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Some results on the feedback control of max-plus linear systems under
state constrains

C. A. Maia and L. Hardouin and J. E. R. Cury

Abstract— The aim of this paper is to study a control problem
for a class of restriction, which appears in design of feedback
controllers for timed discrete event systems, taking performance
(eigenvalue of the closed loop matrix) and realization issues into
account. The obtained results are based on properties of the
system and the restriction matrices. For a given class of theses
matrices, it is shown that a causal feedback can be computed by
solving linear equations. In order to illustrate the applicability
of the results, we solve a small traffic light problem.

I. INTRODUCTION

Max-plus algebra is suitable to deal with a class Timed
Discrete Event Systems (TDES) that presents synchroniza-
tion and delay phenomena. The dynamic model of these sys-
tems can be expressed by using only “sum” and “maximiza-
tion” operations [3]. One important kind of such systems are
the max-plus linear systems (MPLS), whose dynamic model
can be represented, in a compact form, by using matrices as
for the linear conventional system. MPLS can be represented
by using Timed Event Graph (TEG), which is a class of
timed Petri net in which all places have only one input
and only one output transition [27]. Applications of MPLS
include modeling and control of computer, transportation and
production systems.
Concerning control, in [26] and [19] control strategies are
proposed to deal with systems with uncontrollable inputs;
Finite horizon control problems for uncertain system are
addressed in [28]. In [9] a closed-loop control approach
based on transfer function and on reference model has been
proposed, which has been extended in [20] in order to take
parameter uncertainties into account by using interval analy-
sis. In [21], another transfer function approach is developed
for multivariable control. Further generalization of model
reference control based on transfer function is presented in
[25] and [24].

This paper deals with the constraint control of max-plus
linear systems. Classes of this problem can be approached
by using directly the system realization, based on daters
(or counters), like in [2], [13], [18], [22], [23] or its
transformed version based on power series, which is similar
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to Z-transform in conventional linear system theory [30],
[29], [17]. Unlike previous paper, we are interested in a class
of problems described by using a state space realization
of the system, as in [18], [22], [23], however our problem
formulation is different in the sense that we do not need to
restrict the initial condition to be in a given semimodule. In
Addition, we can take into account performance (eigenvalue
of the closed loop matrix) and realization issues in the
feedback synthesis. The presented results is obtained by
means of the system and the restriction matrices. We
show that a causal feedback can be computed by solving
linear equations for a given class of these matrices. The
applicability of the results is illustrated by solving a small
traffic light problem.

The paper organization is as follows. Section II intro-
duces some algebraic tools concerning max-plus algebra,
residuation theory and max-plus linear equations. Section III
presents the control problem and the main results. Numerical
results for a small traffic problem are shown in Section IV.
A conclusion is given in Section V.

II. ALGEBRAIC FRAMEWORK

In this paper all models are described by means of a dioid.
A dioid is an algebraic structure defined by a set D with the
operations ⊕ and ⊗, which is denoted by (D,⊕,⊗). The
operation ⊕ is associative, commutative and idempotent, that
is, a ⊕ a = a,∀a ∈ D, and has neutral element denoted by
ε. The operation ⊗ is associative and distributive on the left
and on the right with respect to ⊕ and has neutral element
denoted by e. Moreover, for all a, a⊗ε = ε⊗a = ε, that is,
ε is absorbing with respect to ⊗. In a dioid, a partial order
relation is defined by b ≼ a iff a = a⊕b. As a consequence,
unlike conventional algebra based on real field, operation ⊗
is isotone, that is, it does not change the order.

A dioid D is said to be complete if it is closed under
infinite ⊕-sums and if ⊗ distributes over infinite ⊕-sums.
In some situations the symbol ⊗ will be omitted as in
conventional algebra, that is a ⊗ b = ab. The ith power
of an element a in a dioid is defined as in conventional case,
that is ai = a⊗ ai−1 and a0 = e.

In this paper, all the models are expressed in terms of the
dioid Zmax, which denotes the dioid (Z ∪ {−∞},max,+).
We recall that this dioid has neutral elements that can be
interpreted as by ε = −∞ and e = 0. Hereafter we denote
by I the max-plus identity matrix, defined analogously as the
conventional case, considering the neutral elements of Zmax.



The same is done for a zero matrix. Matrix operations are
defined analogously as the conventional case, as well.

