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Abstract— The objective of this paper is to define an optimal 
accelerated test plan considering an economic approach. The 
objective function is defined by two terms: the cost linked to 
testing activities and the cost associated to operation of the 
product. The optimal test plans are defined in considering a prior 
knowledge on reliability parameters (choice of reliability 
function, scale and shape parameters …) and acceleration model 
(choice of model, model parameters …) to characterize the 
accelerated life model. This information is used in Bayesian 
inference (to optimize the testing plan). The prior knowledge 
contains also the uncertainty on real reliability of new product. 
So, the developed methodology proposes to define an optimal 
accelerated testing plan in considering an objective function 
based on economic approach, Bayesian inference for optimizing 
the test plan and taking into account the uncertainty on 
parameters to obtain a robust optimal test plan. 

Keywords- accelerated test, reliability, optimisation, Bayesian 
estimation, testing cost, operation cost, robustness. 

I. INTRODUCTION  

Accelerated Life Test (ALT) is a test method which 
subjects test units to higher than use stress levels in order to 
compress the time to failure of the units. Conducting a 
Quantitative Accelerated Life Test (QALT) requires the 
determination or development of an appropriate life-stress 
relationship model as illustrated in Figure 1. below.  
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Figure 1.  Principle of ALT test 

Moreover, a test plan needs to be developed to obtain 
appropriate and sufficient information in order to accurately 
estimate reliability performance at operating conditions, 
significantly reduce test times and costs and achieve other 

objectives. One of the first decisions to be made when 
designing a reliability verification test is to determine how 
many units to test. If many units are tested, the duration of the 
test will be short. With this approach, prototype costs will be 
high, and development time costs will be low. If few units are 
tested, the duration of the test will be longer: prototype costs 
will be low, but development time costs will be high. 

In this paper, a methodology is proposed to define an 
optimal accelerated test plan in order to maximize the accuracy 
on the estimate of the statistical distribution of the life spans 
under the nominal conditions. The main development concerns 
the definition of optimal accelerated test plan considering an 
economic approach. The objective function is defined by two 
terms: the cost linked to testing activities and the cost 
associated to operation of the product. The optimal test plans 
are defined in considering a prior knowledge on reliability 
parameters (choice of reliability function, scale and shape 
parameters …) and acceleration model (choice of model, 
model parameters …) to characterize the accelerated life 
model. This information is used in Bayesian inference (to 
optimize the testing plan). The prior knowledge contains also 
the uncertainty on real reliability of new product. So, the 
developed methodology proposes to define an optimal 
accelerated testing plan in considering an objective function 
based on economic approach, Bayesian inference for 
optimizing the test plan and taking into account the uncertainty 
on parameters to obtain a robust optimal test plan. The 
methodology is illustrated by a numerical example on 
accelerated test on ball bearing. 

II. ESTIMATION IN PARAMETRIC ALT  MODEL(SVA 

MODEL) 

Assuming that the lifetime ( )•XT  for no matter which 
stress ( )•X  is a non-negative random variable described by the 
reliability function:  

( )( ) ( ){ } 0, ≥>= •• ttTPtR XX  (1.) 

than, for a stress set ε  , the stress ( )•1X  is greater than a 
stress ( )•0X  if ( )( ) ( )( )tRtR XX •>• 10  for every 0≥t . 
Having εε ⊂0  a set of constant stress over time and 00 ε∈X  
, the inverse function of ( )tRX0  can be defined as:  
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The convolution product between 
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denoted as ( )( ) ( )( )( )tRRtf XXX ••
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 , with ( )( ) 00 =•Xf . The 

standard ALT model is defined over ε  if there is a function as 

for every ( ) ε∈•X :  

( )( ) ( )[ ]tXrtf
dt

d
X =•   (3.) 

The function r defines a degradation rate. The ALT model 
states that the rate of resource used at the moment t depends 
only on the value of the applied stress at the moment t. The 
equation 3 involves:  
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A special case is ( ) const=≡ XX τ :  

( ) ( )( )tXrRtR
XX

0

=   (5.) 

So, the stress affects only the scale parameter. Note that 
r(X0)=1. If the function r is completely unknown, the reliability 

function 0xR  cannot be estimated. Therefore, the function r is 
chosen in particular classes of function. In survival analysis, 
the log-linear models defining the ALT models are frequently 
used as regression models[1]. 

