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Optimal accelerated test plan: optimization procedure using Genetic Algorithm 
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1,2,3 LASQUO laboratory, ISTIA, University of Angers 62, Av . Notre Dame du Lac, 49 000, 
Angers  
 
Abstract:  This paper describes an optimization procedure using Genetic Algorithm to define an 
optimal accelerated test plan considering an economic approach. We introduce a general framework 
to obtain plans of optimal accelerate tests with a specific objective, such as cost. The objective is to 
minimize the costs involved in testing without reducing the quality of the data obtained. The 
optimal test plans are defined by considering prior knowledge of reliability, including the reliability 
function and its scale and shape parameters, and the appropriate model to characterize the 
accelerated life. This information is used in Bayesian inference to optimize the test plan. To 
perform optimization, a specific genetic algorithm is decribed and applied to obtain the best test 
plan. This procedure is then illustrated on a numerical example. 
 
Keywords: Accelerated testing; Bayesian inference; parameter estimation; Maximum A Posteriori; 
optimization; cost; robustness; Genetic algorithm. 
 
1 Introduction 

 
(ALTs) are widely used in reliability studies. Because many modern high-reliability components are 
expected to perform their proper functions for a very long time, simply testing these components 
under use conditions will usually yield little useful information about reliability within practical 
time and cost constraints. Accelerating variables, such as temperature, are often applied to obtain 
failures more rapidly. The resulting data at the higher stresses are used to estimate, through 
extrapolation with an appropriate acceleration model, the life distribution of the component at 
specified use conditions (See Figure 1). 
 

 
Figure 1- Principle of ALT test 

 
Careful planning of an ALT is important to allow the most efficient use of limited resources, 
namely, time, number of test units, and the test facilities. Typically, ALT plans specify the levels of 
the accelerating variable and the quantity of available test units for these levels. With certain 
planning criteria, such as the estimation precision of a particular characteristic of the life 
distribution at use conditions, optimization can be used to find optimum test plan. Optimum test 
plans provide insight needed to obtain good practical test plans [1,5,6,9]. Moreover, a test plan 
needs to be developed to obtain appropriate and sufficient information in order to accurately 
estimate reliability performance at operating conditions, significantly reduce test times and costs 
and achieve other objectives. One of the first decisions to be made when designing a reliability 
verification test is to determine how many units to test. If many units are tested, the duration of the 
test will be short. With this approach, prototype costs will be high, and development time costs will 
be low. If few units are tested, the duration of the test will be longer and prototype costs will be 
low, but development time costs will be high. The second decision is to determine stress level and 
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corresponding censoring times to perform an accurate precision on reliability estimation. On these 
considerations, the optimal test plan has to be design on a global cost criterion including test cost 
and warranty cost. 
ALTs are often conducted to estimate the life distribution at the use conditions. The statistical error 
of the estimate depends upon the test plan. Obviously, it is desirable to device the optimal test plans 
that minimizes the error [8,9]. For a constant stress test, the test plans determine the stress levels, 
the number of test units allocated to each stress level, and other variables. In this work, we study the 
model by an evaluation of parameters using maximum likelihood and Bayesian methods. We 
estimate accelerated life model parameters allowing to assess the reliability function under 
operating conditions from only accelerated life data [5]. We provide an overview of the application 
of Bayesian inference to accelerated life testing (ALT) models with estimation by Maximum of A 
Posteriori (MAP) method in the case of constant stress levels. This work presents the approach in 
Bayesian estimation of parameters of models SVA. It helps reduce the confidence intervals by 
providing prior knowledge. The approach was applied to parametric models by studying the 
classical estimates and MAP. 
In this paper, an optimization test plan is proposed integrating the Bayesian inference and an 
objective function based on economical formulation. The proposed method consists of 5 subsequent 
steps: 

� Reliability target 
The first step consists of defining the concept of a reliability target, its scope, and the regulatory 
standards to be respected. Work at this stage is critical because it will influence all subsequent 
activities. Various metrics are used to characterize the reliability of products, such as MTTF, L10, or 
probability of failure for the warranty period. The verification consists of evaluating the risk of not 
reaching the reliability target using a point estimate and confidence interval. 

