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Some results on the feedback control of max-plus linear systems under state constrains

The aim of this paper is to study a control problem for a class of restriction, which appears in design of feedback controllers for timed discrete event systems, taking performance (eigenvalue of the closed loop matrix) and realization issues into account. The obtained results are based on properties of the system and the restriction matrices. For a given class of theses matrices, it is shown that a causal feedback can be computed by solving linear equations. In order to illustrate the applicability of the results, we solve a small traffic light problem.

I. INTRODUCTION

Max-plus algebra is suitable to deal with a class Timed Discrete Event Systems (TDES) that presents synchronization and delay phenomena. The dynamic model of these systems can be expressed by using only "sum" and "maximization" operations [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]. One important kind of such systems are the max-plus linear systems (MPLS), whose dynamic model can be represented, in a compact form, by using matrices as for the linear conventional system. MPLS can be represented by using Timed Event Graph (TEG), which is a class of timed Petri net in which all places have only one input and only one output transition [START_REF] Murata | Petri nets : properties, analysis and applications[END_REF]. Applications of MPLS include modeling and control of computer, transportation and production systems. Concerning control, in [START_REF] Menguy | Just-intime Control of Timed Event Graphs Update of Reference Input, Presence of Uncontrollable Input[END_REF] and [START_REF] Lhommeau | Disturbance Decoupling of Timed Event Graphs by Output Feedback Controller[END_REF] control strategies are proposed to deal with systems with uncontrollable inputs; Finite horizon control problems for uncertain system are addressed in [START_REF] Necoara | Finite-horizon minmax control of max-plus-linear systems[END_REF]. In [START_REF] Cottenceau | Model Reference Control for Timed Event Graphs in Dioid[END_REF] a closed-loop control approach based on transfer function and on reference model has been proposed, which has been extended in [START_REF] Lhommeau | Interval analysis in dioid : application to robust controller design for timed event graphs[END_REF] in order to take parameter uncertainties into account by using interval analysis. In [START_REF] Lüders | Generalized Multivariable Control of Discrete Event Systems in Dioid[END_REF], another transfer function approach is developed for multivariable control. Further generalization of model reference control based on transfer function is presented in [START_REF] Maia | Optimal Closed-loop of Timed Event Graphs in Dioids[END_REF] and [START_REF] Maia | On the model reference control for max-plus linear systems[END_REF].

This paper deals with the constraint control of max-plus linear systems. Classes of this problem can be approached by using directly the system realization, based on daters (or counters), like in [START_REF] Amari | Control of linear minplus systems under temporal constraints[END_REF], [START_REF] Garcia | Traffic light coordination of urban corridors using max-plus algebra[END_REF], [START_REF] Katz | Max-plus (A,B)-invariant spaces and control of timed discrete-event systems[END_REF], [START_REF] Maia | On the control of maxplus linear system subject to state restriction[END_REF], [START_REF] Maia | A super-eingenvector approach to control constrained max-plus linear systems[END_REF] or its transformed version based on power series, which is similar to Z-transform in conventional linear system theory [START_REF] Ouerghi | A precompensator synthesis for ptemporal event graphs[END_REF], [START_REF] Ouerghi | Control synthesis for p-temporal event graphs[END_REF], [START_REF] Houssin | Just in time control of constrained ( max ,+)-linear systems[END_REF]. Unlike previous paper, we are interested in a class of problems described by using a state space realization of the system, as in [START_REF] Katz | Max-plus (A,B)-invariant spaces and control of timed discrete-event systems[END_REF], [START_REF] Maia | On the control of maxplus linear system subject to state restriction[END_REF], [START_REF] Maia | A super-eingenvector approach to control constrained max-plus linear systems[END_REF], however our problem formulation is different in the sense that we do not need to restrict the initial condition to be in a given semimodule. In Addition, we can take into account performance (eigenvalue of the closed loop matrix) and realization issues in the feedback synthesis. The presented results is obtained by means of the system and the restriction matrices. We show that a causal feedback can be computed by solving linear equations for a given class of these matrices. The applicability of the results is illustrated by solving a small traffic light problem.