R(t)

Rs(t) = Rs0(r(s)t) 

t r(s).t
 

Figure 2.  Definition of time transfer regression model r(x) 

The log-linear models specify the effect of the covariates 
as, respectively, a multiplicative factor for the hazard rate, a 
scale change, or a location shift for the reliability function. As 
consequence, generalizing, and the model becomes:  
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and, for the particular cases of constant stress, the equation 
5 becomes (see figure 2):  
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with ( )Tmβββ ,..,0=  a parameters vector, 
( ) ( )( )Tm XXZ ϕϕ ,..,0=  with the functions ϕi specified and 

with the first component Z0 equal to 1. Several models, as 

Arrhenius, inverse power, generalized Eyring and so on, can be 

obtained as a particular case of this general form. 

It is assumed that the survival function R(t) belongs to a 
class of functions depending only on the parameters of scale η 
and shape ν [7] : 
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 Several models as Exponential, Weibull, lognormal, 
loglogistic and so on are just particular cases of the above form 
as detailed in [4]. 

The notations ( ) ( )teRtR =  , ℜ∈t  , υσ 1=  , 

( )mυυυ ,...,0=  , 00 ln βηγ −=  et ii βγ −=  , ( )mi ,...,1=  
allow us to rewrite the equation 7 as: 
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Imposing Tij lifetime observed or censored for the j-th unit 
of i-th group, we have: 

 ( )iijij tT ∧= Tln  with it  the censoring time and ∧  

denoting the minimum between the terms 
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The likelihood function can be written as: 
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A. Point Estimate 

The likelihood principle: all information on the parameters 
taken from a number of observations is finally contained in the 
likelihood characterizes the likelihood as maximized for a set 
of parameters identified. For this, we consider that the failures 



are independent, meaning that the failure of a system that does 
not affect another system [1]. 

If ( )θ|TL  is differentiable and if the maximum likelihood 

( )rθθθ ˆ,,ˆˆ
1 K=  exists, then it satisfies the following equation:  
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The computation of )ˆ|( θθ =tR  allows to approximate the 
reliability function associated with the product generating times 

of failure for the point estimate θθ ˆ= . An estimation of 
confidence intervals is required to complete the approach. 

B. Confidence Intervals 

The Cramer-Rao bound, or the lower limit of Cramer-Rao 
expresses a lower limit on the disagreement of a parameter 
estimators. In its simplest form, the bound states that the 
variance of any unbiased estimator is at least as high as the 
inverse of the Fisher information. An unbiased estimator, 
which achieves this lower bound, is said to be efficient. Such a 
solution achieves the lowest possible mean squared error 
among all unbiased methods, and is therefore the minimum 
variance unbiased (MVU) estimator.  

Let )(YX  be an estimator of any vector function of 
parameters, 

T
n YXYXYX ))(,),(()( 1 K= , and denote its 

expectation vector )]([ YXE  by )(θψ . If )(YX  is an unbiased 
estimator of θ  (i.e., ( ) θθψ =  ), then the Cramer-Rao bound 
states:  
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The confidence limits for the case of θ > 0 are obtained by 
processing the log(θ) as a normally distributed variable:  
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Moreover, for most of the cases, typically values for the 
parameters can be found. The values may be considered either 
as results of expertise (using references as FIDES [5]), or as 
values associated to older/similar products or as results of 
single/several expert(s)' opinion. Whatever method might be 
used to obtain the prior information, an improvement of the 
final estimation of model's parameters can be attended by a 
diminution of confidence intervals over the estimations as 
result of increasing the Fisher information. 

III.  BAYESIAN INFERENCE 

The classic statistics are based on the notion of objective 
probability. The real value is approached by a frequency 
associated with results obtained from a sample. Larger the size 
of a sample, closer the frequency calculated is to the true value 
of probability. This estimate is closely related to sampling. 

On the contrary, the Bayesian approach is based on the 
concept of subjective probability depending on the degree of 
belief in the occurrence of an event. This is not a point value, 
which is estimated, but the probability distribution of the 
random variable (probability of non-functioning), the degree of 
belief that each probability value can be true. 

