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We report results of collisions between coaxial vortex solitons with topological charges �S in the complex
cubic-quintic Ginzburg-Landau equation. With the increase of the collision momentum, merger of the vortices
into one or two dipole or quadrupole clusters of fundamental solitons �for S=1 and 2, respectively� is followed
by the appearance of pairs of counter-rotating “unfinished vortices,” in combination with a soliton cluster or
without it. Finally, the collisions become elastic. The clusters generated by the collisions are very robust, while
the “unfinished vortices,” eventually split into soliton pairs.

DOI: 10.1103/PhysRevE.78.056601 PACS number�s�: 05.45.Yv

I. INTRODUCTION

The different types of complex Ginzburg-Landau �CGL�
equations are universal models for the description of pattern
formation in nonlinear dissipative media �1�. Optical set-
tings, such as laser cavities, provide for important implemen-
tations of various types of the CGL equations �2–4�. A physi-
cally significant class of patterns produced by these models
in two and three dimensions �2D and 3D� are localized vor-
tices, i.e., dissipative solitons with embedded vorticity. Sta-
bilization of the vortices is a challenging problem, as azi-
muthal perturbations tend to split them �5–7�.

A paradigmatic model of this type, which was introduced
by Petviashvili and Sergeev �8� exactly with the purpose of
modeling 2D localized vortices, and has later drawn a great
deal of attention—first of all, in its 1D variant �9�—is the
CGL equation with the cubic-quintic �CQ� nonlinearity. Non-
linear optical media that feature the CQ response, in a com-
bination with nonlinear loss �two-photon absorption�, include
chalcogenide glasses �10� and organic materials �11�. In ad-
dition to these solid-state media, optical nonlinearity of the
same type was predicted �12� and observed �13� in aqueous
colloids, and was also reported in dye solutions �14�.

In the framework of the CQ CGL equations in two dimen-
sions, stable solitary vortices �alias vortex solitons�, with to-
pological charge �vorticity� S=1 and 2, were constructed in
works �15�, and their 3D counterparts for S=1, 2, and 3 have
been obtained in Refs. �16,17�. The stability analysis for
those solutions was based on the computation of stability
eigenvalues, and verified in direct simulations of the evolu-
tion of perturbed vortices. 3D complexes including a vortical
component were found too, as solutions to equations of the
CGL type �18�.

Once stable 3D solitons are available, a problem of
straightforward interest is to consider collisions between
them. Recently �19�, we investigated collisions between
corotating �S1=S2�S� 3D solitary vortices in the coaxial
configuration, with the vorticity assuming values S=1 and 2.
The starting point was the three-dimensional CQ CGL equa-

tion in the general form, see, e.g., Refs. �16,17,20�,

iUz + �1

2
− i���Uxx + Uyy� + �D

2
− i��Utt

+ �i� + �1 − i���U�2 − �� − i���U�4�U = 0. �1�

In term of optical cavities, U�z ,x ,y , t� is the local amplitude
of the electromagnetic wave in the bulk medium which
propagates along axis z. The transverse coordinates are x and
y, while the temporal variable is t=T−z /V0, where T is time
and V0 the group velocity of the carrier wave. The coeffi-
cients which are scaled to be 1 /2 and 1 in Eq. �1� account,
respectively, for diffraction in the transverse plane and the
self-focusing Kerr nonlinearity, coefficients �, �, and � rep-
resent, respectively, the linear loss, cubic gain, and quintic
loss, while ��0 is the effective diffusivity in the transverse
plane. The latter coefficient appears in models of laser cavi-
ties, where it combines the dephasing of the polarization in
the dielectric medium, cavity loss, and detuning between the
cavity’s and atomic frequencies �3�.