� Prior knowledge on product 
The Bayesian inference can be used to include all available knowledge. For most of the cases, 
typical values for the parameters can be found. The values and associated confidence intervals may 
be considered either as results of expertise using references (reliability handbooks such as FIDES 
[3]), as values associated with older/similar products, or as results of expert opinion(s). Moreover, 
in FIDES [3], acceleration modes and activation energy through influencing factors with respect to 
failure modes are given.  

� Test plan to optimize 
The kind of accelerated test plan is fixed at the beginning of study. Due to the better development of 
accelerated test model for constant stress, and well development of data analysis for reliability 
estimation, we consider constant stress testing. In practice, constant stress testing are the most 
common because of simplicity of stress application and accuracy on reliability estimation. So the 
number of stress levels and sample size are fixed. For designing test plan, the choice of an 
appropriate stress is importance, as well as to identify the appropriate limits (or stress levels); 
because the first and most obvious benefit of accelerated life testing is the time savings, which is 
based on the decrease in test duration due to the increased stress levels. The choice of two levels is 
statistically optimum for the estimate of the probability and three levels allow the linearity of stress 
transfer. Meeker, Nelson and Yang used three accelerated constant stress levels for obtaining the 
best compromise test plan. 
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Figure 2- Optimal test plan 



According to Figure 2, a simple test plan with three accelerated constant stress levels Si (i=1,2,3) is 
studied by considering the sample size n, the proportion allocation πi, of sample size and the 
censoring time τi at stress level Si. The sample size n and the maximum stress S3 are fixed. The low, 
middle stress level and the proportion allocation π1, π2 of sample size at stress level S1, S2 are 
unknown. 
In Bayesian statistics, the uncertainty about the unknown parameters is quantified used probability 
so that the unknown parameters are regarded as random variables. The decision variables of test 
plan optimization are chosen from among the test plan parameters. It is assumed that the reliability 
function 

0SR  belongs to a class of functions depending only on the parameters of location γ and 

shape β [2]. 
 

� Objective function 
The objective of the accelerated testing plan optimization is to minimize the global cost as defined 
by the costs of testing and operation. The evaluation of operation cost includes the difference 
between the reliability target and its estimation considering a risk α. This term allows us to 
introduce a robustness analysis according through an objective function.  
The principal optimization variables are: 

- lower and middle stress level S1 and S2, 
- proportion allocation π1 and π2 of sample size respectively at stress level S1 and S2. 

Additional optimization variables can be the censoring time τi at stress level Si, but there are 
generally predetermined by test schedule and other industrials constraints.  
 

� Optimization procedure 
To obtain the best test plan, we propose an optimization procedure using the genetic algorithm. The 
proposed method will be illustrated by a numerical example. 
 
2 Estimation in parametric ALT Model using Bayesian inference 

 
We consider the parametric ALT model has been described in [1]. After selecting the model, in 
order to provide estimates for the model's parameters, we apply maximum-likelihood estimation as   
point estimators.  The maximum likelihood estimators return a single point estimate for a given data 
set. In contrast, the Bayesian posterior is an entire distribution over the parameter space. We can 
turn this in to a point estimate by taking some measure of central tendency, such as the conditional 
mean of the parameter given the data. In Bayesian Inference by Maximum of A Posteriori, the 
Bayesian approach is based on the concept of subjective probability depending on the degree of 
belief in the occurrence of an event [4]. This is not a point value, which is estimated, but the 
probability distribution of the random variable (probability of non-functioning), the degree of belief 
that each probability value can be true. In Bayesian statistics, the uncertainty about the unknown 
parameters is quantified used probability so that the unknown parameters are regarded as random 
variables.  
To simplify the parametric model, we develop the methodology with one accelerating variable and 
a linear relationship between the location parameter and the stress level. Without adding 
complexity, the methodology can be generalized to multiple accelerating variables with linear 
relationship. 
It is assumed that the survival function R(t) belongs to a class of functions depending only on the 
parameters of scale η and shape β  [0]: 
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Several models, such as Weibull and lognormal, are just particular cases of the above form 
( ) )(ln1)(, 00 ttRetR t Φ−== −  respectively as detailed in [12]. 
In this section, we assume, for a particular case of a constant stress with one accelerating 