It is tempting to see the probability density as an estimator 
whose Maximum Likelihood method (ML) would be the mode; 
such a position was, for example, supported by Laplace who 
believed that the absence of prior information justified the 
choice of the uniform distribution. Similarly, Fisher, 
introducing analysis trustee, wanted to implement the principle 
of likelihood without going through a Bayesian approach. The 
choice of distribution as it is then totally objective. 

The continuous form of Bayes theorem for the random 
variable θ  over the Ω  domain, having niti ..1, =  as test 
results, is:  
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with )(θπ  the mathematical form, which formalizes the 
prior information. The prior information over the normal 
conditions of use will be assimilated within the results of a 
number of tests already done hypothetically and added to the 
values of real tests. 

By the assumption of independence between the variables, 
the joint distribution can be defined as:  
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Integrating the likelihood function (equation 10) into the 
general form of Bayes' theorem (equation 14), the posterior 
distribution becomes:  
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with a normalization constant:  
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Conceptually, while ML adopts a classical approach, i.e., 
only experimental measurements are supplied to the estimator, 
Maximum a Posteriori (MAP) estimation is a Bayesian 
approach, i.e., prior available statistical information on the 
unknown parameters is also exploited for their estimation. The 
Bayes estimation can be of relevant interest, since it can 
significantly improve the precision of parameter estimates with 
respect to Fisher estimation. This may also allow the adoption 
of more complex models than those determinable by a 
Fisherian approach. 

Still following the aspect of reversing in statistics, we shall 

consider the newly obtained ),( σγπ apo  function as a 
probability density and we shall treat it as. As consequence, the 
ML theory can be applied. So a search of values that 

maximizes the ),( σγπ apo  and the variances associated to 
these estimators will be searched. 

The differentiating after iγ  and σ  of the function 
[ ]),(ln σγπapo  gives the terms:  
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 with ( )ml ,...,1=  and:  
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The MAP estimators γσ ˆ,ˆ  can be obtained by solving the 
equation system:  

)1,...,1(0),( +== mpU p σγ    (17.) 

 Fisher information applies to the function that describes 

the information on the parameters, ),( Tapo σγπ  , [6]: 
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and: ( ) ( )( ) ( ) ( )( )σγλδσγλσγ ,ln,, ijijijij vvc ′′−′=  and 

msl ,,0, K= . 

It is quickly observed that the information on the 
parameters γ  and σ  increases compared to the no Bayesian 

approach, with 0),( >σγπ
API ; it will obviously reduce the 

variance / covariance estimation point for the parameters γ  et 
σ  given by the Cramer Rao inequality (equation 12) for non 
biased estimators.  

IV.  OPTIMIZATION PROBLEM AND SIMULATION ALGORITHM 

A. Principle of proposed methodology 

The objective of methodology is to define an optimal 
accelerated testing plan considering an economic approach. 
The objective function is defined by two terms: the cost linked 
to testing activities and the cost associated to operation of the 
product. In many works, the optimum testing plans are defined 
in considering a prior knowledge on reliability parameters 
(choice of reliability function, scale and shape parameters …) 
and acceleration model (choice of model, model parameters 
…) to evaluate the proportions of failure at each accelerated 
level. This prior knowledge is not integrated in statistical 
inference during the optimisation process (minimization of 
reliability metric variance) and the estimation process with 
testing data. Nevertheless, this information can be used in 
Bayesian inference (to optimise the testing plan) but it contains 
the uncertainty on real reliability of new product. So, the 
proposed methodology consists to define an optimal 
accelerated testing plan in considering an objective function 
based on economic approach, Bayesian inference for 
optimizing the test plan and taking into account the uncertainty 
on parameters to obtain a robust optimal testing plan. 

The figure 3 presents the steps of proposed methodology. 

Definition of Reliability target  
Tp, MTTF, R(tR), …

for a given risk α

Prior knowledge on product
Expert’s opinion, Field data 
analysis on old product, …

(γ, ν, …)

Definition of Π(γ) andΠ(ν)

Test plan to optimize

S2=(?)

S1=(?)

S0

Censoring time = ?

Sample sizes :
n2=(?)
n1=(?)

