laser dynamics has attracted much interest in the last decades.
Since the pioneering work of Haken, who established the
analogy between the dynamics of a flow and the dynamics
of a homogeneously broadened single-mode laser [1], many
studies have been carried out and a wide range of dynamic
laser behaviours has been observed and predicted. However,
the actual observation of some of the predicted dynamics can
be very difficult, or even impossible. We can, for example,
consider the case where the parameters do not really describe
existing lasers. This is often the case for class-C lasers,
which require decay times that are comparable for the photon
in the cavity, the population inversion and the polarization.
Predicted dynamics thus appear just as fascinating models,
except for the NH3 class-C laser described by Tang et al
[2, 3]. In many cases, other effects can occur that perturb
the dynamics so that the prediction cannot be observed. One
of the first examples was given by Lugiato and Milani [4, 5].
They showed that if a fixed Gaussian laser mode transverse
intensity distribution was assumed, there were no longer any

‘bad-cavity’ or ‘good-cavity’ single-mode laser instabilities in
a homogeneously broadened laser. More recently, it has been
demonstrated that spatial inhomogeneities, such as the spatial
dependence of a control parameter, could prevent pattern
stability in optical systems [6, 7]. In the present paper, we
are interested in the space–time dynamics of a homogeneously
broadened single-mode laser when diffraction is taken into
account. Previous studies have demonstrated that under
homogeneous pumping, instability can be observed, depending
on the pumping parameter and the detuning [8–11]. In this
paper we show that this instability can be eliminated when
a localized (super-Gaussian or top-hat) transverse pumping
distribution is considered. The same result is obtained when
a Gaussian or stiff-edge profile is assumed. The stabilization
mechanism is explained in terms of evanescent waves created
on the edges of the pumping region.

The paper is organized as follows. The end of the
introduction will present a brief summary of the laser system
under study. Section 2 will then present numerical evidence
of the stabilization process under a non-uniform transverse
pumping profile. To interpret the results, it will be necessary
to determine different classes of solution, such as evanescent
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wave solutions: this will be done in section 3. Finally, section 4
will detail the stabilization mechanism.

Our analysis starts with the Maxwell–Bloch equations
for a large-aspect-ratio homogeneously broadened two-
level laser with plane and parallel mirrors in the rotating
wave, slowly varying amplitude, and single-longitudinal-mode
approximations. They are written as [8, 11]

∂t e = −σ(e − p) + iA∂2
x e, (1)

∂t p = −(1 − iδ)p + ed, (2)

∂t d = −γ
(
d − r + 1

2

(
ep∗ + e∗ p

))
, (3)

where e, p, and d are normalized expressions of the electric
field, macroscopic polarization, and population inversion,
respectively. γ = γ‖/γ⊥ and σ = γ�/2γ⊥, where γ⊥, γ‖,
and γ� are decay rates of the polarization, population inversion,
and optical intensity, respectively. Time is normalized versus
the coherence lifetime; δ = (ω − ωa)/γ⊥ is the detuning of
the field frequency ω from the atomic transition frequency
ωa. A is the diffraction parameter. Parameter r represents
the pumping. The partial differential operator ∂/∂ t is denoted
by ∂t , and so on. The trivial solution is the off-state (e =
p = 0, d = r ). Above the lasing threshold, the system (1–
3) admits a travelling wave solution for negative detuning or
a homogeneous state for positive detuning [8]. The travelling
wave solution can be expressed by

e = e ei(�t+K x), (4)

p =
[

1 + i

σ

(
� + AK 2

)
]

e ei(�t+K x), (5)

d = r − |e|2 , (6)

with the fixed amplitude

|e|2 = r − 1 − (� − δ)2 , (7)

and the dispersion relation

� = δσ − AK 2

1 + σ
. (8)

Avoid any confusion between the frequency and wavenumber
� and K of the envelope, and the optical frequency and
wavenumber. K is a transverse wavenumber, small with
respect to the optical wavenumber of the laser radiation, and �

is a small frequency shift linked to this transverse component.
Above the first laser threshold the laser selects the wavenumber
with the lowest lasing threshold, which is K = √−δ/A for
negative detunings and K = 0 for positive detunings [8, 11].