variable, that the logarithm of scale parameter η  follow a linear function of transformed stress S as: 
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For our particular case of constant stress, S, with one accelerating variable, the reliability 

function the equation (1) becomes: 
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The notations ( ) ( )ueRuR 0= , ℜ∈u , )ln(tu = , ( )10 ,γγγ = , allow us to rewrite the equation (2) as: 
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The likelihood function can be written as: 
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  (4) 

Note: Tij is the life time observed or censored of the j th unit from ith stress level group. 
 
We consider a prior information on unknown parameters modeled by the functions π(γ0), π(γ1), 
π(β). We assume that the variables ( )βγγ ,, 10  are independent and the joint prior distribution can be 

defined as: 
( ) ( ) ( ) ( )βπγπγπβγγπ σγγ ××= 1010 10

,,       (5) 

The choice of the form of π depends on degree of knowledge on parameter γ0, γ�� orβ. 
 
The continuous form of Bayes theorem for the random variable θ over the Ω domain, having ti, i = 
1..n as test results, is: 
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with π (θ) the mathematical form, which formalizes the prior information. 
 
With regard to the aspect of reversing in statistics, we consider a probability density as 
π�apo( 10,γγ ,β). As consequence, the ML theory can be applied. So a search of values that maximizes 

the π�apo( 10,γγ ,β) and the covariance matrix associated to these estimators will be searched. MAP 

method considers the a posteriori density function ),,( 10 Tapo βγγπ  and the punctual estimators of 

unknown parameters ( )βγγ ,, 10  are estimated so that they maximize: 

( )),,(max)ˆ,ˆ,ˆ( 1010 TArg apo βγγπβγγ =
    

(7) 

 
 
By differentiating after the variables ( )βγγ ,, 10  of the function ln [π�apo( 10,γγ ,β)] , the MAP 

estimators )ˆ,ˆ,ˆ( 10 βγγ  can be obtained by solving the equation system [1]:  
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Fisher information applies to the function that describes the information on the parameters, 
),,( 0 Tapo βγγπ  [1, 11] becomes: 
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So, the estimator of the reliability function 
0

ˆ
SR is defined by: 
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The parameters βγγ ˆ,ˆ,ˆ 01  and )ˆ,ˆ,ˆ( 10 βγγMAPI are obtained by Monte Carlo simulation [5]. 

 
3 Optimization Problem and Simulation 
 
3.1 Principle of method 

 
In the proposed method, we define an optimal accelerated testing plan, considering an objective 
function based on economic approach. Bayesian inference is used for optimizing the test plan, and 
taking into account the uncertainty on parameters. Thus we will have a robust optimal testing plan. 
We propose an optimization procedure using the genetic algorithm for obtaining the best test plan. 
 
3.2 Objective function 
 
The objective of the accelerated testing plan optimization is to minimize the global cost as defined 
by the costs of testing and operation. In designing the test plan, we define a contractual reliability 
metric target as probability of failure ptarget for warranty period (the operation time toperation). 
The global cost is defined by:  

operationtestingglobal C  C  C +=      (11) 
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ptarget represents the target as probability of failure for the warranty period and γ
operation represents the 

critical index for brand image loss. 
poperation represents the upper bound of the unilateral confidence interval for the risk α of estimated 
probability of failure during the operation time for the warranty period (see Figure 3). 
 
The verification consists of evaluating the risk of failing to reach the reliability target in terms of the 
point estimate and confidence interval. 

 
The point estimate is defined by: 
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and confidence interval on p̂ is determined by the fisher information matrix of MAP estimators. 
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Figure 3- Probability function of operation failure f(p) 
 

By considering estimator R̂  as a regular function of ( )βγ , we will define: 
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The function 
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is approximated by standard normal distribution N(0,1) with: 
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with αω the α-quantile of standard normal distribution N(0,1). 