Optimization process and robustness analysis

1- Optimization process
Find testing plan parameters (S1, S2, n1, n2, …) 
such that :
Minimize       = Testing Cost + Operation Cost
Global Cost

Where 
- Testing cost : number of units to test, cost of 

testing means,  Cost of testing time, …
- Operation cost : Bayesian estimation 

(punctual and confidence interval) of 
reliability metric, reliability target, population 
in operation, After sales cost, Brand image 
loss, …

2- robustness analysis
Determine the Bayesian unilateral confidence 
interval for the risk a of reliability  metric  
estimation in exploring  the  spaces Π(γ) and 
Π(ν)

Joint analysis

 

Figure 3.  Principle of proposed methodology 

In following subsections, the different steps are detailed in 
considering a simple example to illustrate the methodology.  

B.  Definition of reliability target 

The test plan is designed to demonstrate the contractual 
reliability metric target. Various metrics are used to 
characterize the reliability of products: MTTF, B10, probability 
of failure for the warranty period… The verification consists to 
evaluate the risk to not reach the reliability target with the 
estimations of punctual estimate and confidence interval. In 
this paper, the probability of failure poperation for the operation 
time toperation is considered.  
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Figure 4.  Probability function of operation failure f(p) 

The ponctual estimate is defined by  
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The parameters υγ ˆ,1̂ , ν, V(γl) and V(ν) are obtained by 
Monte Carlo simulation defined in section IV.F. 

The probability of failure in operation period is estimated 
by the unilateral confidence interval for the risk α (see figure 
4). The beta distribution f(p) is considered to characterize the 
distribution of p. The beta parameters are estimated by the 
moments method: 
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The probability poperation is deducted from: 

poperation=Beta-1(1-α|α0, β0)   (22.) 

C. Prior knowledge on product 

The prior knowledge on new product ((γ, ν, …) is obtained 
from Expert’s opinion, Field data analysis on old product, 
Reliability Standard, …. By the assumption of independence 
between the variables, the joint distribution can be defined as:  
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The choice of the form of Π(.) depends on degree of 
knowledge on parameter (γl or ν).  

D. Test plan to optimize 

In this paper, a simple test plan (with two accelerated 
constant stress levels) is studied defined as following: 

- the censoring time τ is fixed 
- the sample size n is fixed 
- the stress S2 is fixed to maximum 
- the middle stress level S1 is unknown 
- the proportion allocation p1 of sample size at stress 

level S1 is unknown (n1= ent(p1.n) and n2 = n – n1) 

S2=Smax

S1

S0

Stress level

test in accelerated conditions

test in nominal conditions

t (time testing)

n2

n1

τ censoring time

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

 

Figure 5.   optimal test plan  

The decision variables of test plan optimization are:  

- the middle stress level S1 

- proportion allocation p1 of sample size at stress level 
S1. 

E.  Objective Function 

The objective of the accelerated testing plan optimization is 
to minimize the global cost (defined by the costs of testing and 
operation), which is described as:  

CGlobal = Ctesting + Coperation (24.) 

where  

Ctesting = n.unit price + fixed testing cost  

+ τ.cost per testing hour + cost per batch.(n1/max units 
number per batch)γtesting + (n2/max units number per 
batch)γtesting 

Coperation  = fixed operation cost + 

(Poperation- Ptarget).product population.unit cost  

+cost of Brand image loss.(Poperation – Ptarget)
γoperation  

F. Optimization procedure 

The optimization procedure is simplified in defining the 
solutions space on prior domain (p1=]0, 1[, S1=]S0, S1[ ). The 
prior domain is discretized: 

p1 = {p1min, …, p1i,…,p1max } with i = 0, m1 

S1 = {S1min, …, S1j,…,S1max } with j = 0, m2 



For each point (i,j) of discretized domain the global cost is 
estimated by Monte Carlo simulation: 

1- Generate random values of γl and ν from prior 
distribution Π γl(.) and Π ν(.). 

2- Generate random time to failure with respect of 
censoring time τ at each stress levels with random 
variables γl and ν generated in step 1. 

3- Estimate γl, ν, V(γl) and V(ν) by relationships (17.) and 
(18.) 

4- Estimate the p and V(p) by relationships (20.) and (21.). 