Further, the coefficient ��0 in Eq. �1� accounts for the
self-defocusing quintic nonlinearity, that may compete with
the cubic term, according to the experimental observations
�10–14�, D is the group-velocity dispersion �GVD� coeffi-
cient, with D	0 and D
0 corresponding, respectively, to
the anomalous and normal GVD, and ��0 accounts for the
spectral filtering �alias dispersion of the linear loss�. In both
the 2D or 3D nonlinear Schrödinger equation with a CQ
nonlinearity, the quintic term must be self-defocusing, to ar-
rest the collapse induced by the self-focusing cubic term
�6,21�. However, the self-defocusing sign of the quintic term
is not necessary in the case of the CGL equation, because the
collapse is prevented by the stronger effect of the quintic loss
�16�. In fact, the experimentally observed quintic nonlinear-
ity in the above-mentioned colloidal media may indeed be
the self-focusing �13�. The sign of D is not crucial either,
because the existence of stable fundamental and vortical 3D
dissipative solitons was demonstrated for both anomalous
�16� and normal �17� GVD, either case being relevant to
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optics �in the case of D
0, the soliton develops a phase
chirp along the temporal direction�.

In Ref. �19�, Eq. �1� was taken with �=0, which admits
free motion of solitons along axis z, generated by the appli-
cation of a “kick,” i.e., multiplication of a quiescent solution
by exp�−i�t�. In fact, the natural size of � is very small
indeed, unless the filtering is enhanced by optical filters in-
serted into the cavity. The mobility of the solitons opens the
way to study collisions between them, setting two solitons in
motion by means of the application of the kicks of opposite
signs to them �22�. On the contrary to that, free motion in the
�x ,y� plane is impeded by the “diffusion” term in Eq. �1�
with �	0. As shown earlier �16,17�, this term is necessary
for the stability of localized vortices, while fundamental soli-
tons, with S=0, are stable at �=0 as well; both the funda-
mental solitons and vortices may be stable at �=0.

The coaxial geometry considered in Ref. �19� made sys-
tematic investigation of collisions between corotating soli-
tary vortices practically feasible, due to the axial symmetry
of the configuration. Note that the numerical integration of
Eq. �1� was performed in Cartesian coordinates, hence po-
tentially dangerous small perturbations which might break
the axial symmetry were included in the numerical analysis.
Depending on the collision momentum �kick�, �, three ge-
neric outcomes were observed: Merger of the corotating vor-
tices into a single one at small �; quasielastic interaction at
large �; and creation of an extra solitary vortex �“soliton
birth” in terms of Ref. �23�� in an intermediate region.

The subject of the present work is a natural extension of
the analysis of the case of collisions between “counter-
rotating” vortex solitons, i.e., ones with opposite vorticities,
S1=−S2=1 and 2. Because collisions between solitary vorti-
ces and antivortices in the 3D space have never been studied
before, in this paper we limit the consideration to the most
tractable coaxial configuration, similar to that considered in
Ref. �19�. The results, produced by systematic simulations of
the collisions in the framework of 3D equation �1�, are sum-
marized in Sec. II. At small values of �, slow collisions are
inelastic, leading to a merger of the vortices into one or two
clusters of fundamental solitons �dipoles or quadrupoles in
the cases of S= �1 and S= �2, respectively�. In the case
when two clusters are generated by the collision, they feature
decelerating rotation in opposite directions. With the increase
of �, two “unfinished vortices” �counter-rotating multi-
humped objects without a through hole in the center� emerge
from the collision; at intermediate values of �, they appear
along with a cluster of fundamental solitons. As a matter of
fact, the “unfinished vortices” replace the original solitary
vortices. Finally, the collision becomes elastic at large values
of �. We also explore the post-collision dynamics of the
emerging objects. The dipolar and quadrupolar clusters fea-
ture very slow expansion, being robust against strong pertur-
bations. On the contrary, the “unfinished vortices” eventually
split into dipolar pairs of fundamental solitons.

It is relevant to stress that, at all considered values of the
parameters, the collision of counter-rotating vortices never
resulted in their complete annihilation �decay into zero�. This
observation demonstrates that the opposite vorticities carried
by the colliding solitons provide for a barrier separating the
dynamical regime from falling into the attraction basin of the

zero solution. Indeed, all the outcomes of the collisions fea-
ture a signature of the initial vorticities.