The estimation of probabilityoperationp̂  , is derived from: 

( )operationSoperation tRp
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The operation cost is defined by considering risk α in terms of operationp̂ . This term allows us to 

introduce a robustness analysis according to objective function. poperation is function of π1, π2, S1, S2  
and τ1, τ2, τ3 and the optimization model can be written as follows: 

 
( )global

S

C
iii

Min
,, τπ

        (18) 

subject to ] [ 2,1,1,0 =∈ iiπ  and ,121 <+ ππ  ,0123 SSSS ≤≤≤  max123 ττττ ≤≤≤ . 

 
 



3.3 Optimization procedure and efficiency 
 

According to estimate of poperation in (17), the integration problem is intractable and numerical 
methods that are used to find the best test plan. Several optimization algorithms can be applied, 
including Least-mean-square and simulated annealing. In this paper, we propose an optimization 
procedure using Genetic Algorithm (GA) to define test plan and Monte-Carlo simulation in order to 
the numerically estimate poperation that leads to global cost as fitness function. The reasons of this 
choice are that GA is a quite simple and efficient technique to be applied with heterogeneous inputs, 
especially in research of an optimum accelerated life test plan [6]. As well as Hamada and al. has 
shown how GAs can be used to find near- optimal Bayesian experimental designs. Their 
methodology is easy to implement and allows a practical approach for designing even more 
complicated experiments. The near symmetry of the resulting best designs may suggest a 
symmetrical design which may indeed be optimal. In summary, they believe that GAs provide a 
useful addition to the statistical practitioner's toolkit for designing experiments [7]. Moreover, GA 
allows us to search the optimum with more freedom inputs. 
 
3.4 Genetic algorithm application 
 
In GA, the individuals are generated randomly in order to construct a population. After estimating 
the fitness of individuals, parents are selected from the population according to the fitness value. 
Offspring are generated from the parents by using genetic operators such as the mutation or 
crossover. For convenience, we restrict the definition of population to continuous independent 
variables. So, each element of the population is defined by a combination of factors (π1, π2, S1, S2, 
τ1, τ2, τ3) with constrains explained in formula (18). The fitness function corresponds to the global 
cost detailed in (11) and the programming is performed by GA MATLAB function with the specific 
selection, crossover and mutation operators. These genetic operators are used within the context of 
an elitist GA by describing the construction of an initial population of solutions and subsequent 
populations of solutions obtained. This condition guarantees that the best (most fit) solution in 
population of the k generation are not lost in population k+1 [7]. In the original GA, each new 
population completely replaces the previous one, thus it is possible that solution in new population 
is worse than the best solution in previous population. Consequently, very good solutions can be 
lost forever [7].  
To improve the performance of GA, specially the efficiency of crossover and mutation algorithm, 
adaptive GAs are often used in reliability-related optimization studies as Zhisheng Y. and al [10]. 
Adaptive GAs are capable of reducing the population scale and reducing the simulation time. New 
adjusting method using the mean and standard deviation of the population is employed on mutation-
first and crossover-first adaptive GA. According to [10] the new mutation-first GA is more 
efficient, we apply it with decreasing mutation ratio and increasing crossover ratio proportionally to 
the number of generations. 
For a mutation, the last two elements are replaced by two other ones chosen at random infeasible 
bound of constraints. If the mutation does not lead to good plans, they will be attributed a bad 
fitness and thus a low probability to be chosen later. We also decrease the probability that mutation 
occurs on each factor as the number of generations increases as the evolutionary phenomenon 
known as “punctuated equilibrium”.  
For a crossing, two parents P1 and P2 are chosen with probability proportional to their efficiency. 
They generate two infants E1 and E2 defined by the mean of each gene. Thus, the better the plans P1 
and P2 are, the more often similar infants are generated. As soon as there is hardly any evolution, it 
can be assumed that a local minimum of the final error is obtained. 
 