A. Residuation theory

Residuation theory [4] is useful to deal with many control
problems described by dioids. This theory deals with the
conditions for the existence of the greatest element x for the
inequality f(x) ≼ y in partially ordered sets.

In this paper we are interested in the mappings La : x 7→
ax and Ra : x 7→ xa defined over a complete dioid D. It can
be proved that they are both residuated [3]. Their residuals
are isotone mappings denoted respectively by L♯

a(y) = a◦\y
and R♯

a(y) = y◦/a. Dually, if there exists a least element x
for the inequality y ≼ f(x) it is denoted by f ♭(y). Mapping
f ♭ is called the dual residual of f . For instance, the mapping
Ta(x) = x ⊕ a, defined over a complete dioid D, is dually
residuated, and its residual is denoted by T ♭

a(y) = y ◦− a.
Particularly, we are interested in matrix inequalities. For

inequality matrices of the type AX ≼ B in the dioid Dn×n,
there exists a greatest solution A◦\B, which the entries can
be computed by:

(A◦\B)ij =

n∧
l=1

Ali◦\Blj ,

in which X ∧ Y stands for the greatest element lower than
or equal to X and Y .

B. Semimodule and max-plus equations

A semimodule is equivalent to the notion of linear vector
space in a semiring setting. A semimodule defined from a
dioid (D,⊕,⊗, εs, e) is a comutative monoid (M, ⊕̂) with
neutral element εM, equipped with a map (D×M) 7→ M,
that is (λ, v) 7→ λ.v (left action), for which:

(λ⊗ µ).v = λ.(µ.v),

λ.(u⊕̂v) = λ.u⊕̂λ.v,

(λ⊕ µ).v = λ.v⊕̂µ.v,

εs.v = εM,

λ.εM = εM,

e.v = v,

for all u, v ∈ M and λ, µ ∈ D. For more details see [14],
[8].

In [5], [14], [1] it has been shown that the set of all
solutions of the system Ax = Bx, for which A, B, x have
entries in Zmax, can be characterized by a finitely generated
semimodule. More precisely it can be expressed as an image
of a matrix with entries in Zmax. In addition, the system
Ax = Bx is equivalent to Āz = B̄y.

Remark 1: The equation Ax = Bx is equivalent to Āz =
B̄y with

Ā =

[
A
I

]
, B̄ =

[
B
I

]
in which I is an identity matrix, y and z are vectors, all with
appropriate dimension

Therefore if the issue is to find only one solution for
the linear system Ay = Bz, we can use the “alternating”
algorithm proposed by [11] (and extended to dioids of
intervals by [16]). Assuming that A and B have at least
one nonzero element on each row and on each column, and
initializing with a matrix without ε entries, the authors show
that the algorithm converges if and only if a nonzero solution
exists. More recently, in order to deal with complexity
issues to solve these equations, [12] have developed another
algorithm that uses dynamic programming and dynamical
games techniques. This algorithm is based on fixed point
algorithms developed in [15], [6]. In this paper, the algorithm
of [11] will be used in the computation of a feedback
control law, however the one proposed by [12] is an another
possibility to be investigated in future works.

In this context, if a finite solution for this linear system
exists, the following algorithm, which was adapted from [11],
can provide a solution in finite number of step.

Begin
Choose arbitrary finite element z
y := A◦\(Bz);
While (Ay ̸= Bz),

z := B◦\(Ay);

y := A◦\(Bz);

End
End

Remark 2: We remark that there is no solution if any line
of matrix A is strictly greater than the respective line in
matrix B and vice-versa and this condition should be tested
before running the algorithm.

Remark 3: The following example presents an easy way
to compute a particular semimodule which appears in many
max-plus problems.

Ex ≼ x ⇔ E∗x = x ⇔ x ∈ ImE∗, (1)

in which E is a matrix and E∗ =
⊕
i∈N

Ei ((.)∗ is called

“Kleene star operator”). See [3] for more details.
In addition, since we are dealing with control synthesis,

we must ensure that the control law is realizable. A linear
feedback control law is realizable if the feedback matrix is
causal. In this sense, the following definition is useful.

Definition 1 (Causal Matrix): A matrix M ∈ (Zmax)
n×p

is said to be causal if its entries are such that Mij = ε or
Mij ≽ e.

