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Optimal accelerated test plan: optimization procedee using Genetic Algorithm

Seyyedeh zohreh Fatefi_aurent Sainti§, Fabrice Gueri

123 | ASQUO laboratory, ISTIA, University of Angers 62, Av . Notre Dame diac, 49 000,
Angers

Abstract: This paper describes an optimization proceduregu§enetic Algorithm to define an
optimal accelerated test plan considering an ecanapproach. We introduce a general framework
to obtain plans of optimal accelerate tests wisipecific objective, such as cost. The objectivi® is
minimize the costs involved in testing without remhg the quality of the data obtained. The
optimal test plans are defined by considering pkimywledge of reliability, including the reliabiit
function and its scale and shape parameters, aadapipropriate model to characterize the
accelerated life. This information is used in Bagesinference to optimize the test plan. To
perform optimization, a specific genetic algoritiisndecribed and applied to obtain the best test
plan. This procedure is then illustrated on a nucakexample.

Keywords: Accelerated testing; Bayesian inference; paramesgmation; Maximum A Posteriori;
optimization; cost; robustness; Genetic algorithm.

1 Introduction

(ALTs) are widely used in reliability studies. Beésa many modern high-reliability components are
expected to perform their proper functions for aydeng time, simply testing these components
under use conditions will usually yield little uskinformation about reliability within practical
time and cost constraints. Accelerating variabsesh as temperature, are often applied to obtain
failures more rapidly. The resulting data at thghlkr stresses are used to estimate, through
extrapolation with an appropriate acceleration nhottee life distribution of the component at
specified use conditions (See Figure 1).
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Figure 1- Principle of ALT test

Careful planning of an ALT is important to allowetimost efficient use of limited resources,
namely, time, number of test units, and the tedtiti@s. Typically, ALT plans specify the level$ o
the accelerating variable and the quantity of add test units for these levels. With certain
planning criteria, such as the estimation precisadna particular characteristic of the life
distribution at use conditions, optimization canused to find optimum test plan. Optimum test
plans provide insight needed to obtain good prattiest plans [1,5,6,9]. Moreover, a test plan
needs to be developed to obtain appropriate anficisat information in order to accurately
estimate reliability performance at operating ctinds, significantly reduce test times and costs
and achieve other objectives. One of the first slens to be made when designing a reliability
verification test is to determine how many unitddst. If many units are tested, the duration ef th
test will be short. With this approach, prototymsts will be high, and development time costs will
be low. If few units are tested, the duration of test will be longer and prototype costs will be
low, but development time costs will be high. Tleead decision is to determine stress level and



corresponding censoring times to perform an aceysegcision on reliability estimation. On these
considerations, the optimal test plan has to begdesn a global cost criterion including test cost
and warranty cost.
ALTs are often conducted to estimate the life dstion at the use conditions. The statistical lerro
of the estimate depends upon the test plan. Oblyiatigs desirable to device the optimal test glan
that minimizes the error [8,9]. For a constantssirest, the test plans determine the stress Jevels
the number of test units allocated to each steasd,land other variables. In this work, we study t
model by an evaluation of parameters using maxintikelihood and Bayesian methods. We
estimate accelerated life model parameters allovtmgassess the reliability function under
operating conditions from only accelerated lifeadf]. We provide an overview of the application
of Bayesian inference to accelerated life testigl) models with estimation by Maximum of A
Posteriori (MAP) method in the case of constargsstiievels. This work presents the approach in
Bayesian estimation of parameters of models SVAelps reduce the confidence intervals by
providing prior knowledge. The approach was appliedparametric models by studying the
classical estimates and MAP.
In this paper, an optimization test plan is propogsgegrating the Bayesian inference and an
objective function based on economical formulatibime proposed method consists of 5 subsequent
steps:

> Reliability target
The first step consists of defining the conceptaatliability target, its scope, and the regulatory
standards to be respected. Work at this stageitisatrbecause it will influence all subsequent
activities. Various metrics are used to characatetie reliability of products, such as MTThyg,Lor
probability of failure for the warranty period. Therification consists of evaluating the risk oft no
reaching the reliability target using a point estienand confidence interval.

