N

N
N

HAL

open science

Definition of optimal accelerated test plan

Seyyedeh-Zohreh Fatemi, Fabrice Guérin, Laurent Saintis

» To cite this version:

Seyyedeh-Zohreh Fatemi, Fabrice Guérin, Laurent Saintis. Definition of optimal accelerated test plan.

QUALITA’2011, 2011, Angers, France. hal-03428312

HAL Id: hal-03428312
https://univ-angers.hal.science/hal-03428312

Submitted on 15 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://univ-angers.hal.science/hal-03428312
https://hal.archives-ouvertes.fr

Definition of optimal

Seyyedeh zohreh Fatemi, Fabrice Guerin
and Laurent Saintis
LASQUO- University of Angers
62, av Notre Dame du Lac
49000 Angers, France
fabrice.guerin@univ-angers.fr

Abstract— The objective of this paper is to define an optinma
accelerated test plan considering an economic appaoh. The
objective function is defined by two terms: the cdslinked to
testing activities and the cost associated to opeian of the
product. The optimal test plans are defined in consiering a prior
knowledge on reliability parameters (choice of rehbility
function, scale and shape parameters ...) and accei¢ion model
(choice of model, model parameters ...) to charactae the
accelerated life model. This information is used inBayesian
inference (to optimize the testing plan). The priorknowledge
contains also the uncertainty on real reliability & new product.
So, the developed methodology proposes to define aptimal
accelerated testing plan in considering an objectés function
based on economic approach, Bayesian inference foptimizing
the test plan and taking into account the uncertaity on
parameters to obtain a robust optimal test plan.

Keywords- accelerated test, reliability, optimisation, Bayesian
estimation, testing cost, operation cost, robustness.

l. INTRODUCTION

Accelerated Life Test (ALT) is a test method which
subjects test units to higher than use stressddwebrder to
compress the time to failure of the units. Condugrtia
Quantitative Accelerated Life Test (QALT) requirdke
determination or development of an appropriate-difess
relationship model as illustrated in Figure 1. elo

dresss,

er stress s,

t) under stress's;
celeration law
Ry(t) Estimation of

Figure 1. Principle of ALT test

Moreover, a test plan needs to be developed toirobta
appropriate and sufficient information in order aocurately
estimate reliability performance at operating ctiods,
significantly reduce test times and costs and a&ehiether

accelerated test plan

objectives. One of the first decisions to be madeemw
designing a reliability verification test is to danine how
many units to test. If many units are tested, thiatibn of the
test will be short. With this approach, prototypests will be
high, and development time costs will be low. Mvfanits are
tested, the duration of the test will be longeotptype costs
will be low, but development time costs will be kig

In this paper, a methodology is proposed to defime
optimal accelerated test plan in order to maxintieeaccuracy
on the estimate of the statistical distributiontlod life spans
under the nominal conditions. The main developnecenterns
the definition of optimal accelerated test plan sidering an
economic approach. The objective function is defibg two
terms: the cost linked to testing activities anck thost
associated to operation of the product. The optim@si plans
are defined in considering a prior knowledge onabdity
parameters (choice of reliability function, scaledashape
parameters ...) and acceleration model (choice of etod
model parameters ...) to characterize the accelerted
model. This information is used in Bayesian infeen(to
optimize the testing plan). The prior knowledge tegrs also
the uncertainty on real reliability of new produ@&o, the
developed methodology proposes to define an optimal
accelerated testing plan in considering an objecfinction
based on economic approach, Bayesian inference for
optimizing the test plan and taking into accoust tincertainty
on parameters to obtain a robust optimal test plEme
methodology is illustrated by a numerical exampla o
accelerated test on ball bearing.