III. CONTROL SYNTHESIS

In a general way, the state evolution of a MPLS can be
described by the following system:

x(k) = Ax(k − 1)⊕Bu(k), (2)

in which vectors x(k) ∈ (Zmax)
n and u(k) ∈ (Zmax)

p

represent respectively the date of kth firing of the internal
(state) and input transitions, A and B are the system matrices
of appropriate dimensions. We recall that, since x(k) ≼
x(k + 1), that is, the firing dates are nondecreasing, then



I ≼ A, in which I is the identity matrix. Max-plus linear
systems can be handled by using toolboxes for Scilab and a
C++ library [7], [10].

Definition 2 (Control problem): The aim is to find a re-
alizable feedback control law, u(k) = Fx(k − m), for the
following max-plus linear system:

x(k) = Ax(k − 1)⊕Bu(k), (3)

to ensure that the state will evolve in order to be kept in the
following semimodule:

Dx(k) = x(k), ∀k ≥ k0 (4)

for which F ∈ (Zmax)
p×n, D ∈ (Zmax)

n×n and m, k0 > 0,
whatever be the initial condition x(0) of the system.

Remark 4: We remark that this control problem, is a
generalization of the control problem presented in [18], [22],
since here the initial state does not necessarily belong to a
given semimodule. In other words, the main concern here is
to design a control law in order to drive the state of system
into the semimodule Dx = x and keep it inside.
If there exists a linear feedback control of the form u(k) =
Fx(k − 1) with F ∈ (Zmax)

p×n, hence Eq. 3 becomes:

x(k) = (A⊕BF )x(k − 1), ∀k ≥ 1. (5)

As a consequence, provided that the state evolution of the
system is given by Eq.5, a solution exists if and only if there
exists k0 ≥ 1 such that:

D(A⊕BF )x(k− 1) = (A⊕BF )x(k− 1), ∀k ≥ k0. (6)

Therefore, we can obtain conditions ensuring the existence
and computation of a solution. If the following equation
holds:

D(A⊕BF ) = A⊕BF, (7)

a solution exists whatever be the initial condition. And as a
consequence, the following lemma will be useful to find a
solution.

Lemma 1: Any matrix F that respects A ≼ BF and
DBF = BF is a solution of Eq.7.

Proof: Since A ≼ BF then A⊕BF = BF . Therefore
D(A ⊕ BF ) = DBF and (A ⊕ BF ) = BF . Equation
DBF = BF completes the proof.

As we can see, we have to deal with equation of the type
Az = Bz. In this sense, the following definition is useful
(see [11].

Definition 3 (Row (column) G-astic Matrix): A matrix is
row (column) G-astic if it has at least one nonzero in each
row (column).

Lemma 2 ([22]): If B is row G-astic1, ∀L ∈ Zn×n
max it

is possible to choose a matrix M , by making its elements
large enough, such that L ≼ BM .

1We can observe that if B is row G-astic, each state of the system has a
connection to at least one input.

Definition 4 (Matrix construction from a vector): We de-
note by Z(z) ∈ Zp×n a matrix in which columns are identical
and formed by the vector z ∈ Zp. We denote by F (z,α) a
matrix such that F (z,α) = Z(z)α in which α ∈ Zn×n is a
diagonal matrix.

By using this definition we have following lemma.
Lemma 3: If a vector z is such that DBz = Bz, then the

same equation holds for any F (z,α), that is, DBF (z,α) =
BF (z,α).

As a consequence we can state the following proposition.
Proposition 1: If the matrix B is row G-astic and if there

exists a vector z ∈ Zp
max, with non null entries such that

DBz = Bz, there exists a solution for Eq.7.
Proof: If z is such that (zi ̸= ε), and B is row G-
astic, then by Def.3, any F (z,α) is such that such that
DBF (z,α) = BF (z,α). By Lem.2, it is always possible to
make A ≼ BF (z,α), since we can make the matrix F (z,α)

as large as needed. In this sense, if we denote F = F (z,α),
we can ensure that DBF = BF and A ≼ BF . Therefore
by Lem.1, F is a solution for Eq.7.

Remark 5: It is straightforward to show that the least
α such that A ≼ BF (z,α) can be easily computed and
it is equal to αmin = −diag{A◦\(BZ(z)))}, in which
diag{X} indicates the diagonal of matrix X . Therefore if
the requirements of Proposition 1 are fulfilled, all F such
that F ≽ Z(z)αmin are solutions for Eq. 7.