» Prior knowledge on product
The Bayesian inference can be used to includevalillable knowledge. For most of the cases,
typical values for the parameters can be found.Vvithees and associated confidence intervals may
be considered either as results of expertise ugfegences (reliability handbooks such as FIDES
[3]), as values associated with older/similar piduor as results of expert opinion(s). Moreover,
in FIDES [3], acceleration modes and activationrgnéhrough influencing factors with respect to
failure modes are given.

> Test plan to optimize
The kind of accelerated test plan is fixed at teégifining of study. Due to the better development of
accelerated test model for constant stress, antldeeklopment of data analysis for reliability
estimation, we consider constant stress testingpréictice, constant stress testing are the most
common because of simplicity of stress applicatod accuracy on reliability estimation. So the
number of stress levels and sample size are fiked. designing test plan, the choice of an
appropriate stress is importance, as well as tatifgethe appropriate limits (or stress levels);
because the first and most obvious benefit of acatdd life testing is the time savings, which is
based on the decrease in test duration due totheaised stress levels. The choice of two levels is
statistically optimum for the estimate of the proiity and three levels allow the linearity of stge
transfer. Meeker, Nelson and Yang used three aetete constant stress levels for obtaining the
best compromise test plan.
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Figure 2- Optimal test plan



According to Figure 2, a simple test plan with theecelerated constant stress le®&(s=1,2,3) is
studied by considering the sample sizethe proportion allocation7, of sample size and the
censoring time; at stress leve. The sample size and the maximum streS§s are fixed. The low,
middle stress level and the proportion allocatimgn 7z of sample size at stress lev@l S are
unknown.

In Bayesian statistics, the uncertainty about thienown parameters is quantified used probability
so that the unknown parameters are regarded asmamdriables. The decision variables of test
plan optimization are chosen from among the tesmt plarameters. It is assumed that the reliability
function Ry belongs to a class of functions depending only hengarameters of locatiopand

shapes [2].

» Objective function

The objective of the accelerated testing plan ogtition is to minimize the global cost as defined
by the costs of testing and operation. The evalnatf operation cost includes the difference
between the reliability target and its estimatiangidering a riska. This term allows us to
introduce a robustness analysis according throngbbgective function.
The principal optimization variables are:

- lower and middle stress levBl andS,

- proportion allocatioryg and 7z of sample size respectively at stress |&endS.
Additional optimization variables can be the cemsprtime 7; at stress level, but there are
generally predetermined by test schedule and athestrials constraints.

» Optimization procedure
To obtain the best test plan, we propose an opditioiz procedure using the genetic algorithm. The
proposed method will be illustrated by a numereample.

2 Estimation in parametric ALT Model using Bayesian nference

We consider the parametric ALT model has been destrin [1]. After selecting the model, in
order to provide estimates for the model's pararsetee apply maximume-likelihood estimation as
point estimators. The maximum likelihood estimat@turn a single point estimate for a given data
set. In contrast, the Bayesian posterior is amresmlistribution over the parameter space. We can
turn this in to a point estimate by taking some soe@ of central tendency, such as the conditional
mean of the parameter given the data. In Bayesierdnce by Maximum of A Posteripthe
Bayesian approach is based on the concept of sivgjgarobability depending on the degree of
belief in the occurrence of an evddi. This is not a point value, which is estimated, the
probability distribution of the random variable gpability of non-functioning), the degree of belief
that each probability value can be true. In Bayesiatistics, the uncertainty about the unknown
parameters is quantified used probability so thatunknown parameters are regarded as random
variables.

To simplify the parametric model, we develop thehndology with one accelerating variable and
a linear relationship between the location parameted the stress level. Without adding
complexity, the methodology can be generalized tdtiple accelerating variables with linear
relationship.

It is assumed that the survival functiB(t) belongs to a class of functions depending onlyhean
parameters of scaleand shapes [O]:

R, (t)= R{&ﬂ,(ﬂ,ﬁ >0) (1)

Several models, such as Weibull and lognormal,jase particular cases of the above form
Ro(t)=e™',Ry(t) =1- o(nt) respectively as detailed in [12].
In this section, we assume, for a particular cals@ gonstant stress with one accelerating



variable, that the logarithm of scale parametdpllow a linear function of transformed streéSss
In(7)=y, + .S

For our particular case of constant streéSswith one accelerating variable, the reliability
function the equation (1) becomes:

Ri(t) =R, (&%) 2)

The notationsr(u)=Ryle"), uOO, u=in®, y=(y,.; ), allow us to rewrite the equation (2) as:

Int-y'S
Ro(t)= F{ g j 3)

The likelihood function can be written as:

_ n Tij _yTs(i) 4 Tij -y sl
L(le,ﬁ)—ﬂ”ﬁ-/{ U5 J]R{ T J} 4)

Note:Tj is the life time observed or censored ofij]elnit fromi™ stress level group.

