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The objective of this paper is to define an optimal accelerated test plan considering an economic approach. The objective function is defined by two terms: the cost linked to testing activities and the cost associated to operation of the product. The optimal test plans are defined in considering a prior knowledge on reliability parameters (choice of reliability function, scale and shape parameters …) and acceleration model (choice of model, model parameters …) to characterize the accelerated life model. This information is used in Bayesian inference (to optimize the testing plan). The prior knowledge contains also the uncertainty on real reliability of new product. So, the developed methodology proposes to define an optimal accelerated testing plan in considering an objective function based on economic approach, Bayesian inference for optimizing the test plan and taking into account the uncertainty on parameters to obtain a robust optimal test plan.

INTRODUCTION

Accelerated Life Test (ALT) is a test method which subjects test units to higher than use stress levels in order to compress the time to failure of the units. Conducting a Quantitative Accelerated Life Test (QALT) requires the determination or development of an appropriate life-stress relationship model as illustrated in Figure 1. below. Moreover, a test plan needs to be developed to obtain appropriate and sufficient information in order to accurately estimate reliability performance at operating conditions, significantly reduce test times and costs and achieve other objectives. One of the first decisions to be made when designing a reliability verification test is to determine how many units to test. If many units are tested, the duration of the test will be short. With this approach, prototype costs will be high, and development time costs will be low. If few units are tested, the duration of the test will be longer: prototype costs will be low, but development time costs will be high.

Stress log(t)

Estimation of reliability function under nominal conditions

In this paper, a methodology is proposed to define an optimal accelerated test plan in order to maximize the accuracy on the estimate of the statistical distribution of the life spans under the nominal conditions. The main development concerns the definition of optimal accelerated test plan considering an economic approach. The objective function is defined by two terms: the cost linked to testing activities and the cost associated to operation of the product. The optimal test plans are defined in considering a prior knowledge on reliability parameters (choice of reliability function, scale and shape parameters …) and acceleration model (choice of model, model parameters …) to characterize the accelerated life model. This information is used in Bayesian inference (to optimize the testing plan). The prior knowledge contains also the uncertainty on real reliability of new product. So, the developed methodology proposes to define an optimal accelerated testing plan in considering an objective function based on economic approach, Bayesian inference for optimizing the test plan and taking into account the uncertainty on parameters to obtain a robust optimal test plan. The methodology is illustrated by a numerical example on accelerated test on ball bearing.

II. ESTIMATION IN PARAMETRIC ALT MODEL(SVA MODEL)

Assuming that the lifetime ( )

• X T
for no matter which stress ( )

• X
is a non-negative random variable described by the reliability function:
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The convolution product between

1 0 - X R and ( ) • X R is denoted as ( ) ( ) ( ) ( ) ( ) t R R t f X X X • • - = 1 0 , with ( ) ( ) 0 0 = • X f
. The standard ALT model is defined over ε if there is a function as

for every ( ) ε ∈ • X : ( ) ( ) ( ) [ ] t X r t f dt d X = • (3.)
The function r defines a degradation rate. The ALT model states that the rate of resource used at the moment t depends only on the value of the applied stress at the moment t. The equation 3 involves:

( ) ( ) ( ) [ ]       = ∫ • τ τ d X r R t R t X X 0 0 (4.) A special case is ( ) const = ≡ X X τ : ( ) ( ) ( ) t X r R t R X X 0 = (5.)
So, the stress affects only the scale parameter. Note that r(X 0 )=1. If the function r is completely unknown, the reliability function 0

x R cannot be estimated. Therefore, the function r is chosen in particular classes of function. In survival analysis, the log-linear models defining the ALT models are frequently used as regression models [START_REF] Voiculescu | Bayesian parameter estimation with prior weihting in ALT model[END_REF]. The log-linear models specify the effect of the covariates as, respectively, a multiplicative factor for the hazard rate, a scale change, or a location shift for the reliability function. As consequence, generalizing, and the model becomes:

R(t) R s (t) = R s0 (r(s)t) t r(s).t
( ) ( ) ( )         = ∫ • τ τ β d e R t R Z t X X T 0 0 (6.)
and, for the particular cases of constant stress, the equation 5 becomes (see figure 2):

( )         = t e R t R Z X X T β 0 (7.) with ( ) T m β β β ,.., 0 = a parameters vector, ( ) ( ) ( ) T m X X Z ϕ ϕ ,.., 0 =
with the functions ϕ i specified and with the first component Z 0 equal to 1. Several models, as Arrhenius, inverse power, generalized Eyring and so on, can be obtained as a particular case of this general form.