II.  ESTIMATION IN PARAMETRIC ALT MODEL(SVA
MODEL)

Assuming that the lifetimeTx(.) for no matter which
stress X() is a non-negative random variable described by the
reliability function:

RX(-)(t) = P{TX(-) > t},t >0 (1)

than, for a stress s€_, the stres X; (’) is greater than a
stress ¥-l-) if Ry, (+)t)> Ry, (*){t) for ever t>0
Having &y U € a set of constant stress over time Xg U &g
 the inverse function (R, (t) can be defined as:
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The convolution product betwee Rxo and Ry(.) is with 5 (Bn"¥3m_) a parameters - vector,
Z:(¢0(X),..,¢m(X)) with the functionsg specified and
denoted a | (.)(t): R;O (Rx(.)(t)) , with fx(.)(o):o_ The With the first component Zequal to 1. Several models, as
Arrhenius, inverse power, generalized Eyring andrsocan be
obtained as a particular case of this general form.

standard ALT model is defined ov € if there is a function as

for even X(+) D¢ -
It is assumed that the survival functi®(t) belongs to a
if (t): r[X(t)] 3) class of functions depending only on the paramettsgaler
dt xC) ' and shape [7] :

The functionr defines a degradation rate. The ALT model v
states that the rate of resource used at the morrasiends (t)— F{(iJ ] (,7 U >0) 8)
,7 ’ 1 .

only on the value of the applied stress at the nmbrheThe
equation 3 involves:

t Several models as Exponential, Weibull, lognormal,
Ry, (t): R J' r[X(r)]dr 4. loglogistic and so on are just particular casethefabove form
() X, \Jo 4) e
0 as detailed in [4].
A special case iX(T)E X =const The notations R(t): R(et) , toh Uz% ,
Ry (t)= Rxo(r(X)t) (5.) U:(UO,...,Um) Ve =Inn-B, ety =-p ,i=(1..m)

allow us to rewrite the equation 7 as:
So, the stress affects only the scale parametete Nat

r(Xo)=1. If the functiorr is completely unknown, the reliability Int—yTZ

function Rx, cannot be estimated. Therefore, the functigs Ry(t)=R ——— 9.)

chosen in particular classes of function. In swavianalysis, g

the log-linear models defining the ALT models amegfiently

used as regression models[1]. Imposing T, lifetime observed or censored for thth unit
of i-th group, we have:

R(®)

Tjj :In(Tij Dti) with & the censoring time an L
denoting the minimum between the terms

1if observedime
d” = T” Sti = . . .
0 if censoringtime

f(u)=-S'(u)

Au)=44

The likelihood function can be written as:

Figure 2. Definition of time transfer regression model r(x)

o

The log-linear models specify the effect of the ariates N9 -
. Y T. - Tz(') ] T - Tz(')
as, respectively, a multiplicative factor for thazhrd rate, a k 1y 1|57V ij~V
scale change, or a location shift for the relipifunction. As L(T|V'U):.|_| [1 E/‘ p p (10.)
consequence, generalizing, and the model becomes: i=1j=1
_ t_B'z(r)
RX(-)(t)_ RX (Oe dr (6.) . .
0 A. Point Estimate
and, for the particular cases of constant strésseguation The likelihood principleall information on the parameters
5 becomes (see figure 2): taken from a number of observations is finally contained in the

likelihood characterizes the likelihood as maximized for & se
of parameters identified. For this, we considet tha failures



are independent, meaning that the failure of aeqyshat does
not affect another system [1].

Ill.  BAYESIAN INFERENCE
The classic statistics are based on the notionbfctive

it L(T16) is differentiable and if the maximum likelihood ProPability. The real value is approached by a uesgy

0= (91,... 9 exists, then it satisfies the following equation:

aL(tl 10 16,.6, )

00, | _

=0

(11.)

The computation cR(t |8 = 6) allows to approximate the
reliability function associated with the produchgeating times

of failure for the point estimad=0 . An estimation of
confidence intervals is required to complete theregch.

B. Confidence Intervals

The Cramer-Rao bound, or the lower limit of CrarRae
expresses a lower limit on the disagreement of rameter
estimators. In its simplest form, the bound statest the
variance of any unbiased estimator is at leastigis &s the
inverse of the Fisher information. An unbiased reator,
which achieves this lower bound, is said to beciffit. Such a
solution achieves the lowest possible mean squareor
among all unbiased methods, and is therefore themum
variance unbiased (MVU) estimator.

