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SUMMARY & CONCLUSIONS 

This paper describes an optimal accelerated test plan 
considering an economic approach. We introduce a general 
framework to obtain plans of optimal accelerate tests with a 
specific objective, such as cost. The optimal test plans are 
defined by considering prior knowledge of reliability, 
including the reliability function and its scale and shape 
parameters, and the appropriate model to characterize the 
accelerated life.. This information is used in Bayesian 
inference to optimize the test plan. The prior knowledge 
contains the uncertainty on real reliability of new product. So, 
the proposed methodology consists of defining an optimal 
accelerated testing plan while considering an objective 
function based on economic value, using Bayesian inference 
for optimizing the test plan, and using the uncertainty of the 
parameters to obtain a robust, optimal testing plan. The 
objective function consists of two terms: the cost linked to 
testing activities and the cost associated with operation of the 
product. 

Finally, we will develop our optimal plan by extending 
our approach to include theoretical formulation of the various 
degrees of freedom with respect to the parameters. To 
complete this development, we need to improve the algorithm 
of optimization. To obtain the best test plan, we propose an 
optimization procedure using the genetic algorithm. The 
proposed method will be illustrated by a numerical example 
based on a well-known problem. 

1 INTRODUCTION 

Accelerated Life Tests (ALTs) are widely used in 
reliability studies. Because many modern high-reliability 
components are expected to perform their proper functions for 
a very long time, simply testing these components under use 
conditions will usually yield little useful information about 
reliability within practical time and cost constraints. 
Accelerating variables, such as temperature, are often applied 
to obtain failures more rapidly. According to Figure 1, the 
resulting data at the higher stresses are used to estimate, 
through extrapolation with an appropriate acceleration model, 
the life distribution of the component at specified use 
conditions. Careful planning of an ALT is important to allow 
the most efficient use of limited resources, namely, time, 

number of test units, and the test facilities. Typically, ALT 
plans specify the levels of the accelerating variable and the 
quantity of available test units for these levels. With certain 
planning criteria, such as the estimation precision of a 
particular characteristic of the life distribution at use 
conditions, optimization can be used to find optimum test 
plan. Optimum test plans provide insight needed to obtain 
good practical test plans [1]. 
Accelerated Life Test (ALT) is a test method which subjects 
test units to higher than use stress levels in order to compress 
the time to failure of the units. Conducting a Quantitative 
Accelerated Life Test (QALT) requires the determination or 
development of an appropriate life-stress relationship model. 
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Figure 1- Principle of ALT test 

Moreover, a test plan needs to be developed to obtain 
appropriate and sufficient information in order to accurately 
estimate reliability performance at operating conditions, 
significantly reduce test times and costs and achieve other 
objectives. One of the first decisions to be made when 
designing a reliability verification test is to determine how 
many units to test. If many units are tested, the duration of the 
test will be short. With this approach, prototype costs will be 
high, and development time costs will be low. If few units are 
tested, the duration of the test will be longer and prototype 
costs will be low, but development time costs will be high. 

1.1 Objective 

The objective of methodology is to define an optimal 
accelerated testing plan considering an economic approach. 
The objective function is defined by two terms: the cost linked 



to testing activities and the cost associated to operation of the 
product. In many works, the optimum testing plans are defined 
in considering a prior knowledge on reliability parameters. So, 
choice of reliability function and acceleration model and also 
having insight on the parameters such as scale and shape 
parameters is important. To evaluate the proportions of failure 
at each accelerated level. This prior knowledge is not 
integrated in statistical inference during the optimization 
process especially in minimization of reliability metric 
variance, and the estimation process with testing data. 
Nevertheless, this information can be used in Bayesian 
inference to optimize the testing plan, but it contains the 
uncertainty on real reliability of the new product. So, the 
proposed methodology consists of defining an optimal 
accelerated testing plan while considering an objective function 
based on economics, Bayesian inference for optimizing the test 
plan, and accounting for the uncertainty of parameters. 