A linear stability analysis of these solutions can then be
performed, leading to the determination of the second laser
threshold (instability of the stationary state). The resulting
stability diagram in the detuning δ and pumping parameter r
plane (figure 1) reveals different instability domains [8, 11]. In
particular, for positive detuning and a relatively low pumping
parameter (2.55 times the first laser threshold that is roughly
equal to 10.0), a very specific intermittent behaviour is
observed [11]: the evolution of the laser intensity I (x =

 

   

Figure 1. Stability diagram in the plane (δ, r ). The point P indicates
the values of δ and r used in the evolution computations. The crosses
indicate the values for which the stability of the stationary state has
been established. The other parameters are σ = 0.01, γ = 0.2,
A = 0.05.

0, τ ) = |e(x = 0, τ )|2 versus τ reveals time intervals of nearly
constant intensity, interrupted by bursts of large amplitude
oscillations (these computations, as well as the ones below,
have been performed for the values of parameters δ = 3
and r = 25. These values are marked on figure 1 by P).
During each of these intervals, the dynamics is very close to a
sinusoidal evolution of the electric field. The time evolution of
the spatial Fourier spectrum |ê(K , τ )| further reveals that each
nearly sinusoidal field evolution is associated with a unique
wavevector K . Thus, each interval corresponds to a specific
transverse travelling wave. This very uncommon behaviour
is an intermittency structured around a few periodic orbits,
always visited in a given order.

2. Numerical evidence for stabilization

Let us consider here an inhomogeneous (a non-uniform)
pumping profile that limits the transverse expansion of the
beam, as occurs in practice. We used both a super-Gaussian
profile r(x) = r0e−ρ2 x6

, with r0 = 25 and ρ = 0.054,
which corresponds to a width 2xm of the pumped region
with xm = 2.5, and a top-hat profile with the same width
2xm = 5 and level r0 = 25 (see the dotted–dashed lines in
figure 2). Other parameter values are σ = 0.01, γ = 0.2,
A = 0.05 and δ = 3. For uniform pumping, these values
of r and δ (point P on figure 1) correspond to an unstable
regime, above the second laser threshold. However, after a
transient regime, the laser intensity reaches a constant value
for both the localized pumping distributions considered here.
Figure 2 shows the final transverse profile of the amplitude of
the emitted wave field, which is stationary (solid lines), and
a sech-square fit of this profile (dashed lines). The stability
is proved by pursuing the computation of the evolution until
t = 104, without any change in the profile. The transverse
profile of the field amplitude appears to be roughly sech-
square shaped, and vanishes in the regions where the pumping
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(a) (b)

Figure 2. Transverse electric field amplitude profile in both linear (a) and logarithmic (b) scales. Solid curves: numerical resolution of the
Maxwell–Bloch equations for super-Gaussian (upper, red curve) and top-hat (lower, blue curve). The dashed curves are sech2 fits. The
dash–dot curves are proportional to the top-hat and super-Gaussian pumpings.
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Figure 3. Time evolution of the intensity at a given position x , for a
uniform pumping in a box with width 5, and periodic boundary
conditions: intermittency.

vanishes. The time evolution of the electric field envelope is
a complex exponential with angular frequency � = 0.0246.
We can thus conclude that the presence of an inhomogeneous
(a non-uniform) pumping profile leads to a stabilization of
the laser space–time dynamics. Since the results obtained
with the super-Gaussian and the top-hat pumping profiles are
very close, we consider only the latter profile in the following
analysis. We have further checked that this stabilization still
occurs for other parameters in the instability parameter domain
considered.