Let X(Y) he 2an actimatar nf ﬂny vector function of

parameters, X(Y) = (Xi(Y),.... X (Y))" "~ and denote its
expectation vectcE[XéY)] hy ‘/’(9) It X(Y) is an unbiased

estimator 01 (i.e., ¥
states:
covg(X(Y))z 1(e)™? (12.)
_ | (2logL(Ti6) |2
with I(H)—E(Tj lp=6 the  Fisher
information.

The confidence limits for the case 8f 0 are obtained by
processing the lodg} as a normally distributed variable:

no 2 A =2 (13)
Oxe ¢ <fg<fxe ¢

Moreover, for most of the cases, typically values the
parameters can be found. The values may be coadidgher
as results of expertise (using references as FI[BBSor as
values associated to older/similar products or emilts of
single/several expert(s)' opinion. Whatever methadht be
used to obtain the prior information, an improvetehthe
final estimation of model's parameters can be d&gnby a
diminution of confidence intervals over the estimas as
result of increasing the Fisher information.

associated with results obtained from a samplegdrathe size
of a sample, closer the frequency calculated theédrue value
of probability. This estimate is closely relatedstompling.

On the contrary, the Bayesian approach is basethen
concept of subjective probability depending on degree of
belief in the occurrence of an event. This is npb@t value,
which is estimated, but the probability distributiaof the
random variabléprobability of non-functioning), the degree of
belief that each probability value can be true.

It is tempting to see the probability density aseatimator
whose Maximum Likelihood method (ML) would be thedhe;
such a position was, for example, supported by d@phlwho
believed that the absence of prior information ifiest the
choice of the uniform distribution. Similarly, Fish
introducing analysis trustee, wanted to implembatgrinciple
of likelihood without going through a Bayesian agguch. The
choice of distribution as it is then totally objeet

The continuous form of Bayes the~r~~ #~r the random

variable & over the Q domain, havinctj,i=1.n as test
results, is:
L( ool /e) @)
ﬂapo(é?/ti ): L (14.)

ToLlty »tn 16)77 (6)d6

with 72(6) the mathematical form, which formalizes the

7] 6) then the Cramer-Rao bound prior information. The prior information over theormal

conditions of use will be assimilated within thesults of a
number of tests already done hypothetically anceddd the
values of real tests.

By the assumption of independence between theblesia
the joint distribution can be defined as:

nly.0)= ”a(a)LljﬂM (n )}

Integrating the likelihood function (equation 1@d the
general form of Bayes' theorem (equation 14), tbstgrior
distribution becomes:

Z(l i

Uk - TA
rt(zinq- 1) e };Z 1ty.0)
Tepd AT = < 3 (15.)

with a normalization constant:



g g

) k n 1 T _yTZ(i) q_l - 0In[L(T|y,U)] + dln[nb'(y!a)]
NIEhiEES o
:ig nZI {Vij (V'U)aij (V,U)—fyuj}JfW (16.)

T. -y z0 oS
XF{LJ:IH(V,J)dylde do i=1j=1
g

with:
Conceptually, while ML adopts a classical approaah, T _yTZ(i)
only experimental measurements are supplied t@shieator, Vij (,V, a) =
Maximum a Posteriori (MAP) estimation is a Bayesian g ,
approach, i.e., prior available statistical infotima on the aj (y’a):/](vij (y’g'))—dij (In/1) (Vij (y'g'))

unknown parameters is also exploited for theimasstion. The

Bayes estimation can be of relevant interest, siihcean

significantly improve the precision of parameteireates with dlIn
respect to Fisher estimation. This may also allogvadoption aln[ng(y,a)] _

of more complex models than those determinable by a 00 - do
Fisherian approach.