It is assumed that the survival function R(t) belongs to a class of functions depending only on the parameters of scale η and shape ν [START_REF] Bagdonavicius | Transfer functional and semiparametric regression models[END_REF] :

( ) ( ) 0 , , >                 = υ η η υ t R t R (8.)
Several models as Exponential, Weibull, lognormal, loglogistic and so on are just particular cases of the above form as detailed in [START_REF] Nikulin | Statistique des essais accélérés[END_REF].

The notations
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allow us to rewrite the equation 7 as:

( )           - = σ γ Z t R t R T X ln (9.)
Imposing T ij lifetime observed or censored for the j-th unit of i-th group, we have:

( ) i ij ij t T ∧ = T ln with i
t the censoring time and ∧ denoting the minimum between the terms
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The likelihood function can be written as:
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A. Point Estimate

The likelihood principle: all information on the parameters taken from a number of observations is finally contained in the likelihood characterizes the likelihood as maximized for a set of parameters identified. For this, we consider that the failures are independent, meaning that the failure of a system that does not affect another system [START_REF] Voiculescu | Bayesian parameter estimation with prior weihting in ALT model[END_REF].

If ( ) θ | T L is differentiable and if the maximum likelihood ( ) r θ θ θ , , ˆ1 K =
exists, then it satisfies the following equation:
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allows to approximate the reliability function associated with the product generating times of failure for the point estimate θ θ = . An estimation of confidence intervals is required to complete the approach.

B. Confidence Intervals

The Cramer-Rao bound, or the lower limit of Cramer-Rao expresses a lower limit on the disagreement of a parameter estimators. In its simplest form, the bound states that the variance of any unbiased estimator is at least as high as the inverse of the Fisher information. An unbiased estimator, which achieves this lower bound, is said to be efficient. Such a solution achieves the lowest possible mean squared error among all unbiased methods, and is therefore the minimum variance unbiased (MVU) estimator.

Let

) (Y X be an estimator of any vector function of parameters,
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is an unbiased estimator of θ (i.e., ( ) θ θ ψ = ), then the Cramer-Rao bound states:
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Moreover, for most of the cases, typically values for the parameters can be found. The values may be considered either as results of expertise (using references as FIDES [START_REF] Fides | Reliability Methodology for Electronic Defense System[END_REF]), or as values associated to older/similar products or as results of single/several expert(s)' opinion. Whatever method might be used to obtain the prior information, an improvement of the final estimation of model's parameters can be attended by a diminution of confidence intervals over the estimations as result of increasing the Fisher information.

III. BAYESIAN INFERENCE

The classic statistics are based on the notion of objective probability. The real value is approached by a frequency associated with results obtained from a sample. Larger the size of a sample, closer the frequency calculated is to the true value of probability. This estimate is closely related to sampling.

On the contrary, the Bayesian approach is based on the concept of subjective probability depending on the degree of belief in the occurrence of an event. This is not a point value, which is estimated, but the probability distribution of the random variable (probability of non-functioning), the degree of belief that each probability value can be true.

It is tempting to see the probability density as an estimator whose Maximum Likelihood method (ML) would be the mode; such a position was, for example, supported by Laplace who believed that the absence of prior information justified the choice of the uniform distribution. Similarly, Fisher, introducing analysis trustee, wanted to implement the principle of likelihood without going through a Bayesian approach. The choice of distribution as it is then totally objective.

The continuous form of Bayes theorem for the random variable θ over the Ω domain, having

n i t i .. 1 , =
as test results, is:

( ) ( ) ( ) ( ) ( ) θ θ π θ θ π θ θ π d t t L t t L t n n i apo / ,.., / ,.., / 1 1 ∫ = Ω (14.) with
) (θ π the mathematical form, which formalizes the prior information. The prior information over the normal conditions of use will be assimilated within the results of a number of tests already done hypothetically and added to the values of real tests.

By the assumption of independence between the variables, the joint distribution can be defined as:
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Integrating the likelihood function (equation 10) into the general form of Bayes' theorem (equation 14), the posterior distribution becomes:
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with a normalization constant:
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Conceptually, while ML adopts a classical approach, i.e., only experimental measurements are supplied to the estimator, Maximum a Posteriori (MAP) estimation is a Bayesian approach, i.e., prior available statistical information on the unknown parameters is also exploited for their estimation. The Bayes estimation can be of relevant interest, since it can significantly improve the precision of parameter estimates with respect to Fisher estimation. This may also allow the adoption of more complex models than those determinable by a Fisherian approach.