A. Dealing with realization and performance issues

Once the requirements of proposition 1 are fulfilled we
can obtain a solution for the control problem. However,
the feedback can increase the eigenvalue of the closed-
loop matrix Af = A ⊕ BF and so the firing dates of
the state transition can be delayed. This can be an issue
in some applications. In order to deal with this issue, we
can investigate what we can do with non realizable solution
since they can lead to smaller eigenvalues for matrix Af =
A⊕BF . In this sense one question is: given a non realizable
solution F for Eq. 7 is it possible to use it in order to design
another realizable solution for the problem? The answer is
yes if matrix Af is irreducible and has eigenvalue bigger
than 0. We will discuss this point in the following.

If there exists a non realizable control law unc(k) =
Fncx(k−1) (by this we mean that matrix Fnc is non causal)
then

x(k) = (A⊕BFnc)x(k − 1), (8)

and for a given k0 ≥ 1, we have

D(A⊕BFnc)x(k − 1) = (A⊕BFnc)x(k − 1), ∀k ≥ k0.
(9)

Given any initial condition x(0), by using Eq. 8, the control
law can be rewritten as:

unc(k) = Fnc(A⊕BFnc)
m−1x(k −m), ∀k ≥ m, (10)



provided that

x(1) = (A⊕BFnc)x(0)

...
x(m) = (A⊕BFnc)x(m− 1)

From the spectral theory of max-plus matrices, we can show
for any irreducible matrix H that

Hk+c = (λ)cHk, ∀k ≥ p (11)

for p large enough, in which λ is the eigenvalue and c is
the cyclicity of matrix H . Please see [3] for more details.
In this sense, since A⊕BFnc ≽ I and provided that matrix
A ⊕ BFnc is an irreducible matrix with eigenvalue greater
than 0 (which is not too restrictive), we can always have a
causal matrix F = Fnc(A⊕BFnc)

m−1 by increasing m as
much as it needed2. From a feedback realization in terms of
a TEG, this means that we have places with m tokens and
sojourn times given by the entries of matrix F . This ideas
will be illustrated in the example given in the next section.

IV. ILLUSTRATIVE EXAMPLE: A SMALL TRAFFIC LIGHT
PROBLEM

Consider the TEG depicted in Fig.1 as an example. It
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Fig. 1. A Small Traffic Light System

may describe a road (a green wave) with two traffic lights,
indicated by S1 and S2. Transitions xi with i ∈ {1, 2}
indicates an event when the semaphore i turns green light
on and transitions xi, i ∈ {3, 4} indicate when red lights
turn on. ri is the minimal duration of the red time for the
semaphore, gi the duration of the green time, and ui a control
input which can increase the red and green times. In this kind
of model the flow of cars is represented by tokens crossing
the graph from transition v until to transition y. Each of these
tokens are assumed to represent a virtual platoon of cars (see
for instance [13] for a presentation of this concept). Virtual
means that a token represents the presence of cars even when
the cars aren’t there, that is, in this model the traffic light

2We remark that this procedure ensure that m is always finite

system runs independently of the car flow since we do not
assume sensors of car presence on the road. In other words,
input v is not a constraint and it is assumed to be fired
an infinite number of time, which is equivalent to consider
v = ε.

The size of the platoon on each section is related to the
green duration gi which is fixed a priori, it is assumed
to be sufficiently small to ensure that the platoon may be
physically contained in the downstream section. The time
duration ti represents the minimal time allowing to a platoon
to go from one location to other, e.g. t2 is the time necessary
for the platoon to leave the first traffic light and to reach the
second one. The max-plus model of this system (with v = ε)
is given by:

x(k) = A0x(k)⊕A1x(k − 1)⊕B0u(k). (12)

in which3:

A0 =


ε ε ε ε
t2 ε ε ε
g1 ε ε ε
ε g2 ε ε

 , A1 =


e ε r1 ε
ε e ε r2
ε ε e ε
ε ε ε e

 ,

and,

B0 =


e ε ε ε
ε e ε ε
ε ε e ε
ε ε ε e

 .