[ b b
Still following the aspect of reversing in statis we shall dlin b(ylj ]+ In[f({)l}[(”) “
consider the newly obtaine 7apo(V:9) function as a a'”[”n (V737 )] 2 2

probability density and we shall treat it as. AssEquence, the 0y - dy
ML theory can be applied. So a search of valueg tha

maximizes the”%apo(:0) and the variances associated to The MAP estimator 7:¥ can be obtained by solving the
these estimators will be searched. equation system:

Up(y'g):o (p:1,m+1) (17)

The differentiating after¥i and ¢ of the function

'”l”apo(V’U)J gives the terms: Fisher information applies to the function thasatébes
the information on the paramete “Zapo 2 01T) , [6]:
_ 0lin|apo v o))
Ui (r,0) = o ol G
_ 09 7po Vs
am{L(TIy,a)ﬂ(V,a)} M (o) = E [#J Iy, o
= KI L
M I dlogL(T|y,q 2
_ 6In[L(T|y,(T)]+ dIn[r(y, )] oK, ] =E [WTJ Iy, 6 |* (18)
ou ou oy -
_onLfrlyo]l, dinfmy (0] e (mogn(y.a)]2 -
oy dy G)ile i
L dln[ﬂy] (y,a)] =1t (o) +15° (r.0)
R T with:
with (1 = 1...m) ang: L (y,0)= 92InL(T |y, o)
sV, 0)= ————
O(In[napo(y, JIT)D 0y10ys
Um+(y,0) = ) 1 X n
g == z1zs ), ¢j(1.0)
3l {L(le,a)n(y,a)} o ia j=1
L e
) o0 L __Inly0)
1L (Tyo)=-L2=09
_an(L(rly.o)l, anfaly.0)] _ain[k, ] LmalT 1%} oo
- oo lile oo

1 1k N
==U(yo]+—= X 7 X vjWo)gj\yo
Sulkal+5 3 a > ylvolld
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L %I T|y.0)
' (vo)=——"5"22 T, MTTF, R(k), ...
i med a0? For a given risk
2 1kn ( ) :
=2u O)+— 2 0)Gi(y,0)+d; Prior knowledge on product
g mﬂ(yd 0221]2::1 ,](VO)C,J(V@ 4-1 (19.) Expert’s opinion, Field data
2 analysis on old product, ...
AP alogﬂfy,d (v, )
I 0)=B|————| |1 5 initi
(0 [ 00 |y,a Definition ofi‘l(v) andri(v)
, ” Test plan to optimize
and: G (V,U):/] (Vij (V,U))_éj ('”/]) (Vij (V,U)) and N Sample sizes
l,s=0,....,m S=(? n,=(?)
: , . : S=(? n=(?)
It is quickly observed that the information on the
parameter:y and 9 increases compared to the no Bayesian S
approach, witH,’?P(y.U)>0; it will obviously reduce the Censoringtime =7~

variance / covariance estimation point for the pmtersy et
0 given by the Cramer Rao inequality (equation 1)rfon
biased estimators.

IV. OPTIMIZATION PROBLEM AND SIMULATION ALGORITHM

A. Principle of proposed methodology

The objective of methodology is to define an optima

accelerated testing plan considering an economproagh.
The objective function is defined by two terms: thost linked
to testing activities and the cost associated &raijpn of the
product. In many works, the optimum testing plaresdefined
in considering a prior knowledge on reliability pareters
(choice of reliability function, scale and shapeapaeters ...)
and acceleration model (choice of model, model patars
...) to evaluate the proportions of failure at eacheterated
level. This prior knowledge is not integrated iratistical
inference during the optimisation process (minitiora of
reliability metric variance) and the estimation gss with
testing data. Nevertheless, this information canubed in
Bayesian inference (to optimise the testing plan)itocontains
the uncertainty on real reliability of new produ@&o, the
proposed methodology consists
accelerated testing plan in considering an objecfinction
based on economic approach, Bayesian
optimizing the test plan and taking into accouset tincertainty
on parameters to obtain a robust optimal testiag.pl

The figure 3 presents the steps of proposed melihgylo

to define an optimal

inference for

Definition of Reliability target

Optimization process and robustness analysis

1- Optimization process

Find testing plan parameters,(S,, n, , ...)

such that :
Minimize
Global Cost

= Testing Cost + Operation Cost

Where
- Testing cost : number of units to test, cost pf
testing means, Cost of testing time, ...
- Operation cost : Bayesian estimation
(punctual and confidence interval) of
reliability metric, reliability target, population
in operation, After sales cost, Brand image|
loss, ...
Joint analysis
2- robustness analysis
Determine the Bayesian unilateral confidence
interval for the risk a of reliability metric
estimation in exploring the spadagy) and
n)

Figure 3. Principle of proposed methodology

In following subsections, the different steps ae¢aded in
considering a simple example to illustrate the méttogy.