=

We consider a prior information on unknown paramset@odeled by the functiong(yo), z(y1),
7(B). We assume that the variabl(3§,;/l,ﬂ) are independent and the joint prior distributiam be
defined as:

LR AVALYAVARYAV:) (5)
The choice of the form afrdepends on degree of knowledge on paramgtgrors.

The continuous form of Bayes theorem for the randanmble 8 over theQ domain, having;, i =

1..n as test results, is:
Llt, ,..t./8)m (6
ﬂapo(gltll"'tn): Ll n ) ( ) (6)

JoLlt - tn/6)7 (6)de
with 11(8) the mathematical form, which formalizes the pridormation.

With regard to the aspect of reversing in stasisticve consider a probability density as
Taod Vo, V1.B). As consequence, the ML theory can be applied. Ssaech of values that maximizes

the 7/zpd ;. V,,B8) and the covariance matrix associated to thesmatstrs will be searchedAP
method considers the a posteriori density funclz'ggg(yo,yl,ﬂﬁ) and the punctual estimators of
unknown parameter§,, ;, ) are estimated so that they maximize:

(o 75, B) = Argma{7z,, (v4. 15, BT)) (7)

By differentiating after the variabldg;, y;, ) of the function In fzed V5. /;.8)] , the MAP
estimators(%,fq,,@) can be obtained by solving the equation system [1]

In| 77,00 (Vo 11, B ]_ 0 (i=12) dIn|7z,,(vo 1. B)] _
oy, ’ B

Fisher information applies to the function thatatéses the information on the parameters,
T,0s(Vo, ¥, BIT) [1, 11] becomes:

=0 (8)
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So, the estimator of the reliability functid%sD is defined by:
~ In(t) - p*S©
t)=R ———— 10
R (t) F{ i (10)

MAP

The parameterns, f/o,,@ andl (%,;71,/3’) are obtained by Monte Carlo simulation [5].

3 Optimization Problem and Simulation
3.1Principle of method

In the proposed method, we define an optimal acagld testing plan, considering an objective
function based on economic approach. Bayesiananéer is used for optimizing the test plan, and
taking into account the uncertainty on paramefénsis we will have a robust optimal testing plan.
We propose an optimization procedure using the tgeakgyorithm for obtaining the best test plan.

3.2 Objective function

The objective of the accelerated testing plan ogfition is to minimize the global cost as defined
by the costs of testing and operation. In designinegtest plan, we define a contractual reliability
metric target as probability of failupgage: for warranty period (the operation timgeration-

The global cost is defined by:

Cglobal = C + C (11)

testing operation

where
C

testing

= fixedtestingcost+ nx unitprice+ 7, x costper testig hour

ytesting
+ Z(Nlbj [Fixedcostperbatch+ I, X costper testig hourperbatcﬂ

Nb represents the maximum number of units per batch'g:ing represents the critical index for
increasing the number of batch per stress level.

C = fixed operatiorcost+ ( ~ Prarger) X Productpopulatiorunit cost

)y operation

operation poperation

And
+ costof brandmagelossx (pOperation ~ Prarget
Prarget FEPresents the target as probability of failunetfie warranty period angyeraionrepresents the
critical index for brand image loss.

Poperation represents the upper bound of the unilateral denfte interval for the risé of estimated
probability of failure during the operation time fitne warranty period (see Figure 3).

The verification consists of evaluating the riskaifing to reach the reliability target in termfthe
point estimate and confidence interval.