1.2 Proposed method 

The proposed method is decomposed in several steps. 

Definition of reliability target 

The test plan is designed to demonstrate the contractual 
reliability metric target. Various metrics are used to 
characterize the reliability of products, such as MTTF, B10, or 
probability of failure for the warranty period. The verification 
consists of evaluating the risk of not reaching the reliability 
target using a point estimate and confidence interval. 

Prior knowledge on product 

The prior knowledge of a new product especially in the 
field Activation Energy and MTTF is obtained from Expert’s 
opinion, Field data analysis on old product, Reliability 
Standard, etc. 

Test plan to optimize 

The kind of accelerated test plan is fixed at the beginning 
of study. We consider constant stress and number of stress 
levels and sample size are fixed. The decision variables of test 
plan optimization are chosen from among the test plan 
parameters. 

Objective Function 

The objective of the accelerated testing plan optimization 
is to minimize the global cost as defined by the costs of testing 
and operation. This term allows us to introduce a robustness 
analysis according through an objective function. 

Optimization procedure 

To obtain the best test plan, we propose an optimization 
procedure using the genetic algorithm. The proposed method 
will be illustrated by a numerical example. 

2 ESTIMATION IN PARAMETRIC ALT MODEL 

The parametric ALT model has been described in [1]. In 
this section, we assume the main results for a particular case 
of a constant stress, S, by the reliability function: 

 ( ) ( )( )tSrRtR SS 0
=  (1) 

So, the stress affects only the scale parameter. Note that 
r(S0)=1. If the function r is completely unknown, the 
reliability function 

0SR  cannot be estimated. Therefore, the 

function r is chosen as a particular class of functions. In 
survival analysis, log-linear models are frequently used as 
ALT as regression models.  
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Figure 2- Definition of time transfer regression model r(S) 

For the particular cases of constant stress, the equation (1) 
becomes (see Figure 2): 
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with ( )Tmβββ ,..,0= a parameters vector, 

( ) ( )( )Tm SSz ϕϕ ,..,0= with the functions iϕ  specified and with 

the first component z0 equal to 1. Several models, as 
Arrhenius, inverse power, and the generalized Eyring, can be 
obtained as a particular case of this general form. It is assumed 
that the survival function R(t) belongs to a class of functions 

depending only on the parameters of scale η and shape υ [4]: 
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Several models, such as Weibull and lognormal, are just 
particular cases of the above form 

( ) )(ln1)(, 00 ttRetR t Φ−== −  respectively as detailed in [2]. 

The notations ( ) ( )ueRuR 0= , ℜ∈u , )ln(tu = , υσ 1= , 

( )mγγγ ,...,0= , 00 ln βηγ −=  et ii βγ −= , i=(1,…,m) allow us to 

rewrite the equation (2) as: 
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The likelihood function can be written as: 

( )
( ) ( )























 −








































 −
= ∏∏

== σ

γ

σ

γ
λ

σ
σγ

δ
iT

ij
iT

ij
n

j

k

i

ZT
R

ZT
TL

ij
i 1

,|
11

 (5) 

Note: Tij is the life time observed or censored of the j th unit 
from i th stress level group. 

2.1 Point Estimate 

MLE chooses the parameters that maximize the likelihood 



of the data. In MLE, parameters are assumed to be unknown 
but fixed, and are estimated with some confidence. We 
consider that the failures are independent, meaning that the 
failure of one system does not affect another system. 
If L(T|θ) is differentiable and if the maximum likelihood 

( )rθθθ ˆ,,ˆˆ
1 K=  exists, then it satisfies the following equation: 
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The computation of )ˆ|( θθ =tR  allows us to approximate the 
reliability function associated with the product generating 

times of failure for the point estimate θθ ˆ= . An estimation of 
confidence intervals is required to complete the approach. 