B. Definition of reliability target

The test plan is designed to demonstrate the crinal
reliability metric target. Various metrics are usdo
characterize the reliability of products: MTTBy, probability
of failure for the warranty period... The verificaticonsists to
evaluate the risk to not reach the reliability &rguith the
estimations of punctual estimate and confidencervat. In
this paper, the probability of failunpeaion for the operation
time toperation IS considered.
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Figure 4. Probability function of operation failure f(p)

The ponctual estimate is defined by
ﬁ =1- R)(0 (toperation) = R((lntoperation - V— ZO)I}\) (20-)

And the variance of probability

— . 2
V(p)~|§0(6(1 Rxoa(;operatlon)) V(H)
) nee a1
(Mf Vi)
ov ..
n.w

The parameter§;,0, v, V(y) and V§) are obtained by
Monte Carlo simulation defined in section IV.F.

The probability of failure in operation period istienated
by the unilateral confidence interval for the rizksee figure
4). The beta distribution f(p) is considered torelsterize the
distribution of p. The beta parameters are estithdtg the
moments method:

~2
a0 =5’—(1— B)-p
p

Bo=(2)a-p)2+p-1
Vp

The probability BperationiS deducted from:

poperation:Betal(l'ala01 Bo) (22)

C. Prior knowledge on product

The prior knowledge on new produ¢y,v, ...) is obtained
from Expert's opinion, Field data analysis on olbduct,
Reliability Standard, .... By the assumption of indegence
between the variables, the joint distribution cardbfined as:

Ay)= (”)L'i”” (" )} @3)

The choice of the form of1(.) depends on degree of
knowledge on parametey; brv).

D. Test planto optimize

In this paper, a simple test plan (with two accsk
constant stress levels) is studied defined asviotig:

- the censoring time is fixed
- the sample size n is fixed
- the stress Ss fixed to maximum
- the middle stress level & unknown
- the proportion allocation;mf sample size at stress
level § is unknown (g= ent(p.n) and R=n—n)
Stress level

A
N,
S~ Sinax
test in accelerated conditions
n
S,
S ata \, a2 |:>testin nominal conditions
» t(time testing)

T censoring time

Figure 5. optimal test plan

The decision variables of test plan optimizatiog ar
- the middle stress level S
- proportion allocation pof sample size at stress level

S.

E. Objective Function

The objective of the accelerated testing plan dpétion is
to minimize the global cost (defined by the codttesting and
operation), which is described as:

Coiobal = Ctesting"' Coperation(24-)
where
Ciesiing= N.uNit price + fixed testing cost

+ 1.cost per testing hour + cost per batctinf@x units
number per batchj™ + (n/max units number per
batchytesting

Coperation= fixed operation cost +
(Poperation Prarged-Product population.unit cost

+cost of Brand image 10SS ¢Rration— Rarge)” """

F. Optimization procedure

The optimization procedure is simplified in defigithe
solutions space on prior domain%f0, 1[, S=]So, S[ )- The
prior domain is discretized:

p: = {pimin, ..., pi,...,pMax } withi =0, m
S, ={Smin, ..., §j,...,Smax } withj =0, m



For each point (i,j) of discretized domain the glbbost is
estimated by Monte Carlo simulation:

1- Generate random values of and v from prior
distribution y(.) andr v(.).

2- Generate random time to failure with respect of
censoring timet at each stress levels with random

variablesy; andv generated in steh

3- Estimatey, v, V(y) and V) by relationships (17.) and
(18.)
4- Estimate the p and V(p) by relationships (26d &1.).

5- Repeat Gnuation time the steps 1 to 4 (This repetition

allows to take into account the sample size effaud the
uncertainty on real reliability of new product cheterized by
the prior distributions.)