This stabilization would not be so surprising if the
transverse dimension of the pumping profile corresponded to
a low Fresnel number, as is the case in microchip lasers [12].
This is not the case, however, and the mechanism of this
stabilization has to be explored. More precisely, the boundary
conditions at the edge of the pumped zone play an important
role in the stabilization process. This role must now be
established. Complementary numerical simulations have thus

Figure 4. Time evolution of the intensity at x = 0, for a uniform
pumping in a box with width 5, and reflecting boundary conditions:
instability.

been carried out: the previous results were first compared
to those that were obtained considering a uniform pumping
profile. Using a numerical box with the same width as the
previous pumped zone (i.e. 2xm with xm = 2.5), we obtain the
same type of intermittency as described in [11]; see figure 3. In
conclusion, the reflection of the transverse waves on the edges
of the pumped zone clearly plays a role in the stabilization,
by inducing some stationary waves. In a second step, still
considering a uniform pumping profile, but taking into account
some reflection through the simple boundary conditions e(x =
±xm) = 0, or ∂xe(x = ±xm) = 0, new numerical
computations show that stable stationary waves do not exist
in these conditions either. This is shown in figure 4, which
presents the evolution of the intensity at x = 0 versus time, for
a uniform pumping in a box with width 5, and assuming the
previous simple reflecting boundary conditions. From these
two comparisons, it appears clearly that the structure of the
electric field outside the pumped zone is an essential part of the

3



J. Opt. A: Pure Appl. Opt. 10 (2008) 095101 D Amroun et al

stabilization process. To pursue our analysis, we have looked
for stationary solutions to the Maxwell–Bloch equations, and
particularly for evanescent wave fields in non-pumped regions.

3. Stationary solutions to the Maxwell–Bloch
equations

3.1. The stationary equation

Let us now consider stationary states of the Maxwell–Bloch
equations (1)–(3). Assuming that the electric field is stationary,
e = E(x)ei�t , it is seen that the polarization has the same time
dependence p = P(x)ei�t , with

P(x) = E + i

σ

(
�E − A∂2

x E
)
, (9)

and that the population inversion d is a constant, with

d = r − |E |2 − A

σ
Im

(
E∂2

x E
)
. (10)

Then, from equation (10) we get the equation satisfied by E ,
as

[1 + i (� − δ)]

[
1 + i

σ

(
� − A

∂2
x E

E

)]

= r − |E |2
(

1 + A

σ
Im

∂2
x E

E

)
. (11)

Equation (11) is split into real and imaginary parts, using

∂2
x E

E
= u + iv, (12)

with u, v real. Then, setting

W = 1

σ
(� − Au) , and T = A

σ
v + 1, (13)

equation (11) can be written in the compact form

W = − (� − δ) T, (14)

T = r

1 + (� − δ)2 + |E |2 . (15)

Computing back (∂2
x E)/E from equations (12) to (15), we get

(� − iσ) E − A∂2
x E + (� − δ + i) σr

× E

1 + (� − δ)2 + |E |2 = 0, (16)

which is the general equation for the stationary states. It is of
stationary saturated complex Ginzburg–Landau type.

3.2. A few analytical stationary-state solutions

Solutions to (16) with uniform |E | are computed easily: the
travelling wave solution (4)–(8) is retrieved. An evanescent
wave solution is found assuming E = Ee(−iK+κ)x . For a
nonzero κ ,

E

1 + (� − δ)2 + |E |2 = Ee(−iK+κ)x

1 + (� − δ)2 + |E|2 e−2κx

is linearly independent of E , and hence this nonlinear term
must vanish from the equation. Thus r = 0: the evanescent
wave exists only where pumping is absent. Then we get

κ = σ

2AK
, (17)

� = A
(
κ2 − K 2

)
. (18)

Apart from the translation invariance in the x direction, this
yields a one-parameter family of evanescent wave solutions.

For small values of x , and a nonzero pumping parameter
r , a parabolic approximation of a solution can be given. We
expand the electric field amplitude as E = eMt (1 + bx2 +
O(x3)), for a solution centred at x = 0. Substitution into
equation (16) yields

b = � − iσ

2A
+ (� − δ + i)

σ

2A

r

1 + (� − δ)2 + e2
M

. (19)

The linear chirp vanishes locally if

e2
M = r − 1 − (� − δ)2 , (20)

which sets the maximum of E at the same value as the
amplitude of the travelling waves. Then

b = �

2A
+ (� − δ)

σ

2A
. (21)

To sum up, different classes of stationary solution exist: the
well-known travelling wave solution valid for homogeneous
pumping, evanescent wave fields in domains where pumping
vanishes, and also localized profiles, for which can be
computed a parabolic approximation in the vicinity of the
origin x = 0. The next section will show that the profile
we observe is a combination of a parabolic-shaped field in the
centre of the pumped region and of evanescent wave fields in
the edges of the non-uniform pumping profile.