The paper organization is as follows. Section II introduces some algebraic tools concerning max-plus algebra, residuation theory and max-plus linear equations. Section III presents the control problem and the main results. Numerical results for a small traffic problem are shown in Section IV. A conclusion is given in Section V.

II. ALGEBRAIC FRAMEWORK

In this paper all models are described by means of a dioid. A dioid is an algebraic structure defined by a set D with the operations ⊕ and ⊗, which is denoted by (D, ⊕, ⊗). The operation ⊕ is associative, commutative and idempotent, that is, a ⊕ a = a, ∀a ∈ D, and has neutral element denoted by ε. The operation ⊗ is associative and distributive on the left and on the right with respect to ⊕ and has neutral element denoted by e. Moreover, for all a, a ⊗ ε = ε ⊗ a = ε, that is, ε is absorbing with respect to ⊗. In a dioid, a partial order relation is defined by b ≼ a iff a = a⊕b. As a consequence, unlike conventional algebra based on real field, operation ⊗ is isotone, that is, it does not change the order.

A dioid D is said to be complete if it is closed under infinite ⊕-sums and if ⊗ distributes over infinite ⊕-sums. In some situations the symbol ⊗ will be omitted as in conventional algebra, that is a ⊗ b = ab. The i th power of an element a in a dioid is defined as in conventional case, that is a i = a ⊗ a i-1 and a 0 = e.

In this paper, all the models are expressed in terms of the dioid Z max , which denotes the dioid (Z ∪ {-∞}, max, +). We recall that this dioid has neutral elements that can be interpreted as by ε = -∞ and e = 0. Hereafter we denote by I the max-plus identity matrix, defined analogously as the conventional case, considering the neutral elements of Z max .

The same is done for a zero matrix. Matrix operations are defined analogously as the conventional case, as well.

A. Residuation theory

Residuation theory [START_REF] Blyth | Residuation Theory[END_REF] is useful to deal with many control problems described by dioids. This theory deals with the conditions for the existence of the greatest element x for the inequality f (x) ≼ y in partially ordered sets.

In this paper we are interested in the mappings L a : x → ax and R a : x → xa defined over a complete dioid D. It can be proved that they are both residuated [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]. Their residuals are isotone mappings denoted respectively by L ♯ a (y) = a• \y and R ♯ a (y) = y• /a. Dually, if there exists a least element x for the inequality y ≼ f (x) it is denoted by f ♭ (y). Mapping f ♭ is called the dual residual of f . For instance, the mapping T a (x) = x ⊕ a, defined over a complete dioid D, is dually residuated, and its residual is denoted by T ♭ a (y) = y • -a. Particularly, we are interested in matrix inequalities. For inequality matrices of the type AX ≼ B in the dioid D n×n , there exists a greatest solution A• \B, which the entries can be computed by:

(A• \B) ij = n ∧ l=1 A li • \B lj ,
in which X ∧ Y stands for the greatest element lower than or equal to X and Y .

B. Semimodule and max-plus equations

A semimodule is equivalent to the notion of linear vector space in a semiring setting. A semimodule defined from a dioid (D, ⊕, ⊗, ε s , e) is a comutative monoid (M, ⊕) with neutral element ε M , equipped with a map (D × M) → M, that is (λ, v) → λ.v (left action), for which:

(λ ⊗ µ).v = λ.(µ.v), λ.(u ⊕v) = λ.u ⊕λ.v, (λ ⊕ µ).v = λ.v ⊕µ.v, ε s .v = ε M , λ.ε M = ε M , e.v = v,
for all u, v ∈ M and λ, µ ∈ D. For more details see [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF], [START_REF] Cohen | Duality and separation theorems in idempotent semimodules[END_REF].

In [START_REF] Butkovic | An elimination method for finding all solutions of the system of linear equations over an extremal algebra[END_REF], [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF], [START_REF] Allamigeon | Inferring min and max invariants using max-plus polyhedra[END_REF] it has been shown that the set of all solutions of the system Ax = Bx, for which A, B, x have entries in Z max , can be characterized by a finitely generated semimodule. More precisely it can be expressed as an image of a matrix with entries in Z max . In addition, the system Ax = Bx is equivalent to Āz = By.