6- Estimate probability of operation (eq. 22.) ansidering
the means of p and V(p) on all repetitions.

7- Evaluate the global cost (i,j)

p is the load life exponent (equal to 3 for ball tregs
and 10/3 for rolling bearings).

Bearing life is usually defined by the Weibull dilstition,
which is combined with the Palmgren’s relationship:

u

R(u, P)=e_010{ LIJ (26.)

The shape parameter(generally equal to 1.5) is used and
the scale parameteris given by:

1

’7(P) = LlO(—OiOSJV (27.)

or scale parametey, in hour

1
6ON( 1 v
Rkl R (]
0108 (0105j @)

with N the speed in revolution per minute.

Ty (P): L

Finally, the global cost surface is approximated by

quadratic polynomial. The optimal test plan pararstare
obtained by a classical optimisation method in mining the
cost described by the quadratic polynomial.

V. NUMERICAL EXAMPLE

In this section, the proposed methodology is appiteball
bearings with a numerical example. We presentlyfirsall
bearing life model [2]. Secondly, we define a siatigin model
to simulate reliability testing results. Finallyyet optimization
procedure is detailed. This example is given witimerical
data based on the knowledge of ball bearing.

A. Ball Bearings Life

Rolling element bearings are used in an extremeatiew
tools variety, like machinery and equipment. Theyyrhe used
in fans, gear boxes, transmissions, axles, commgsslectric
motors, engines, final drives, jet engine main tshdflenders,
saws, mixers, etc. Most rotating shafts use angliglement
bearing [2].

Ball bearing life refers to the amount of time atdeg will
perform in a specified operation before failureaimrg life is
commonly defined in terms dfq life, which is sometimes
referred to asByy This is the life which 90% of identical
bearings subjected to identical usage applicatia
environments will attain (or surpass) before bepmmaterial
fails from fatigue. In practice, life (in millionfaevolutions)
given as a function of load is represented withnigaén’'s
relationship [3] for the., of the life distribution:

_[c|P
'-10-%)

Where Cis the basic dynamic load rating,

(25.)

P is the equivalent radial load,

B. Smulation Model definition of testing result

For the optimization, the times to failure are drays from
a Weibull distribution. The ball bearing is charmtted by the
dimensional parameters given in TABLE |I.

TABLE I. SIMULATION DATA

D =32 mm : outside diame

d=15 mm : inside diamei

B =8 mm : width bearir

C = 400 daN : Basic dynam
load rating

N = 1500 tr/min
rotation shaft speed

. operatin

The loadP is used to accelerate the test. The simulation
parameters are defined in table II.

TABLE 1. PRIOR INFORMATION FORSVA
MODEL

C [350 ; 450

Mn(c Normal(400; 28.86) defined by tl
moments method

v [1.3;1.7

M(v) Normal(1.5; 0.1155) defined by tl
moments method

The TABLE II. gives the values of prior knowledge €
andv. Note that, for ball bearing, a shape parametealeigu
1.5 is commonly used based on huge data analysrding



to that, we consider a prior knowledge followingnarmal
distribution with a low uncertainty.

The accelerated test conditions used to generaigomna
times to failure and censoring times are definelite III.

TABLE lI1. PRIOR INFORMATION FORSVA MODEL
T censoring tim 300+
Cy : random value drawn froif(C) Ck
Vi : random value drawn frofm(v) Vi
S, : maximum stress level 175 Dab

S, : middle stress level defined by the S/
prior discretized domain (pS)).

n : total sample si. 60

n, : sample size at stre:S; deductec n,

from value p defined by the prig
discretized domain ¢pS).

=

n, : sample size at stre:S, deductec n,
fromvaluenbyn=n-n

The scale parametgrin hour is given by:
3 1

_ _[Ck | 6ON( 1 Yy,

(%) [Szj 106(0105]

3 1
gy=| Sk | BON( 1y

The
distributions at $and $ (defined by the shape parameigiet

scale parameters)(S;) and n«(S;)) with the respect of

censoring tima and sample sizes and B.