Still following the aspect of reversing in statistics, we shall consider the newly obtained ) , ( σ γ π apo function as a probability density and we shall treat it as. As consequence, the ML theory can be applied. So a search of values that maximizes the ) , ( σ γ π apo and the variances associated to these estimators will be searched. 
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The MAP estimators γ σ , ˆ can be obtained by solving the equation system: 
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It is quickly observed that the information on the parameters γ and σ increases compared to the no Bayesian approach, with 0 ) , ( > σ γ π AP I

; it will obviously reduce the variance / covariance estimation point for the parameters γ et σ given by the Cramer Rao inequality (equation 12) for non biased estimators.

IV. OPTIMIZATION PROBLEM AND SIMULATIONALGORITHM

A. Principle of proposed methodology

The objective of methodology is to define an optimal accelerated testing plan considering an economic approach. The objective function is defined by two terms: the cost linked to testing activities and the cost associated to operation of the product. In many works, the optimum testing plans are defined in considering a prior knowledge on reliability parameters (choice of reliability function, scale and shape parameters …) and acceleration model (choice of model, model parameters …) to evaluate the proportions of failure at each accelerated level. This prior knowledge is not integrated in statistical inference during the optimisation process (minimization of reliability metric variance) and the estimation process with testing data. Nevertheless, this information can be used in Bayesian inference (to optimise the testing plan) but it contains the uncertainty on real reliability of new product. So, the proposed methodology consists to define an optimal accelerated testing plan in considering an objective function based on economic approach, Bayesian inference for optimizing the test plan and taking into account the uncertainty on parameters to obtain a robust optimal testing plan.

The figure 3 presents the steps of proposed methodology. 

Definition of

2-robustness analysis

Determine the Bayesian unilateral confidence interval for the risk a of reliability metric estimation in exploring the spaces Π(γ) and Π(ν) In following subsections, the different steps are detailed in considering a simple example to illustrate the methodology.

Joint analysis

B. Definition of reliability target

The test plan is designed to demonstrate the contractual reliability metric target. Various metrics are used to characterize the reliability of products: MTTF, B 10 , probability of failure for the warranty period… The verification consists to evaluate the risk to not reach the reliability target with the estimations of punctual estimate and confidence interval. In this paper, the probability of failure p operation for the operation time t operation is considered. The ponctual estimate is defined by

( ) ( ) ( ) ν γ ln 1 ˆ0 0 Z t R t R p T operation operation X - = - = (20.)
And the variance of probability
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The parameters υ γ , ˆ1 , ν, V(γ l ) and V(ν) are obtained by Monte Carlo simulation defined in section IV.F.

The probability of failure in operation period is estimated by the unilateral confidence interval for the risk α (see figure 4). The beta distribution f(p) is considered to characterize the distribution of p. The beta parameters are estimated by the moments method:

1 ) 1 )( ( ) 1 ( ˆ2 0 2 0 - + - = - - = p p v p p p v p p p β α
The probability p operation is deducted from:

p operation =Beta -1 (1-α|α 0 , β 0 ) (22.)

C. Prior knowledge on product

The prior knowledge on new product ((γ, ν, …) is obtained from Expert's opinion, Field data analysis on old product, Reliability Standard, …. By the assumption of independence between the variables, the joint distribution can be defined as:

( ) ( ) ( )         = ∏ = l l m l γ π ν π ν γ π γ ν 0 , ( 23. 
)

The choice of the form of Π(.) depends on degree of knowledge on parameter (γ l or ν).

D. Test plan to optimize

In this paper, a simple test plan (with two accelerated constant stress levels) is studied defined as following:

-the censoring time τ is fixed -the sample size n is fixed -the stress S 2 is fixed to maximum -the middle stress level S 1 is unknown -the proportion allocation p 1 of sample size at stress level S 1 is unknown (n 1 = ent(p 1 .n) and n 2 = n -n 1 ) The decision variables of test plan optimization are:

S 2 =S max
-the middle stress level S 1 -proportion allocation p 1 of sample size at stress level S 1 .