Remark 1:

The equation Ax = Bx is equivalent to Āz = By with Ā = [ A I ] , B = [ B I
] in which I is an identity matrix, y and z are vectors, all with appropriate dimension Therefore if the issue is to find only one solution for the linear system Ay = Bz, we can use the "alternating" algorithm proposed by [START_REF] Cuninghame-Green | The equation A⊗x=B⊗y over (max,+)[END_REF] (and extended to dioids of intervals by [START_REF] Hardouin | Interval systems over idempotent semiring[END_REF]). Assuming that A and B have at least one nonzero element on each row and on each column, and initializing with a matrix without ε entries, the authors show that the algorithm converges if and only if a nonzero solution exists. More recently, in order to deal with complexity issues to solve these equations, [START_REF] Dhingra | How to solve large scale deterministic games with mean payoff by policy iteration[END_REF] have developed another algorithm that uses dynamic programming and dynamical games techniques. This algorithm is based on fixed point algorithms developed in [START_REF] Gaubert | The duality theorem for min-max function[END_REF], [START_REF] Cochet-Terrasson | A construtive fixed-point theorem for min-max functions[END_REF]. In this paper, the algorithm of [START_REF] Cuninghame-Green | The equation A⊗x=B⊗y over (max,+)[END_REF] will be used in the computation of a feedback control law, however the one proposed by [START_REF] Dhingra | How to solve large scale deterministic games with mean payoff by policy iteration[END_REF] is an another possibility to be investigated in future works.

In this context, if a finite solution for this linear system exists, the following algorithm, which was adapted from [START_REF] Cuninghame-Green | The equation A⊗x=B⊗y over (max,+)[END_REF], can provide a solution in finite number of step.

Begin Choose arbitrary finite element z y

:= A• \(Bz); While (Ay ̸ = Bz), z := B• \(Ay); y := A• \(Bz); End End
Remark 2: We remark that there is no solution if any line of matrix A is strictly greater than the respective line in matrix B and vice-versa and this condition should be tested before running the algorithm.

Remark 3: The following example presents an easy way to compute a particular semimodule which appears in many max-plus problems.

Ex ≼ x ⇔ E * x = x ⇔ x ∈ ImE * , ( 1 
)
in which E is a matrix and

E * = ⊕ i∈N E i ((.) * is called
"Kleene star operator"). See [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF] for more details.

In addition, since we are dealing with control synthesis, we must ensure that the control law is realizable. A linear feedback control law is realizable if the feedback matrix is causal. In this sense, the following definition is useful.

Definition 1 (Causal Matrix):

A matrix M ∈ (Z max ) n×p is said to be causal if its entries are such that M ij = ε or M ij ≽ e.

III. CONTROL SYNTHESIS

In a general way, the state evolution of a MPLS can be described by the following system:

x(k) = Ax(k -1) ⊕ Bu(k), ( 2 
)
in which vectors x(k) ∈ (Z max ) n and u(k) ∈ (Z max ) p represent respectively the date of k th firing of the internal (state) and input transitions, A and B are the system matrices of appropriate dimensions. We recall that, since x(k) ≼ x(k + 1), that is, the firing dates are nondecreasing, then I ≼ A, in which I is the identity matrix. Max-plus linear systems can be handled by using toolboxes for Scilab and a C ++ library [7], [START_REF] Cottenceau | Data processing tool for calculation in dioid[END_REF].

Definition 2 (Control problem):

The aim is to find a realizable feedback control law, u(k) = F x(k -m), for the following max-plus linear system:

x(k) = Ax(k -1) ⊕ Bu(k), (3) 
to ensure that the state will evolve in order to be kept in the following semimodule:

Dx(k) = x(k), ∀k ≥ k 0 (4) 
for which F ∈ (Z max ) p×n , D ∈ (Z max ) n×n and m, k 0 > 0, whatever be the initial condition x(0) of the system. Remark 4: We remark that this control problem, is a generalization of the control problem presented in [START_REF] Katz | Max-plus (A,B)-invariant spaces and control of timed discrete-event systems[END_REF], [START_REF] Maia | On the control of maxplus linear system subject to state restriction[END_REF], since here the initial state does not necessarily belong to a given semimodule. In other words, the main concern here is to design a control law in order to drive the state of system into the semimodule Dx = x and keep it inside. If there exists a linear feedback control of the form u(k) = F x(k -1) with F ∈ (Z max ) p×n , hence Eq. 3 becomes:

x(k) = (A ⊕ BF )x(k -1), ∀k ≥ 1.
(

) 5 
As a consequence, provided that the state evolution of the system is given by Eq.5, a solution exists if and only if there exists k 0 ≥ 1 such that:

D(A ⊕ BF )x(k -1) = (A ⊕ BF )x(k -1), ∀k ≥ k 0 . (6)
Therefore, we can obtain conditions ensuring the existence and computation of a solution. If the following equation holds:

D(A ⊕ BF ) = A ⊕ BF, (7) 
a solution exists whatever be the initial condition. And as a consequence, the following lemma will be useful to find a solution.

Lemma 1: Any matrix F that respects A ≼ BF and DBF = BF is a solution of Eq.7.

Proof: Since A ≼ BF then A ⊕ BF = BF . Therefore D(A ⊕ BF ) = DBF and (A ⊕ BF ) = BF . Equation DBF = BF completes the proof.
As we can see, we have to deal with equation of the type Az = Bz. In this sense, the following definition is useful (see [START_REF] Cuninghame-Green | The equation A⊗x=B⊗y over (max,+)[END_REF].

Definition 3 (Row (column) G-astic Matrix): A matrix is row (column) G-astic if it has at least one nonzero in each row (column).

Lemma 2 ( [START_REF] Maia | On the control of maxplus linear system subject to state restriction[END_REF]): If B is row G-astic1 , ∀L ∈ Z n×n max it is possible to choose a matrix M , by making its elements large enough, such that L ≼ BM . Definition 4 (Matrix construction from a vector): We denote by Z (z) ∈ Z p×n a matrix in which columns are identical and formed by the vector z ∈ Z p . We denote by F (z,α) a matrix such that F (z,α) = Z (z) α in which α ∈ Z n×n is a diagonal matrix.

By using this definition we have following lemma. Lemma 3: If a vector z is such that DBz = Bz, then the same equation holds for any F (z,α) , that is, DBF (z,α) = BF (z,α) .

As a consequence we can state the following proposition. Proposition 1: If the matrix B is row G-astic and if there exists a vector z ∈ Z p max , with non null entries such that DBz = Bz, there exists a solution for Eq.7.

Proof: If z is such that (z i ̸ = ε), and B is row Gastic, then by Def.3, any F (z,α) is such that such that DBF (z,α) = BF (z,α) . By Lem.2, it is always possible to make A ≼ BF (z,α) , since we can make the matrix F (z,α) as large as needed. In this sense, if we denote F = F (z,α) , we can ensure that DBF = BF and A ≼ BF . Therefore by Lem.1, F is a solution for Eq.7.

Remark 5: It is straightforward to show that the least α such that A ≼ BF (z,α) can be easily computed and it is equal to α min = -diag{A• \(BZ (z) ))}, in which diag{X} indicates the diagonal of matrix X. Therefore if the requirements of Proposition 1 are fulfilled, all F such that F ≽ Z (z) α min are solutions for Eq. 7.

A. Dealing with realization and performance issues

Once the requirements of proposition 1 are fulfilled we can obtain a solution for the control problem. However, the feedback can increase the eigenvalue of the closedloop matrix A f = A ⊕ BF and so the firing dates of the state transition can be delayed. This can be an issue in some applications. In order to deal with this issue, we can investigate what we can do with non realizable solution since they can lead to smaller eigenvalues for matrix A f = A⊕BF . In this sense one question is: given a non realizable solution F for Eq. 7 is it possible to use it in order to design another realizable solution for the problem? The answer is yes if matrix A f is irreducible and has eigenvalue bigger than 0. We will discuss this point in the following.