3.3. Comparison between analytical and numerical results

Let us detail the numerical results already presented in figure 2.
A plot of the transverse profile of the field shows that it decays
exponentially out of the pumped region, with a linear phase
(cf figure 5). Hence the numerical steady state is correctly
fitted by the evanescent wave in the non-pumped zone, as was
assumed in the previous section. It is easily checked that
for a given �, equations (17)–(18) admit only two opposite
real solutions. The sign of κ is fixed by the direction of
decrease, and thus determines the sign of K . Hence, for a given
frequency �, there is only one possible evanescent wave in
each direction. We check that the analytical solution coincides
with the numerical results as follows: first the numerical data
are fitted by straight lines (see figure 5), then we check that
the value obtained satisfies relations (17)–(18). The fitting (a
simple interpolation) yields � = 0.0246, K = ±0.1399 and
κ = ±0.7145. For this value of �, equations (17)–(18) give
K = ±0.1398 and κ = ±0.7152. Hence, the field in the non-
pumped region yields an evanescent wave, with � = 0.0246.

Finally, let us consider the pumped region. In this domain,
the transverse profile is well fitted by the chirp-free parabolic
approximation (20)–(21), as can be seen in figure 6. The
angular frequency of the electric field is � = 0.0246.

4



J. Opt. A: Pure Appl. Opt. 10 (2008) 095101 D Amroun et al

Figure 5. The field transverse profile ((a): logarithm of the
amplitude, (b): phase), and (c) the time evolution of its phase in the
non-pumped area. The dotted lines are the linear fitting.

4. Linear stability and stabilization mechanism

4.1. Numerical computation and linear stability of the
stationary states

For top-hat pumping, equation (16) can be solved by means
of a shooting method. More precisely, we assume a symmetry
with respect to the centre x = 0 of the pumped zone. Hence
∂x E is zero at this point. For arbitrary values of E(x = 0)

and �, the Cauchy problem for equation (16) is solved in the
pumping zone. Then it must be matched to an evanescent wave
solution in the non-pumped region, which yields the condition

∂x E

E
= −iK + κ, (22)

where K and κ are functions of �, as defined by
equations (17)–(18), to be satisfied at the boundary x = xm .
Taking the global phase invariance into account, this yields a
set of two equations for the two variables eM = |E(x = 0)| and
�, which can be solved numerically. This scheme has been
easily implemented using built-in functions of GNU Octave.
The scheme fails to converge for values of r below a line in the
(δ, r) plane, roughly between the points (2.5, 11) and (4, 18),
which corresponds either to the first or to the second laser
threshold. The steady state has a shape similar to the one given
in figure 2 for a wide domain around the point (δ, r0) = (3, 25)

at which figure 2 was computed. For larger values of δ and r0,
the shape of the steady-state solutions changes radically. This
is left for further study.

The stability of the stationary solutions has been inves-
tigated by numerically solving the Maxwell–Bloch equations
linearized about the numerically computed stationary state. We
used a standard fourth-order Runge–Kutta algorithm. The x-
derivatives were computed by means of finite differences, and
the initial data was a white noise. Since the decay is quite slow,
computations were performed up to t = 500, and we needed to
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Figure 6. Fitting of the field transverse profile (solid blue line), using
the evanescent wave solution (wings, dashed–dotted pink line) and
the parabolic approximation (centre, dashed green line).

restrict the stability computation to a few points. The points in-
vestigated are indicated by crosses in figure 1. They were cho-
sen close to the boundary of the domain limited by the thresh-
old line mentioned above, the threshold of re-stabilization of
the uniform solution for uniform pumping, the line r = 80,
and the line δ = 4 (see figure 1). Taking into account the limits
of accuracy on �, all points were found to be stable. It can
be reasonably conjectured that stability of the stationary state
occurs in the entire domain.

Above the threshold of re-stabilization of the uniform
solution for homogeneous pumping, the localized stationary
solution still exists. This has been checked for (δ, r0) =
(2.6, 80) and is expected to hold over a wide range. However,
this is of less interest, since the stability is ensured for uniform
pumping in this case.