E. Objective Function

The objective of the accelerated testing plan optimization is to minimize the global cost (defined by the costs of testing and operation), which is described as: 

F. Optimization procedure

The optimization procedure is simplified in defining the solutions space on prior domain (p 1 =]0, 1[, S 1 =]S 0 , S 1 [ ). The prior domain is discretized:

p 1 = {p 1 min, …, p 1 i,…,p 1 max } with i = 0, m 1 S 1 = {S 1 min, …, S 1 j,…,S 1 max } with j = 0, m 2
For each point (i,j) of discretized domain the global cost is estimated by Monte Carlo simulation:

1-Generate random values of γ l and ν from prior distribution Π γ l (.) and Π ν(.).

2-Generate random time to failure with respect of censoring time τ at each stress levels with random variables γ l and ν generated in step 1.

3-Estimate γ l , ν, V(γ l ) and V(ν) by relationships (17.) and (18.) 4-Estimate the p and V(p) by relationships (20.) and (21.).

5-Repeat n simulation time the steps 1 to 4 (This repetition allows to take into account the sample size effect and the uncertainty on real reliability of new product characterized by the prior distributions.) 6-Estimate probability of operation (eq. 22.) in considering the means of p and V(p) on all repetitions.

7-Evaluate the global cost (i,j)

Finally, the global cost surface is approximated by quadratic polynomial. The optimal test plan parameters are obtained by a classical optimisation method in minimizing the cost described by the quadratic polynomial.

V. NUMERICAL EXAMPLE

In this section, the proposed methodology is applied to ball bearings with a numerical example. We present firstly ball bearing life model [START_REF] Guerin | Reliability estimation of mechanical components using Accelerated Life Testing models : Application to ball bearings[END_REF]. Secondly, we define a simulation model to simulate reliability testing results. Finally, the optimization procedure is detailed. This example is given with numerical data based on the knowledge of ball bearing.

A. Ball Bearings Life

Rolling element bearings are used in an extremely wide tools variety, like machinery and equipment. They may be used in fans, gear boxes, transmissions, axles, compressors, electric motors, engines, final drives, jet engine main shafts, blenders, saws, mixers, etc. Most rotating shafts use a rolling element bearing [START_REF] Guerin | Reliability estimation of mechanical components using Accelerated Life Testing models : Application to ball bearings[END_REF].

Ball bearing life refers to the amount of time a bearing will perform in a specified operation before failure. Bearing life is commonly defined in terms of L 10 life, which is sometimes referred to as B 10. This is the life which 90% of identical bearings subjected to identical usage applications and environments will attain (or surpass) before bearing material fails from fatigue. In practice, life (in million of revolutions) given as a function of load is represented with Palmgren's relationship [START_REF]Accelerated Testing: Statistical models, test plans, and data analysis[END_REF] for the L 10 of the life distribution:

( ) p P C L = 10 (25.)
Where C is the basic dynamic load rating, P is the equivalent radial load, p is the load life exponent (equal to 3 for ball bearings and 10/3 for rolling bearings).

Bearing life is usually defined by the Weibull distribution, which is combined with the Palmgren's relationship: The shape parameter ν (generally equal to 1.5) is used and the scale parameter η is given by: with N the speed in revolution per minute.

B. Simulation Model definition of testing result

For the optimization, the times to failure are drawings from a Weibull distribution. The ball bearing is characterized by the dimensional parameters given in TABLE I. The scale parameter η in hour is given by:

k k i k k i N S C S N S C S ν ν η η 1 6 3 1 1 1 6 3 2 2 105 . 0 1 10 . 60 ) ( 105 . 0 1 10 . 60 ) (               =              =
The random test times are obtained from Weibull distributions at S 1 and S 2 (defined by the shape parameter ν k et scale parameters η k (S 1 ) and η k (S 2 )) with the respect of censoring time τ and sample sizes n 1 and n 2 .

The random test times are analyzed and γ l , ν, V(γ l ) and V(ν) estimations are obtained (relationships (17.) and (18.)). The estimation of probability of failure p and its variance V(p) are performed using relationships (20.) and (21.).

C. Optimization procedure

For this example, the optimization procedure is simplified in evaluating the value of global cost at each point of discretized space of solutions with p 1 and S 1 defined by: For each point (i,j) of discretized domain, the probability of failure is estimated with the simulation method presented in previous section. This step is repeated 500 times to take into account the sample size effect and the uncertainty on real reliability of new product characterized by the prior distributions. The estimation of operation probability (eq. 22.) is obtained in considering the means of p and V(p) on all repetitions. The approach is implemented in MATLAB.