If there exists a non realizable control law u nc (k) = F nc x(k -1) (by this we mean that matrix F nc is non causal) then

x(k) = (A ⊕ BF nc )x(k -1), (8) 
and for a given k 0 ≥ 1, we have

D(A ⊕ BF nc )x(k -1) = (A ⊕ BF nc )x(k -1), ∀k ≥ k 0 . ( 9 
) Given any initial condition x(0), by using Eq. 8, the control law can be rewritten as: [START_REF] Cottenceau | Data processing tool for calculation in dioid[END_REF] provided that

u nc (k) = F nc (A ⊕ BF nc ) m-1 x(k -m), ∀k ≥ m,
x(1) = (A ⊕ BF nc )x(0) . . . x(m) = (A ⊕ BF nc )x(m -1)
From the spectral theory of max-plus matrices, we can show for any irreducible matrix H that

H k+c = (λ) c H k , ∀k ≥ p ( 11 
)
for p large enough, in which λ is the eigenvalue and c is the cyclicity of matrix H. Please see [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF] for more details.

In this sense, since A ⊕ BF nc ≽ I and provided that matrix A ⊕ BF nc is an irreducible matrix with eigenvalue greater than 0 (which is not too restrictive), we can always have a causal matrix F = F nc (A ⊕ BF nc ) m-1 by increasing m as much as it needed 2 . From a feedback realization in terms of a TEG, this means that we have places with m tokens and sojourn times given by the entries of matrix F . This ideas will be illustrated in the example given in the next section.

IV. ILLUSTRATIVE EXAMPLE: A SMALL TRAFFIC LIGHT

PROBLEM

Consider the TEG depicted in Fig. 1 as an example. It
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Fig. 1. A Small Traffic Light System may describe a road (a green wave) with two traffic lights, indicated by S 1 and S 2 . Transitions x i with i ∈ {1, 2} indicates an event when the semaphore i turns green light on and transitions x i , i ∈ {3, 4} indicate when red lights turn on. r i is the minimal duration of the red time for the semaphore, g i the duration of the green time, and u i a control input which can increase the red and green times. In this kind of model the flow of cars is represented by tokens crossing the graph from transition v until to transition y. Each of these tokens are assumed to represent a virtual platoon of cars (see for instance [START_REF] Garcia | Traffic light coordination of urban corridors using max-plus algebra[END_REF] for a presentation of this concept). Virtual means that a token represents the presence of cars even when the cars aren't there, that is, in this model the traffic light 2 We remark that this procedure ensure that m is always finite system runs independently of the car flow since we do not assume sensors of car presence on the road. In other words, input v is not a constraint and it is assumed to be fired an infinite number of time, which is equivalent to consider v = ε.

The size of the platoon on each section is related to the green duration g i which is fixed a priori, it is assumed to be sufficiently small to ensure that the platoon may be physically contained in the downstream section. The time duration t i represents the minimal time allowing to a platoon to go from one location to other, e.g. t 2 is the time necessary for the platoon to leave the first traffic light and to reach the second one. The max-plus model of this system (with v = ε) is given by:

x(k) = A 0 x(k) ⊕ A 1 x(k -1) ⊕ B 0 u(k). ( 12 
)
in which 3 :

A 0 =     ε ε ε ε t 2 ε ε ε g 1 ε ε ε ε g 2 ε ε     , A 1 =     e ε r1 ε ε e ε r 2 ε ε e ε ε ε ε e     ,
and,

B 0 =     e ε ε ε ε e ε ε ε ε e ε ε ε ε e     .
Since A 0 has circuits with negative circuit weights this equation can be rewritten as (see [START_REF] Baccelli | Synchronization and Linearity: An Algebra for Discrete Event Systems[END_REF]):

x(k) = A * 0 A 1 x(k -1) ⊕ A * 0 B 0 u(k). ( 13 
)
Therefore the matrix A for the system is A * 0 A 1 and the matrix B is A * 0 B 0 . We remark that the matrix B is row G-astic.