2.2 Confidence Intervals 

The Cramer-Rao lower bound is a limit to the variance 
that can be attained by an unbiased estimator of a parameter θ  
of a distribution. Unbiased estimators enjoy a great popularity 
because they are easier to study than estimators that might 
have a lower MSE (Mean Squared Error), but that are biased. 
In particular, the MSE of an unbiased estimator is just its 
variance. 

Let X(Y) be an estimator of any vector function of 
parameters, if X(Y) is an unbiased estimator of θ, then the 
Cramer-Rao bound states: 

 ( ) ( ) 1)( −≥ θθ IYXcov  (7) 
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The confidence limits for the case of  θ > 0 are obtained 
by processing the log log(θ) as a normally distributed variable: 
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Moreover, for most of the cases, typical values for the 
parameters can be found. The values may be considered either 
as results of expertise using references as FIDES [3], as values 
associated with older/similar products, or as results of expert 
opinion(s). 

3 BAYESIAN INFERENCE 

The Bayesian approach to estimate the parameters is 
described in [1]. In this section, we present the formula used to 
obtain MAP means Maximum A Posteriori estimators that it is 
a mode of the posterior distribution. Bayesian inference uses a 
numerical estimate of the degree of confidence in a hypothesis 
before any evidence has been observed, and then it calculates 
a numerical estimate of the degree of confidence in the 
hypothesis after a set of evidence has been observed (This 
process is repeated whenever additional evidence is obtained). 

The continuous form of Bayes theorem for the random 
variable θ over the Ω domain, having ti, i = 1..n as test results, 
is: 
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with π (θ) the mathematical form, which formalizes the prior 
information. 

The prior information over the normal conditions of use 
will be assimilated within the results of a number of tests 
already done hypothetically and added to the values of real 
tests. In Bayesian statistics, the uncertainty about the unknown 
parameters is quantified used probability so that the unknown 
parameters are regarded as random variables. 

According to [1] the newly obtained πapo(γ,σ) function is 
a probability density function. So, by applying MLE theory 
and searching for values that maximizes πapo(γ,σ), the 
variances associated to these estimators will be derived. 

Differentiating the function ln[πapo(γ,σ)] with respect to γi 
and σ results in the terms:  
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The MAP estimators γσ ˆ,ˆ  can be obtained by solving the 
equation system:  
 ( ) ( )1,...,10, +== mpU p σγ  (11) 

4 OPTIMIZATION PROBLEM AND SIMULATION 

4.1 Principle of proposed methodology 

The proposed methodology consists of defining an 
optimal accelerated testing plan while considering an objective 
function based on economic approach, using Bayesian 
inference for optimizing the test plan, and taking into account 
the uncertainty on parameters. This will produce a robust, 
optimal testing plan. To obtain the best test plan, we propose 
an optimization procedure using the genetic algorithm. The 
proposed method is decomposed in different steps as depicted 
in Figure 3. 

In the next subsections, the different steps are detailed by 
considering a simple example to illustrate the methodology. 



 

Figure 3- Principle of proposed methodology 

4.2 Definition of reliability target 

The test plan is designed to demonstrate the contractual 
reliability metric target. Various metrics are used to 
characterize the reliability of products, including MTTF, B10, 
and probability of failure for the warranty period. The 
verification consists of evaluating the risk of failing to reach 
the reliability target in terms of the point estimate and 
confidence interval. In this paper, the probability of failure 
poperation for the operation time toperation is considered [6]. 

V(p)

f ( p )

risk α

0                                p  poperation 1        p^
 

Figure 4- Probability function of operation failure f(p) 

The point estimate is defined by  
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The probability of failure in operation period is estimated 
by the unilateral confidence interval for the risk α (see Figure 
4). The beta distribution, f(p),  is used to characterize the 
distribution of p. The beta parameters are estimated by the 
moment’s method: 
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The probability of operation, poperation, is derived from: 

( )00
1 ,-1 babêtapoperation α−=   (14) 

This probability represents the upper bound of the 
unilateral confidence interval of estimated probability of 
failure during the operation time. 