II. COLLISIONS BETWEEN COUNTER-ROTATING
VORTEX SOLITONS

A. Settings

Stationary localized solutions to Eq. �1� are sought for in
the usual form,

U�z,x,y,t� = ��r,t�exp�ikz + iS� , �2�

where r and  are the polar coordinates in the �x ,y� plane,
S�0 and k are the integer vorticity and real wave number,
and the complex function ��r , t� obeys the equation

�1

2
− i����rr +

1

r
�r −

S2

r2 �� +
D

2
�tt

+ �i� + �1 − i�����2 − �� − i�����4�� = k� , �3�

where we set �=0, as said above. Localized solutions to Eq.
�3� must decay as r�S� at r→0, and exponentially at r , �t�
→�. A family of stable solitary-vortex solutions to Eq. �1�
was constructed in Ref. �19�, by dint of direct simulations of
the radial equation, which was obtained by the substitution
of U�z ,x ,y , t�=��z ,r , t�exp�iS� in Eq. �1� �with �=0�, i.e.,

i�z + �1

2
− i����rr +

1

r
�r −

S2

r2 �� +
D

2
�tt

+ �i� + �1 − i�����2 − �� − i�����4�� = 0. �4�

Stationary solutions were found as attractors of this equation,
generated by the evolution of input pulses ��0,r , t�
=Ar�S� exp�−�1 /2��r2 /�2+ t2 /�2��, with constants A ,�, and �
�19�.

As well as in work �19�, that was dealing with collisions
between corotating vortex solitons, a generic situation for the
collisions between counter-rotating ones may be adequately
represented by fixing parameter values D=1 �which corre-
sponds to anomalous GVD�, �=1, �=0.1, �=0.4, �=0.5,
and �=2.3. In this case, the numerical analysis performed in
Ref. �19� yields stable solitary vortices with propagation con-
stants �defined as per Eq. �2�� k=0.500 40 for S= �1, and
k=0.503 87 for S= �2. They are also characterized by val-
ues of their norm, alias total energy, in terms of optics,

E � 2�	
0

�

rdr	
−�

+�

dt���r,t��2, �5�

which takes the values E�S=1�
171 and E�S=2�
310.
Note that, while the above-mentioned propagation constants
for S=1 and 2 take close values, the respective energies are
broadly different, which is typical to stable vortex solitons in
models with the CQ nonlinearity �6�.

Thus, to simulate the collisions between counter-rotating
solitary vortices, we started, at z=0, with a pair of stable
solitary vortices in the form of ��r , t+T /2�exp�iS� and
��r , t−T /2�exp�−iS�, with S=1 or 2, which are separated
by a large initial temporal distance, �t=T. In most cases, we
took T=30, but varying the initial separation did not affect
outcomes of the collisions.
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As mentioned above, the vortices are set in motion by
kicking them in the opposite directions along the common
axis, i.e., multiplying each one by exp��i�t�. Thus, the full
initial configuration U�0,x ,y , t� was

U�0,x,y,t� = ��r,t + T/2�exp�iS + i�t�

+ ��r,t − T/2�exp�− iS − i�t� . �6�

Because, at �=0, Eq. �1� is Galilean invariant in the longi-
tudinal �i.e., axial� direction, the application of the kick to an
isolated quiescent soliton, U0�z , t ,x ,y�, generates an exact
solution in the form of a “walking” one,

U��z,x,y,t� = U0�z,x,y,t � a��exp��i�t − ia�2z/2� . �7�

The numerical integration of Eq. �1� was carried out by
means of a full 3D implicit �Crank-Nicolson� finite-
difference scheme, with typical transverse and longitudinal
step sizes �x=�y=�t=0.2 and �z=0.01 �it was checked
that reducing the step sizes did not affect the results�. The
nonlinear finite-difference equations generated by the
scheme were solved with the help of the Picard iteration
method, and the resulting linear system was then treated by
means of the Gauss-Seidel iterative procedure. To achieve
good convergence, 10 Picard and four Gauss-Seidel itera-
tions were generically sufficient. In most cases, a set of 601
discretization points for t was used, while the number of the
mesh points for x and y, that provided for the good accuracy,
slightly depended on the vorticity: 193�193 for S=1, and
201�201 for S=2.