5- Repeat nsimulation time the steps 1 to 4 (This repetition 
allows to take into account the sample size effect and the 
uncertainty on real reliability of new product characterized by 
the prior distributions.) 

6- Estimate probability of operation (eq. 22.) in considering 
the means of p and V(p) on all repetitions. 

7- Evaluate the global cost (i,j) 

Finally, the global cost surface is approximated by 
quadratic polynomial. The optimal test plan parameters are 
obtained by a classical optimisation method in minimizing the 
cost described by the quadratic polynomial. 

V. NUMERICAL EXAMPLE 

In this section, the proposed methodology is applied to ball 
bearings with a numerical example. We present firstly ball 
bearing life model [2]. Secondly, we define a simulation model 
to simulate reliability testing results. Finally, the optimization 
procedure is detailed. This example is given with numerical 
data based on the knowledge of ball bearing.  

A. Ball Bearings Life 

Rolling element bearings are used in an extremely wide 
tools variety, like machinery and equipment. They may be used 
in fans, gear boxes, transmissions, axles, compressors, electric 
motors, engines, final drives, jet engine main shafts, blenders, 
saws, mixers, etc. Most rotating shafts use a rolling element 
bearing [2].  

Ball bearing life refers to the amount of time a bearing will 
perform in a specified operation before failure. Bearing life is 
commonly defined in terms of L10 life, which is sometimes 
referred to as B10. This is the life which 90% of identical 
bearings subjected to identical usage applications and 
environments will attain (or surpass) before bearing material 
fails from fatigue. In practice, life (in million of revolutions) 
given as a function of load is represented with Palmgren’s 
relationship [3] for the L10 of the life distribution:  

( )p
P
CL =10   (25.) 

Where  C is the basic dynamic load rating, 

        P is the equivalent radial load, 

p is the load life exponent (equal to 3 for ball bearings 
and 10/3 for rolling bearings). 

Bearing life is usually defined by the Weibull distribution, 
which is combined with the Palmgren’s relationship: 
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The shape parameter ν  (generally equal to 1.5) is used and 
the scale parameter η is given by: 
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or scale parameter ηH in hour  

( ) νη
1

610 105.0

1

10

.60







= N
LPH  (1) 

with N the speed in revolution per minute. 

B. Simulation Model definition of testing result 

For the optimization, the times to failure are drawings from 
a Weibull distribution. The ball bearing is characterized by the 
dimensional parameters given in TABLE I.  

TABLE I.  SIMULATION DATA  

Dd

B

D d

 

D = 32 mm : outside diameter 

d = 15 mm : inside diameter 

B = 8 mm : width bearing 

C = 400 daN : Basic dynamic 
load rating  

N = 1500 tr/min : operating 
rotation shaft speed 

The load P is used to accelerate the test. The simulation 
parameters are defined in table II.  

TABLE II.  PRIOR INFORMATION FOR SVA 
MODEL 

C [350 ; 450] 

Π(C) Normal(400; 28.86) defined by the 
moments method 

ν [1.3 ; 1.7] 

Π(v) Normal(1.5; 0.1155) defined by the 
moments method 

 

The TABLE II. gives the values of prior knowledge on C 
and ν. Note that, for ball bearing, a shape parameter equal to 
1.5 is commonly used based on huge data analysis. According 



to that, we consider a prior knowledge following a normal 
distribution with a low uncertainty. 

The accelerated test conditions used to generate random 
times to failure and censoring times are defined in table III. 

TABLE III.  PRIOR INFORMATION FOR SVA MODEL 

T censoring time 300 h 

Ck : random value drawn from Π(C) Ck 

νk : random value drawn from Π(ν) νk 

S2 : maximum stress level 175 DaN 

S1 : middle stress level defined by the 
prior discretized domain (p1, S1). 

S1
j 

n : total sample size 60 

n1 : sample size at stress S1 deducted 
from value p1 defined by the prior 
discretized domain (p1, S1). 

n1
i 

n2 : sample size at stress S2 deducted 
from value n1 by n2 = n - n1 

n2
i 

 

The scale parameter η in hour is given by: 
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The random test times are obtained from Weibull 
distributions at S1 and S2 (defined by the shape parameter νk et 
scale parameters ηk(S1) and ηk(S2)) with the respect of 
censoring time τ and sample sizes n1 and n2.  