The parameters σγγ ˆ,ˆ,ˆ 01 , ( ) ( ) ( )σγγ ˆ,ˆ,ˆ 01 VVV are obtained 

by Monte Carlo simulation described by the following steps: 
1. The generation of random values of γ0, γl and σ from prior 
distribution πγ0, πγl and πσ. 
2. The generation of random time to failure with respect to 
censoring time τ at each stress level with random variables γ0, 
γl and σ generated in step 1. 
3. The estimation of γ0, γl, σ, V(γ0), V(γl) and V(σ) by 
relationship (11). 
4. The estimation of p and V(p) by relationships (12) and (13). 
5. To repeat steps 1 to 4 nsimulation times. This repetition 
accounts for the sample size effect and the uncertainty on real 
reliability of new product characterized by the prior 
distributions. 
6. To estimate the probability of operation in equation (14) 
with considering the means of p and V(p) on all repetitions. 

4.3 Prior knowledge on product 

By the assumption of independence between the 
variables, the joint distribution can be defined as: 

( ) ( ) ( ) ( )σπγπγπσγγπ σγγ ××= 1010 10
,,  (15) 

The choice of the form of π depends on degree of 
knowledge on parameter (γ0 , γ1 or σ). 

4.4 Test plan to optimize 

In this paper, according to Figure 5, a simple test plan 
with three accelerated constant stress levels is studied by the 
following process: 
• the censoring time is fixed 
• the sample size n is fixed 
• the stress S3 is fixed to maximum 
• the middle stress level is unknown, because it depends on 

transformed stress factors 
• the proportion allocation p1, p2 of sample size at stress 

level S1, S2 is unknown (S2 depend on S1) and (n1= 
ent(p1.n); n2= ent(p2.n)  and n3 = n – n1– n2) 
 
The decision variables of test plan optimization are: 

• the middle and lower stress level S1 and S2 
• the proportion allocation p1 and p2 of sample size 

respectively at stress level S1 and S2. 

Prior knowledge on product 
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Figure 5- optimal test plan 

4.5 Objective Function 

The objective of the accelerated testing plan optimization 
is to minimize the global cost, which are defined by the costs 
of testing and operation, as expressed in [6]: 
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Nb represents the maximum number of units per batch. 
γ
testing represents the critical index for increasing the number of 
batch per stress level. 
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ptarget represents probability of failure for the warranty period. 
γ
operation represents the critical index for brand image loss. 

The operation cost is defined by considering risk α in 
terms of poperation. This term allows us to introduce a robustness 
analysis according to objective function. 

With the test plan definition in 4.4, poperation is function of 
p1, p2, S1 and S2, and the optimization model can be written as 
follows: 

( )global
SSpp

CMin
2121 ,,,

  (17) 

Subject to [ ] 01232121 ,1,1,0, SSSSpppp ≤≤≤≤+∈ . 

4.6 Optimization procedure 

To shorten the simulation time required, it can be 
assumed that the test plan will be correct for a given 
theoretical distribution of failures for each stress. It has been 
shown this method can lead to good test plans but it has not 
been demonstrated that it led to the best one. Thus, it is better 
to consider all the possible plans and to quickly converge to 
the best solution. 

To obtain the best test plan, several optimization 

algorithms can be applied, including Least-mean-square and 
simulated annealing. In previous work [6], we used a response 
surface methodology to reach the optimum on a reliability ball 
bearing test plan. This methodology has provided good results 
but it was really dependent on the number of input parameters. 
In this project, we propose an optimization procedure using 
the Genetic Algorithm (GA). The reasons of this choice are 
that GA is a quite simple and efficient technique to be applied 
with heterogeneous inputs, especially in research of an 
optimum accelerated life test plan [5]. Moreover, GA allows 
us to search the optimum with more freedom inputs. 

The GA has been firstly presented by J. Holland in 1975 
[9]. The GA is a search and optimization technique based on 
the mechanism of evolution. 