B. Outcomes of the collisions

Results of collisions between the counter-rotating solitary
vortices can be summarized following a gradual increase of
the collision momentum �kick strength� � in expression �6�.
The first generic outcome was the merger of the colliding
vortices with �S1 ,S2�= �+1,−1� into a cluster composed of
two fundamental solitons �ones with S=0�, at smallest values
of �, or two such clusters, at larger values, see typical ex-
amples in Figs. 1�b� and 1�c�, respectively. Similarly, the
collision in the case of �S1 ,S2�= �+2,−2�, results, at smallest
or somewhat larger values of �, into the merger of solitary
vortices into one or two clusters composed of four funda-
mental solitons, see Figs. 2�b� and 2�c�. In the case when two
clusters emerge from the collision, they feature slow counter-
rotation, which is gradually decelerated by the effective dif-
fusion included in the model �term �� in Eq. �1��. On the
contrary, the cluster does not rotate when it is single.

It is worthy to notice that the soliton clusters emerging
from the collision clearly break the axial symmetry of the
initial configuration; at the same time, as well as the initial
localized vortices, all clusters lie in planes �x ,y� �alias t
=const�, which are oriented perpendicular to the axis. In par-
ticular, the two-soliton clusters displayed in Fig. 1�c� lie in
planes t= �30, whereas the four-soliton clusters in Fig. 2�c�
lie in planes t= �33.4. To characterize the shape of the clus-
ters more accurately, it is relevant to additionally mention
that, in Fig. 1�c�, coordinates of the centers of the two soli-
tons which form the cluster in plane t=−30 are

��x,y�two
�−� = �− 3.6,2.0�, �3.6,− 2.0� , �8�

while in plane t= +30 they are

��x,y�two
�+� = �− 3.6,− 2.0�, �3.6,2.0� . �9�

Further, in Fig. 2�c�, the centers of the four solitons which
form the clusters in planes t= �33.4 are located, respec-
tively, at

��x,y�four
�−� = �− 6.0,0.8�, �0.8,6.0� ,

FIG. 1. �Color online� Generic outcomes of collisions between
3D solitary vortices with �S1 ,S2�= �+1,−1� are shown by means of
isosurface plots of local intensity �U�x ,y , t��2, for different values of
kick �. �a� The input configuration �at z=0; the localized vortices
move, towards their collision, along their common axis, i.e., in the
positive and negative vertical directions�. �b� A single nonrotating
dipole cluster composed of two fundamental solitons, which is the
outcome for �=1 �shown at z=100�. �c� Two counter-rotating di-
pole clusters, for �=1.5 �at z=170�; both dipoles lie in planes t
= �30 oriented perpendicular to the original axis. �d� Two counter-
rotating double-humped “unfinished vortices,” plus a single dipole
cluster, for �=2 �at z=34�. �e� Two counter-rotating “unfinished
vortices,” without the additional cluster, for �=2.4 �at z=27�. �f� An
elastic collision, for �=4 �shown at z=15�.

FIG. 2. �Color online� The same as in Fig. 1, but for the colli-
sion of solitary vortices with �S1 ,S2�= �+2,−2�. �a� The input at z
=0 �as well as in Fig. 1, the localized vortices move, towards their
collision, in the vertical directions�. �b� A single nonrotating quad-
rupole cluster composed of four fundamental solitons, which is the
outcome of the collisions for �=0.2 �shown at z=120�. �c� Two
counter-rotating quadrupole clusters, for �=0.5 �at z=120�; the
clusters lie in planes t= �33.4 oriented perpendicular to the origi-
nal axis. �d� Two counter-rotating four-humped “unfinished vorti-
ces” plus a single quadrupole cluster, for �=1 �at z=120�. �e� Two
counter-rotating “unfinished vortices,” without the additional clus-
ter, for �=2.5 �at z=25�. �f� A quasielastic collision, for �=4
�shown at z=16�.