The random test times are analyzed awnd, V(y) and V)
estimations are obtained (relationships (17.) al)). The

estimation of probability of failure p and its veance V(p) are

performed using relationships (20.) and (21.).

C. Optimization procedure

For this example, the optimization procedure ispdified
in evaluating the value of global cost at each tpaf
discretized space of solutions wighandS; defined by:

p. = {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 085, 0.95}
S, ={125, 130, 135, 140, 145, 150, 155, 160, 168}17
For each point (i,j) of discretized domain, thelability of

failure is estimated with the simulation method serged in

previous section. This step is repeated 500 tiroetmke into
account the sample size effect and the uncertantyreal

reliability of new product characterized by the opri

distributions. The estimation of operation probiépi(eq. 22.)

random test times are obtained from Weibull

is obtained in considering the means of p and \dp)all
repetitions. The approach is implemented in MATLAB.

Finally, the cost function (testing and operati@an be
obtained. The parameters for evaluating the testowj (resp.
operation cost) are given in TABLE IV. (resp. TABME).

TABLE IV. VALUES OF PARAMETEFS FOR EVALUATING THE TESTINGCOST

n 60 unit:
Censoring tim 300 hour
Testing unit pric 500€
Testing fixed co¢ 10.000€
Cost per hot 100€
Cost per batc 1000€
Max units number per bat 30
2.€

ytesting

TABLE V. VALUES OF PARAMETER FOR EVALUATING THE OPERATIOINCOST

P targe 0.01
Sales populatic 1000 unit
Warranty tim 100 hour
Replace unit pric 100€
After sales co 10.000€
Brancimage los 100€
1.2

yoperation

The figure 5 represents the testing cost in salstispace
(p1, S) in considering the cost defined by eq (23.) ane t
parameter values given in TABLE IV.

Figure 6. Testing cost in solutions spaq®,(Sy).



The Figure 7. represents the operation cost intisok
space (p S) in considering the cost defined by equation 24,
and the parameter values given in TABLE Il. andBLE V.

Cost)peratim
x 10" € -

2.2

2.1

170

0 130

Figure 7. Operation cost in solutions space (p1, S1).

The Figure 8. represents the global cost integyatire
Testing and Operation costs.
COS'quobal
x10°€ N

Figure 8. Global cost in solutions space,()-

The Figure 9. represents the Iso-global cost andcare
show the area where the optimal testing plan isgula

1S0-COSfjgpal
TITT T U TV

Figure 9. Iso-Global cost in solutions space,(f.).

The optimal test plan parameters are obtainedgaigdn
fitting the surface by a quadratic polynomial defirby:

COStyoba(P1 S1) = 8g + a1 Py +8,. S +83.py° +a,.5° +as.prS
The TABLE VI. gives the parameter values of figtiguadratic
polynomial on global cost as below.

TABLE VI. PARAMETER VALUES OF FITTING QUADRATIC POLYNOMIAL
g 119785.12
a -127.37:
a -27037.49
az 0.42(
ay 25142.34
as -1.08:

The optimal test plan parameters are obtained by a

classical optimisation method in minimizing the tcdascribed
by the quadratic polynomial. The minimum is reacf@dp; =
0.541 ands, = 152.33 with Coglopa = 102770 €, COflsting =
82189 € and COgkration= 20581 €.

Finally, the test plan to launch in order to optieithe
global cost is defined by the TABLE VII.

TABLE VII. PARAMETER RESULTS TO OPTIMIZE TEST PLAN
N 60 unit:
n, 32 unit:
n, 28 unit:
S 152.33 Dal
S 175 Dal
Censoring tim 300 hour

VI. CONCLUSION

In this paper, we introduced a general framewor&ttain
optimal accelerate test plans with a cost objectiveen, we
proposed a simulation to solve our problem apptiedall
bearing. For the sake of simplicity, we restrictedr
presentation to an elementary optimization problgith two
parameters solve by a discretization algorithm.

Future related work will attempt at extending oppm@ach
to develop theoretical formulation in various fresd
parameters to define the test plan. These develapneed to
improve the algorithm of optimization.
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