In GA, the individuals are generated randomly in order to 
construct a population. After estimating the fitness of 
individuals, parents are selected from the population according 
to the fitness value. Offspring are generated from the parents 
by using genetic operators such as the mutation or crossover. 

Each element of the population is defined by a 
combination of (p1, p2, S1, S2) with constrains explained in 
formula (17). With a discretization using integer values (n1, 
n2) and temperatures, the formula (17) leads to the 
population’s length: Npop = 2.33 106. For simulation of each 
test to 50 times, the fastest calculators need about 1 month of 
time. The fitness function corresponds to the global cost 
detailed in (16) and the programming is performed by GA 
MATLAB function. 

5 NUMERICAL EXAMPLE 

In this section, we will compare our results with the best 
compromise test plans for the Weibull distribution with one 
accelerating variable that Yang found on electronic module for 
pump control [7]. We also show the results of simple 
comparison studies between GAs and the response surface 
methodology. 

5.1 Yang’s compromise test plans 

In this numerical example, the high stress must be 
specified. It should be as high as possible to yield more 
failures and decrease the variance of the estimate at the use 
stress. However, it should not cause failure modes that are 
different from those at the use stress. The low stress and the 
respective sample allocation are optimized by minimizing the 
variance of the estimate of the mean log life at use stress. The 
middle stress is equally spaced between the low and high 
levels and the corresponding number of test units is specified 
to be a half of that at the high stress [7]. Other test plan 
constraints may be found in, for example, Meeker [8]. 

Yang determined the best compromise test plan that 
minimizes the variance of the MLE of the mean log life at the 
use stress level [7]. For the smallest extreme value 
distribution, the mean equals the 43rd percentile. The variance 

of the MLE of the mean, denoted43.0t̂ , at the use stress level is 

given by  



[ ] V
n

t
2

0.43  ˆVar
σ=   (20) 

where V is called the standardized variance. The formulation 
of V is given in [8]. 

5.2 Simulation data 

We consider an electronic module for pump control that 
normally operates at 45°C.To estimate its reliability at the use 
condition, 50 units are to be tested at three elevated 
temperatures. The high one is 105°C, which is 5°C lower than 
the maximum allowable temperature. The censoring times are 
fixed for low, middle and high stress levels respectively at 
1080, 600 and 380 hours. 

5.3 The Comparisons 

The objective is: 
• Comparison with results obtained from the response 

surface of the experimental plan of Yang (A priori and 
different cost function). 

• Comparison of the results obtained from the Genetic 
Algorithm in "releasing" a constraint on n2 (Comparison 
in computation time and optimum).  

5.4 The Results 

The table 1 gives the results by proposed approach (GAs) 
and Yang’s test plan.  

The results are identical and show that the GAs 
optimization generates the same results. In future work, we 
propose to liberate other parameters such as the censoring 
times and the number of stress levels. 

 
 Group 1 2 3 
Yang Number of 

Test Units 
34 5 11 

Temperature 
(°C) 

74 89 105 

GA (with 
same 
constraints) 

Number of 
Test Units 

34 5 11 

Temperature 
(°C) 

74.54 88.98 105 

 
Table 1- The comparison of GA and Yang’s results 

 
• According to table 1, you can see that the GA technique 

and Yang’s results have a close relationship. 
• MTTF; to identify the probability of overlapping our 

findings and Yang’s results. 

6 CONCLUSION 

In this paper, we introduced a general framework to 
obtain optimal accelerate test plans with a cost objective. The 
cost objective function is developed in a theoretical 
formulation with the test plan parameters. Then, this new 
framework is compared with the results obtained from Genetic 
algorithm. 

A genetic algorithm is often a discrete stochastic process 
that can be considered as a Markovian process. It means that 
several results can derive from the theory of this kind of 
process, which enables one to easily verify the optimization’s 
efficiency [5]. Moreover, GA is a simple and efficient method, 
so in the future we can use this technique as a good alternative 
method for estimation of probabilities. 
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