The point estimate is defined by:

=1- e_(%(ywns))ﬂ

~

p (12)



and confidence interval op is determined by the fisher information matrix oAM estimators.
f(p)
2\

V(p)

isk a

»
>

0 ™ PogRration 1 p

Figure 3- Probability function of operation failuie)

By considering estimatoR as a regular function c(lj/,ﬁ)we will define:

Qs () = In 1_%% Qs (1) = In % (13)
The functionQg takes values iR, therefore the speed of convergence@gﬁfto the limit law is
greater than that df?sb to its limit law.
We obtain that the law

Qs (1) - Qg (¥
Too
is approximated by standard normal distributNgf,1) with:
(00)? = L‘?% ,...,ac?so , 0, J[I wAP(y, ,3)]_1(6(?5’ ,...,ac?so , 0Q J
oo O OB % OV 0B

(14)

_ BZR'(R_l(l':‘)s](t))) i H 1 Jm m Ic /5, 1 2( 1 J"T (0) < MLy~ 1 AT Q02 MMl s 5

= — = X - zz I CIMAP f - ?2 S |IMAP y + S IMAP y

( R O-R O J e b 2 Saluie (1.0 + (7 SOV 1™ (7. )
(15)

|I,c

e represents the terms of the mat[rlik“AP( Vor Vs ,8)]_1.
The upper bound of approximate unilateral confageimterval (1) for FAQ% t)is

1-R®) ¢ B
(1+F}$%Rs(°t)exp{— O 00®Wq }J (16)

with w, thea-quantile of standard normal distributibi0,1).

The estimation of probabilit@operaﬂo', is derived from:

f)operation: 1_ Ii% (toperatio) (17)-

The operation cost is defined by considering rsik terms of ﬁoperaﬂo‘. This term allows us to

introduce a robustness analysis according to abgeéitinction. poperaiioniS function of 7z, 73, S, S
andzy, 72 73 and the optimization model can be written as foow

M | n (Cglobal) (18)

.S .7

subjecttorr, 1]01[,i =12 andn, +n,<1, $,<S,<S<S,, I,<T,<T,<T

= %1—= "max"



3.3 0ptimization procedure and efficiency

According to estimate OPoperation IN (17), the integration problem is intractabled amumerical
methods that are used to find the best test plamer@l optimization algorithms can be applied,
including Least-mean-square and simulated annealimghis paper, we propose an optimization
procedure using Genetic Algorithm (GA) to definsttelan and Monte-Carlo simulation in order to
the numerically estimatpoperaiion that leads to global cost as fitness function. féasons of this
choice are that GA is a quite simple and efficiegshnique to be applied with heterogeneous inputs,
especially in research of an optimum accelerafiedtdist plan [6]. As well as Hamada and al. has
shown how GAs can be used to find near- optimal eBeEyn experimental designs. Their
methodology is easy to implement and allows a pralctapproach for designing even more
complicated experiments. The near symmetry of tbsulting best designs may suggest a
symmetrical design which may indeed be optimalsummary, they believe that GAs provide a
useful addition to the statistical practitionedslkit for designing experiments [7]. Moreover, GA
allows us to search the optimum with more freedopuis.

3.4 Genetic algorithm application

In GA, the individuals are generated randomly idesrto construct a population. After estimating
the fitness of individuals, parents are selectednfthe population according to the fitness value.
Offspring are generated from the parents by usiegetic operators such as the mutation or
crossover. For convenience, we restrict the deédimibf population to continuous independent
variables. So, each element of the population imel@ by a combination of factorsz( 7z, S, S,

171, T2, 3) With constrains explained in formula (18). Thndiss function corresponds to the global
cost detailed in (11) and the programming is penfa by GA MATLAB function with the specific
selection, crossover and mutation operators. Thgesetic operators are used within the context of
an elitist GA by describing the construction of iaitial population of solutions and subsequent
populations of solutions obtained. This conditiamagantees that the best (most fit) solution in
population of the k generation are not lost in papon k+1 [7]. In the original GA, each new
population completely replaces the previous ongs this possible that solution in new population
is worse than the best solution in previous popatatConsequently, very good solutions can be
lost forever [7].

To improve the performance of GA, specially thecsfhcy of crossover and mutation algorithm,
adaptive GAs are often used in reliability-relatgdimization studies aghisheng Y. and al [10].
Adaptive GAs are capable of reducing the populasicale and reducing the simulation time. New
adjusting method using the mean and standard dwviat the population is employed on mutation-
first and crossover-first adaptive GA. According [tt0] the new mutation-first GA is more
efficient, we apply it with decreasing mutationioadnd increasing crossover ratio proportionally to
the number of generations

For a mutation, the last two elements are repldgetivo other ones chosen at random infeasible
bound of constraints. If the mutation does not leadjood plans, they will be attributed a bad
fithess and thus a low probability to be choseerldtVe also decrease the probability that mutation
occurs on each factor as the number of generatimreases as the evolutionary phenomenon
known as “punctuated equilibrium”.