Finally, the cost function (testing and operation) can be obtained. The parameters for evaluating the testing cost (resp. operation cost) are given in The figure 5 represents the testing cost in solutions space (p 1 , S 1 ) in considering the cost defined by eq (23.) and the parameter values given in TABLE IV. The Figure 7. represents the operation cost in solutions space (p 1 , S 1 ) in considering the cost defined by equation 24. and the parameter values given in TABLE II. and TABLE V. The Figure 9. represents the Iso-global cost and we can show the area where the optimal testing plan is placed. The optimal test plan parameters are obtained precisely in fitting the surface by a quadratic polynomial defined by: ( ) The optimal test plan parameters are obtained by a classical optimisation method in minimizing the cost described by the quadratic polynomial. The minimum is reached for: p 1 = 0.541 and S 1 = 152.33 with Cost Global = 102770 €, Cost Testing = 82189 € and Cost operation = 20581 €.

1
Finally, the test plan to launch in order to optimize the global cost is defined by the TABLE VII. In this paper, we introduced a general framework to obtain optimal accelerate test plans with a cost objective. Then, we proposed a simulation to solve our problem applied to ball bearing. For the sake of simplicity, we restricted our presentation to an elementary optimization problem with two parameters solve by a discretization algorithm.

Future related work will attempt at extending our approach to develop theoretical formulation in various freedom parameters to define the test plan. These development need to improve the algorithm of optimization. 
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  mm : outside diameter d = 15 mm : inside diameter B = 8 mm : width bearing C = 400 daN : Basic dynamic load rating N = 1500 tr/min : operating rotation shaft speedThe load P is used to accelerate the test. The simulation parameters are defined in table II.
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 9 Figure 9. Iso-Global cost in solutions space (p1, S1).

TABLE I .

 I SIMULATION DATA

TABLE II .

 II PRIOR INFORMATION FOR SVAThe accelerated test conditions used to generate random times to failure and censoring times are defined in table III.

	to that, we consider a prior knowledge following a normal	
	distribution with a low uncertainty.	
		MODEL
	C	[350 ; 450]
	Π(C)	Normal(400; 28.86) defined by the
		moments method
	ν	[1.3 ; 1.7]
	Π(v)	Normal(1.5; 0.1155) defined by the
		moments method
	The TABLE II. gives the values of prior knowledge on C and ν. Note that, for ball bearing, a shape parameter equal to
	1.5 is commonly used based on huge data analysis. According

TABLE III

 III 

	.	PRIOR INFORMATION FOR SVA MODEL
	T censoring time		300 h
	C k : random value drawn from Π(C)	C k
	ν k : random value drawn from Π(ν)	ν k
	S 2 : maximum stress level	175 DaN
	S 1 : middle stress level defined by the	S 1	j
	prior discretized domain (p 1 , S 1 ).	
	n : total sample size		60
	n 1 : sample size at stress S 1 deducted	n 1	i
	from value p 1 defined by the prior	
	discretized domain (p 1 , S 1 ).	
	n 2 : sample size at stress S 2 deducted	n 2	i
	from value n 1 by n 2 = n -n 1	

  TABLE IV. (resp. TABLE V. ).

TABLE IV .

 IV VALUES OF PARAMETERS FOR EVALUATING THE TESTING COST

	n	60 units
	Censoring time	300 hours
	Testing unit price	500 €
	Testing fixed cost	10.000 €
	Cost per hour	100 €
	Cost per batch	1000 €
	Max units number per batch	30
	γ testing	2.6

TABLE V .

 V VALUES OF PARAMETER FOR EVALUATING THE OPERATION COST

	P target	0.01
	Sales population	1000 units
	Warranty time	100 hours
	Replace unit price	100 €
	After sales cost	10.000 €
	Brand image loss	100 €
	γ operation	1.3

  The TABLE VI. gives the parameter values of fitting quadratic polynomial on global cost as below.

	Cost	global	1 p	,	1 S	=	a	0	+	1 a	.	1 p	+	a	2	. S	1	+	a	3	.	1 p	2	+	a	4	1 S .	2	+	a	5	.	1 p	. S

TABLE VI .

 VI PARAMETER VALUES OF FITTING QUADRATIC POLYNOMIAL

	a 0	119785.123
	a 1	-127.372
	a 2	-27037.498
	a 3	0.420
	a 4	25142.345
	a 5	-1.082

TABLE VII .

 VII 

	PARAMETER RESULTS TO OPTIMIZE TEST PLAN
	N	60 units
	n 1	32 units
	n 2	28 units
	S 1	152.33 DaN
	S 2	175 DaN
	Censoring time	300 hours
	VI. CONCLUSION