4 Numerical example and simulation data 
 

To illustrate our method, we will compare our solution consequences on a well-known example 



obtained by Yang [8] for the Weibull distribution with one accelerating variable. We also show the 
results of simple comparison studies between GAs and the response surface methodology. 
This example consider an electronic module for pump control that normally operates at 45°C.To 
estimate its reliability at the use condition, 50 units are to be tested at three elevated temperatures. 
The high one is 105°C, which is 5°C lower than the maximum allowable temperature. The 
censoring times are fixed for low, middle and high stress levels respectively at 1080, 600 and 380 
hours. The unequal censoring times are considered to be fixed due to industrial constraints (test 
schedule and total test time fixed). 
 
4.1 Yang’s compromise test plans 
 
In order to find the best compromise test plans, Yang fixed the proportion π2 to (1-π1)/3 and the 
transformed stress level S2 to (S1+S3)/2. From the use of reliability handbook and historical data, the 
parameters βγγ ,, 10 of linear function of transformed stress S are preestimated respectively by -

15.8, 8100.8 and 1.5. Yang determined the best compromise test plan that minimizes the variance of 
the MLE of the mean log life at the use stress level [8] based on standardized variance formulation 
given in [9]. 
 
4.2 Comparisons and results 
 
To complete our approach, we define the interval values of prior knowledge for 

βγγ ,, 10 respectively by [-17, -13], [-10100, -6100] and [1.3, 1.7]. According to that, we consider a 

prior knowledge following normal distribution on independent variables βγγ ,, 10 obtained by the 

moments method. The parameters for evaluating the testing cost and operation cost are given in 
Table 1. 
 

Table 1- Values of parameters for evaluating the Testing Cost and the operation Cost 
 

Parameters of Testing Cost Parameters of operation Cost 

Testing unit price 50 € P target 0.01 

Testing fixed cost 1000 € Sales population 100 units 

Cost per hour 10 € Warranty time 150 hours 

Cost per batch 1000 € Replace unit price 100 € 

Cost per hour per batch 5 € After sales cost 10.000 € 

Max units number per batch 12 Brand image loss 100 € 

γtesting 1.3 γoperation 1.1 

 
The table 2 gives the results by proposed approach (GAs) and Yang’s test plan with the same 
constraints. The results show that the GAs optimization generates the similar results. 
One of the principal added values using GA optimization is to provide test plan that allow adding 
more freedom variables without adding complexity and times consuming explosion. In this 
example, the test plan can be improved by adding π2 and S2 as optimization variables. The table 2 
gives the results by proposed approach in "releasing" constraints on π2 and S2. The result shows a 
different optimum considering global cost evaluation instead of reliability estimation accuracy.  
 
 
 



Table 2- Comparison of GA and Yang’s results 
 

 

Global cost 
evaluation 

Group 1 2 3 

Yang best compromise test 
plan 

4.3364e+004 Number of Test Units 34 5 11 
Temperature (°C) 74 89 105 

GAs best compromise test 
plan with Yang constraints 

4.3354e+004 Number of Test Units 34 5 11 
Temperature (°C) 74.54 88.98 105 

GAs best compromise test 
plan 

3.2265e+004 Number of Test Units 9 7 34 
Temperature (°C) 75.34 87.93 105 

 
 
5 Conclusion 

 
In this paper, we introduced an optimization procedure using the genetic algorithm to obtain 
optimal accelerated test plans considering a cost objective. GA is a simple and efficient technique to 
be applied with heterogeneous inputs, especially in research of an optimum accelerated life test plan 
[6]. Moreover, this GA procedure allows us to improve best compromise test plans by searching the 
optimum with more freedom variables on ALT plan.  
The cost objective function depends on the parameters of test plan that includes batch proportion, 
stress level and censoring times. Generally, the censoring times are fixed in test plan definition. To 
define these parameters, an optimization procedure is developed to minimize an economical 
function (testing and operational costs) with taking into account the uncertainties on input data by 
the Bayesian inference. The optimization process can be also applying to conduct a test. It will 
allows to verify the compatibility of results with prior knowledge and reduce the censoring time in 
case of "Good results" while keeping the same level of risk.  
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