For a crossing, two parentg &d B are chosen with probability proportional to thefficiency.
They generate two infants Bnd E defined by the mean of each gene. Thus, the bbggrlans P1
and P2 are, the more often similar infants are gded. As soon as there is hardly any evolution, it
can be assumed that a local minimum of the firalres obtained.

4 Numerical example and simulation data

To illustrate our method, we will compare our smntconsequences on a well-known example



obtained by Yang [8] for the Weibull distributiontiv one accelerating variablé/e also show the
results of simple comparison studies between GAlstla® response surface methodology.

This example consider an electronic module for puwoptrol that normally operates at 45°C.To
estimate its reliability at the use condition, 50ts are to be tested at three elevated tempesature
The high one is 105°C, which is 5°C lower than theximum allowable temperature. The
censoring times are fixed for low, middle and hgjress levels respectively at 1080, 600 and 380
hours. The unequal censoring times are considerdzk tfixed due to industrial constraints (test
schedule and total test time fixed).

4.1Yang’s compromise test plans

In order to find the best compromise test planspgréixed the proportiorns to (1-72)/3 and the
transformed stress lev8} to (5+S3)/2. From the use of reliability handbook and hista data, the
parametersy,, y;, S of linear function of transformed streSsare preestimated respectively by -

15.8, 8100.8 and 1.5. Yang determined the best oummipe test plan that minimizes the variance of
the MLE of the mean log life at the use stressllf8based on standardized variance formulation
given in [9].

4.2 Comparisons and results

To complete our approach, we define the intervallues of prior knowledge for
Yo, Vi, B respectively by [-17, -13], [-10100, -6100] and3/11.7]. According to that, we consider a

prior knowledge following normal distribution ondependent variableg,, y;, 5 obtained by the

moments method. The parameters for evaluating ébiény cost and operation cost are given in
Table 1.

Table 1- Values of parameters for evaluating tretilig Cost and the operation Cost

Parameters of Testing Cost Parameters of operation Cost
Testing unit price 50€ P target 0.01
Testing fixed cost 1000€ Sales population 100 units
Cost per hour 10€ Warranty time 150 hours
Cost per batch 1000€ Replace unit price 100€
Cost per hour per batch 5€ After sales cost 10.000€
Max units number per batch 12 Brand image loss 100€
Veesting 13 Yoperation 1.1

The table 2 gives the results by proposed apprd@azks) and Yang's test plan with the same
constraints. The results show that the GAs optitiimagenerates the similar results.

One of the principal added values using GA optitnazeais to provide test plan that allow adding
more freedom variables without adding complexityd @imes consuming explosion. In this
example, the test plan can be improved by addingndS, as optimization variables. The table 2
gives the results by proposed approach in "relgasiaonstraints orvg andS,. The result shows a
different optimum considering global cost evaluatiostead of reliability estimation accuracy.



Table 2- Comparison of GA and Yang's results

Global cosi Groug 1 2 3

evaluation
Yan¢ best compromise te| 4.3364e+00 Number of Test Unii 34 5 11
plan Temperature (°C 74 89| 10¢
GAs best compromise te| 4.3354e+00¢ Number of Test Unii 34 5 11
plan with Yang constraints Temperature (°C 74.5.] 88.9¢| 10t
GAs best compromise te| 3.2265e+00 Number of Test Unii 9 7 34
plan Temperature (°C 75.3¢| 87.97] 10t

5 Conclusion

In this paper, we introduced an optimization pragedusing the genetic algorithm to obtain
optimal accelerated test plans considering a dgsttive. GA is a simple and efficient technique to
be applied with heterogeneous inputs, especialigsearch of an optimum accelerated life test plan
[6]. Moreover, this GA procedure allows us to impedoest compromise test plans by searching the
optimum with more freedom variables on ALT plan.

The cost objective function depends on the parasetetest plan that includes batch proportion,
stress level and censoring times. Generally, tinsareng times are fixed in test plan definition. To
define these parameters, an optimization procedtrdeveloped to minimize an economical
function (testing and operational costs) with tgkinto account the uncertainties on input data by
the Bayesian inference. The optimization process & also applying to conduct a test. It will
allows to verify the compatibility of results withrior knowledge and reduce the censoring time in
case of "Good results" while keeping the same lef/abk.
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