Since A0 has circuits with negative circuit weights this
equation can be rewritten as (see [3]):

x(k) = A∗
0A1x(k − 1)⊕A∗

0B0u(k). (13)

Therefore the matrix A for the system is A∗
0A1 and the

matrix B is A∗
0B0. We remark that the matrix B is row

G-astic.
In this system we aim to ensure the following time synchro-
nization constraints:

• The maximum sojourn in the place between x1 and x2

is T2, that is x2(k) − x1(k) ≤ T2. In other words the
platoons have to wait less than T2 − t2 in the front of
the second traffic light.

• The maximum green time of the first and the second
semaphore is respectively G1 and G2, that is x3(k) −
x1(k) ≤ G1 and x4(k)− x2(k) ≤ G2

These constraints lead to an inequality of the form Erx(k) ≼
x(k), in which Er is given by:

Er =


ε −T2 −G1 ε
ε ε −G2 ε
ε ε ε ε
ε ε ε ε


Furthermore by Eq.12, the state must also respect the

inequality A0x(k) ≼ x(k). So (Er ⊕A0)x(k) ≼ x(k). As a
consequence, by using Equiv. 1 the system must enforces

Dx(k) = x(k) (14)

3Diagonal entries of A1 are equal to e to enforce that firing dates are not
decreasing, that is x(k) ≽ x(k − 1).



in which D = (Er ⊕A0)
∗.

In order to present numerical results, we chose for the
system: t2 = 10, g1 = 4, g2 = 5, r1 = 5, r2 = 7. And for
the constraints: G1 = G2 = 15 and T2 = 15. These leads to
the following matrices for the system:

A =


0 ε 5 ε
10 0 15 7
4 ε 9 ε
15 5 20 12

 , B =


0 ε ε ε
10 0 ε ε
4 ε 0 ε
15 5 ε 0

 ,

and for the constraints:

D =


0 −15 −15 −30
10 0 −5 −15
6 −11 0 −26
15 5 0 0

 .

By solving the equation DBz = Bz, with the algorithm
proposed by [11], we have

z =
[
0 0 0 0

]T
.

As a result, following results Sec. III we can find solutions
F (z) such that D(A ⊕ BF (z)) = A ⊕ BF (z) for the
proposed control problem. A particular interesting one is
the one that does not change (or cause the least change
in) the greatest eigenvalue of matrix A. Following Rem.
5, we can show that Fnc = [z z z z]αmin, in which
αmin = −diag{A◦\(BZ(z)))} = diag[0 − 10 5 − 3],
that is

Fnc =


0 −10 5 −3
0 −10 5 −3
0 −10 5 −3
0 −10 5 −3

 ,

does not change the greatest eigenvalue of matrix A.
Following the discussion presented in Subsec. III-A, it is

possible to find a feedback control law u(k) = Fu(k − 2)
in which:

F = Fnc(A⊕BFnc) =


12 2 17 9
12 2 17 9
12 2 17 9
12 2 17 9

 ,

with initial conditions given by:
x(0) = [0 0 0 0 ]

T ,
x(1) = (A⊕BFnc)x(0) = [5 15 9 20 ]

T ,

We can observe that we can start the state of system
wherever we want, in this example Dx(0) ̸= x(0), and in
one iteration it will be inside the desired semimodule of
constraint. In addition we remark that the control law is real-
izable in term of a TEG by initially adding appropriate place
in the feedback with 2 tokens and respective temporization
given by the entries of matrix F . Moreover we also observe
that the open-loop response does not ensure Dx(k) =
x(k) ∀k > 1. For instance, the open-loop response leads

to x(3) = A3x(0) = [23 39 27 44 ]T , for which
Dx(3) ̸= x(3). On the other hand the closed-loop one leads
to x(3) = Ax(2) ⊕ BFx(1) = [29 39 33 44 ]T , that
is, the feedback delays appropriately the transition firings in
order to keep the state inside the constraint semimodule.

Remark 6: We have presented a simple and easy to un-
derstand problem, but with no trivial solution. However
the approach is scalable to more complex problems with
higher dimension matrices. Its computational complexity
relies mainly on the solution of the equation DBz = Bz,
which is pseudo-polynomial [11].

V. CONCLUSION

This paper has presented an approach to design a feed-
back controller in order to enforce a class of constraints
for max-plus linear systems. The approach has taken into
account initial condition, realization and performances issues
in the designing process. The applicability of the results was
illustrate by solving a small traffic light problem. This is
an on-going work and interesting topic for future research
includes investigation on more general conditions concerning
the solvability of proposed control problem.
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