In this system we aim to ensure the following time synchronization constraints:

• The maximum sojourn in the place between x 1 and x 2 is T 2 , that is x 2 (k) -x 1 (k) ≤ T 2 . In other words the platoons have to wait less than T 2 -t 2 in the front of the second traffic light. • The maximum green time of the first and the second semaphore is respectively G 1 and G 2 , that is

x 3 (k) - x 1 (k) ≤ G 1 and x 4 (k) -x 2 (k) ≤ G 2
These constraints lead to an inequality of the form E r x(k) ≼ x(k), in which E r is given by:

E r =     ε -T 2 -G 1 ε ε ε -G 2 ε ε ε ε ε ε ε ε ε    
Furthermore by Eq.12, the state must also respect the inequality A 0 x(k) ≼ x(k). So (E r ⊕ A 0 )x(k) ≼ x(k). As a consequence, by using Equiv. 1 the system must enforces Dx(k) = x(k) [START_REF] Gaubert | Théorie des systèmes linéaires dans les dioïdes[END_REF] in which D = (E r ⊕ A 0 ) * . In order to present numerical results, we chose for the system: t 2 = 10, g 1 = 4, g 2 = 5, r 1 = 5, r 2 = 7. And for the constraints: G 1 = G2 = 15 and T 2 = 15. These leads to the following matrices for the system: By solving the equation DBz = Bz, with the algorithm proposed by [START_REF] Cuninghame-Green | The equation A⊗x=B⊗y over (max,+)[END_REF], we have

A =     0 ε 5 ε 10 0 15 7 4 ε 9 ε 15 5 20 12     , B =     0 ε ε ε 10 0 ε ε 4 ε 0 ε 15 5 ε 0     ,
z = [ 0 0 0 0 ] T .
As a result, following results Sec. III we can find solutions F (z) such that D(A ⊕ BF (z) ) = A ⊕ BF (z) for the proposed control problem. A particular interesting one is the one that does not change (or cause the least change in) the greatest eigenvalue of matrix A. Following Rem.

5, we can show that

F nc = [z z z z]α min , in which α min = -diag{A• \(BZ (z) ))} = diag[0 -10 5 -3], that is F nc =     0 -10 5 -3 0 -10 5 -3 0 -10 5 -3 0 -10 5 -3     ,
does not change the greatest eigenvalue of matrix A.

Following the discussion presented in Subsec. III-A, it is possible to find a feedback control law u(k) = F u(k -2) in which: We can observe that we can start the state of system wherever we want, in this example Dx(0) ̸ = x(0), and in one iteration it will be inside the semimodule of constraint. In addition we remark that the control law is realizable in term of a TEG by initially adding appropriate place in the feedback with 2 tokens and respective temporization given by the entries of matrix F . Moreover we also observe that the open-loop response does not ensure Dx(k) = x(k) ∀k > 1. For instance, the open-loop response leads to x(3) = A 3 x(0) = [23 39 27 44 ] T , for which Dx(3) ̸ = x(3). On the other hand the closed-loop one leads to x(3) = Ax(2) ⊕ BF x(1) = [29 39 33 44 ] T , that is, the feedback delays appropriately the transition firings in order to keep the state inside the constraint semimodule.

F = F nc (A ⊕ BF nc ) =     12 
Remark 6: We have presented a simple and easy to understand problem, but with no trivial solution. However the approach is scalable to more complex problems with higher dimension matrices. Its computational complexity relies mainly on the solution of the equation DBz = Bz, which is pseudo-polynomial [START_REF] Cuninghame-Green | The equation A⊗x=B⊗y over (max,+)[END_REF].

V. CONCLUSION

This paper has presented an approach to design a feedback controller in order to enforce a class of constraints for max-plus linear systems. The approach has taken into account initial condition, realization and performances issues in the designing process. The applicability of the results was illustrate by solving a small traffic light problem. This is an on-going work and interesting topic for future research includes investigation on more general conditions concerning the solvability of proposed control problem.

1 )

 1 = (A ⊕ BF nc )x(0) = [5 15 9 20 ] T ,

We can observe that if B is row G-astic, each state of the system has a connection to at least one input.

Diagonal entries of A 1 are equal to e to enforce that firing dates are not decreasing, that is x(k) ≽ x(k -1).
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