The random test times are analyzed and γl, ν, V(γl) and V(ν) 
estimations are obtained (relationships (17.) and (18.)). The 
estimation of probability of failure p and its variance V(p) are 
performed using relationships (20.) and (21.). 

C. Optimization procedure 

For this example, the optimization procedure is simplified 
in evaluating the value of global cost at each point of 
discretized space of solutions with p1 and S1 defined by:   

p1 = {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95} 

S1 = {125, 130, 135, 140, 145, 150, 155, 160, 165, 170} 

For each point (i,j) of discretized domain, the probability of 
failure is estimated with the simulation method presented in 
previous section. This step is repeated 500 times to take into 
account the sample size effect and the uncertainty on real 
reliability of new product characterized by the prior 
distributions. The estimation of operation probability (eq. 22.) 

is obtained in considering the means of p and V(p) on all 
repetitions. The approach is implemented in MATLAB. 

Finally, the cost function (testing and operation) can be 
obtained. The parameters for evaluating the testing cost (resp. 
operation cost) are given in TABLE IV. (resp. TABLE V. ). 

TABLE IV.  VALUES OF PARAMETERS FOR EVALUATING THE TESTING COST 

n 60 units 

Censoring time 300 hours 

Testing unit price 500 € 

Testing fixed cost 10.000 € 

Cost per hour 100 € 

Cost per batch 1000 € 

Max units number per batch 30 

γtesting 2.6 

TABLE V.  VALUES OF PARAMETER FOR EVALUATING THE OPERATION COST 

P target 0.01 

Sales population 1000 units 

Warranty time 100 hours 

Replace unit price 100 € 

After sales cost 10.000 € 

Brand image loss 100 € 

γoperation 1.3 

 

The figure 5 represents the testing cost in solutions space 
(p1, S1) in considering the cost defined by eq (23.) and the 
parameter values given in TABLE IV.   

 

Figure 6.  Testing cost in solutions space (p1, S1). 
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The Figure 7. represents the operation cost in solutions 
space (p1, S1) in considering the cost defined by equation 24. 
and the parameter values given in TABLE II.  and TABLE V.  

 

Figure 7.  Operation cost in solutions space (p1, S1). 

The Figure 8. represents the global cost integrating the 
Testing and Operation costs. 

  
Figure 8.  Global cost in solutions space (p1, S1). 

The Figure 9. represents the Iso-global cost and we can 
show the area where the optimal testing plan is placed.  
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Figure 9.  Iso-Global cost in solutions space (p1, S1). 

 The optimal test plan parameters are obtained precisely in 
fitting the surface by a quadratic polynomial defined by:  

( ) 115
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The TABLE VI.  gives the parameter values of fitting quadratic 
polynomial on global cost as below. 

TABLE VI.  PARAMETER VALUES OF FITTING QUADRATIC POLYNOMIAL 

a0 119785.123 
a1 -127.372 
a2 -27037.498 
a3 0.420 
a4 25142.345 
a5 -1.082 

 The optimal test plan parameters are obtained by a 
classical optimisation method in minimizing the cost described 
by the quadratic polynomial. The minimum is reached for: p1 = 
0.541 and S1 = 152.33 with CostGlobal = 102770 €, CostTesting = 
82189 € and Costoperation = 20581 €. 

Finally, the test plan to launch in order to optimize the 
global cost is defined by the TABLE VII.  

TABLE VII.  PARAMETER RESULTS TO OPTIMIZE TEST PLAN 

N 60 units 
n1 32 units 
n2 28 units 
S1 152.33 DaN 
S2 175 DaN 
Censoring time 300 hours 

VI.  CONCLUSION 

In this paper, we introduced a general framework to obtain 
optimal accelerate test plans with a cost objective. Then, we 
proposed a simulation to solve our problem applied to ball 
bearing. For the sake of simplicity, we restricted our 
presentation to an elementary optimization problem with two 
parameters solve by a discretization algorithm.  

Future related work will attempt at extending our approach 
to develop theoretical formulation in various freedom 
parameters to define the test plan. These development need to 
improve the algorithm of optimization. 
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