4.2. The transient evolution

Figure 7 shows the transient evolution of the transverse profile
of the field during the stabilization. The evolution of the field
profile can be summarized as follows: in a first stage, many
travelling waves appear. They are reflected on the borders
of the pumped zone. A stationary wave pattern develops,
corresponding to the linear superposition of travelling waves
whose wavelength λ matches the width l of the pumped zone,
namely λ/2 = l, as in the formation of any linear standing
wave. This can be shown by fitting the amplitude |e(x)| with
a cosine function having this wavelength, precisely f2(x) =
(eM − em) cos πx/ l + em, where eM is the maximum value
of |e(x)|, and em is the mean value in the non-pumped region
(see figure 7, dashed light blue curves). Then, the amplitude
of the standing wave grows, and its shape becomes modified
by the nonlinear effect. When the amplitude, and hence the
effect of nonlinearity, increases, the field profile separates from
the linear standing wave mode, and its curvature decreases
and becomes closer to that of the parabolic-shaped steady
state. A fit with the parabola f2(x) = eM(1 + bx2), where
b has the value pertaining to the final steady state, given by
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Figure 7. Transient evolution of the field transverse profile. Thick solid (red) line: evolution of the field profile. Thin solid (dark blue) line:
final steady state. Dashed (light blue) line: fit with eM cos πx/l . Dashed–dotted (green) line: parabolic approximation.

equation (21), is shown in figure 7 (bottom, dashed–dotted
green curves).

Simultaneously, the profile in the non-pumped zone
becomes close to the evanescent waves. This continues until
the maximal amplitude corresponding to the exact steady
state is reached. The latter is stable. As mentioned above,
the angular frequency of the stable steady state is � =
0.0246. Using the dispersion relation (8) of the travelling
wave solutions (4)–(8) of the Maxwell–Bloch system, the
corresponding wavenumber is K = 0.321. Hence K �
(1/2)π/ l = 0.314. The selected frequency corresponds to
the first subharmonic of the frequency matched with the size
of the pumping box. The stabilization mechanism can thus be
summarized as follows: the reflection of travelling waves on
both edges of the pumping profile creates a stationary wave
pattern which adapts itself to limit conditions (i.e. evanescent
waves on both sides of the pumping profile, and a parabolic
shape in its centre) through a subharmonic transition.

5. Conclusion

Let us first discuss how our theoretical predictions can
be confirmed experimentally. Previous experimental works
concerned semiconductor lasers in which the injection current
profile was inhomogeneous [13] and CO2 lasers where time
resolved experiments were conducted [14]. In our case it
is necessary to control the width of the pumping, and hence
longitudinally pumped solid-state lasers should be used. The
simplest laser configuration is a plane–plane microchip laser

with one mirror directly deposited on the input face of the
amplifying medium and a second bulk (output) mirror. A short
cavity length of some hundreds of micrometers allows single-
longitudinal laser oscillation and a slight translation of the
output mirror permits control of the cavity detuning, which is
of great importance in the transverse pattern formation. On the
other hand, the size of the pumping beam has to be controlled
and varied. Indeed, the laser must be first arranged to work
in the unstable domain corresponding to positive detunings (cf
figure 1). This is obtained with sufficiently large pump size
and pumping level. If the pump size is then decreased, the
transition from unstable operation (intermittency) to a stable
stationary state must be observed by a suitable imaging of
the near-field pattern emission in a CCD camera. Finally, our
results can also be used as guidelines to design large-Fresnel-
number stable laser sources by a suitable control of both the
cavity detuning and the pump size.

The space–time dynamics of a homogeneously broadened
single-mode laser (when diffraction is taken into account) has
been studied under non-uniform pumping. We have considered
both a super-Gaussian pumping profile and a top-hat one,
which give very similar results. Our investigations reveal that
unstable dynamics are stabilized in the presence of a non-
uniform pumping. This stabilization is due to the creation
of a stationary wave pattern exhibiting an evanescent profile
on both sides of the pumped zone, and a parabolic shape in
its centre. Stabilization occurs with a period doubling of the
spatial pattern.
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