COLLISIONS BETWEEN COUNTER-ROTATING SOLITARY … PHYSICAL REVIEW E 78, 056601 �2008�

056601-3



�6.0,− 0.8�,�− 0.8,− 6.0� , �10�

��x,y�four
�+� = �− 6.0,− 0.8�, �− 0.8,6.0� ,

�6.0,0.8�, �0.8,− 6.0� . �11�

The comparison of strings �8� and �9�, as well as �10� and
�11�, demonstrates that the clusters in planes t
0 and t	0
are obtained from each other by the reflection with respect to
axis x or y �such pairs of mutually symmetric clusters were
selected for the display in Figs. 1�c� and 2�c� at an appropri-
ate value of evolution variable z�.

In fact, the two-soliton and four-soliton clusters are di-
poles and quadrupoles, respectively, as the wave fields in
adjacent solitons always have opposite signs. The dipolar
and quadrupolar arrangements of the clusters are natural
counterparts of the phase structure of the input vortices, with
S= �1 and �2, respectively.

Further increase of � demonstrates a trend to the transi-
tion to elastic collisions. At an intermediate stage, the colli-
sion gives rise to a pair of coaxial counter-rotating localized
objects, that seem as double-or four-humped bound states of
fundamental solitons, in the case of the collisions with
�S1 ,S2�= �+1,−1� and �+2,−2�, respectively. In fact, they
may be regarded as “unfinished vortices” �i.e., not “fully

processed” ones, without the through hole at the center�. The
rotation velocities of these objects decrease as long as they
exist; this feature may be expected because the dynamical
model �1� contains a diffusion term �proportional to the dif-
fusivity parameter ��, which should gradually suppress the
rotation in the �x ,y� plane. The rotation of the pair of “un-
finished vortices” is a signature of the presence of the angu-
lar momentum, which cannot be absorbed into the intrinsic
vorticity, as the shape of the objects does not allow it. In this
situation, the number of the additionally generated clusters of
fundamental solitons reduces to one, in either case of
�S1 ,S2�= �+1,−1� and �+2,−2�, see Figs. 1�d� and 2�d�. Ac-
tually, the “unfinished vortices” are long-lived intermediate
states, which later split into dipolar pairs of fundamental
solitons in both cases of �+1,−1� and �+2,−2�, see below.

Taking still larger values of �, we observe that the colli-
sion does not generate any clusters, but only two “unfin-
ished” solitary vortices, as demonstrated in Figs. 1�e� and
2�e�. The absence of extra clusters indicates a proximity to a
quasielastic collision. Eventually, at high values of �, the
collision becomes elastic, as clearly seen in Figs. 1�f� and
2�f�. In the latter case, the collision results in a small de-
crease of the relative velocity of the solitary vortices.

The five collision scenarios identified above are further
illustrated by Fig. 3, which shows the evolution of the field
in the plane of �t ,z� �only for pair �S1 ,S2�= �+2,−2�, the
pictures for �+1,−1� being quite similar�. In fact, this figure
displays trajectories of centers of the vortices �including the
“unfinished” ones� and soliton clusters before and after the
collisions �the intrinsic structure of the densely packed clus-
ters is not visible in the figure�. The eventual splitting of the
“unfinished vortices” and slow expansion of the clusters oc-
cur on an essentially longer scale of the propagation dis-
tance, see below.

C. Post-collision evolution

The above-mentioned eventual splitting of two- and four-
humped “unfinished� vortices �the ones displayed in Figs.

FIG. 3. �Color online� Contour plots display the evolution of
�U�2 in plane �t ,z�, for the five scenarios of the collision of solitary
vortices with �S1 ,S2�= �+2,−2� at different values of kick �, cf. Fig.
2. �a� The merger into a quadrupole cluster, at �=0.2. �b� The cre-
ation of two quadrupole clusters, at �=0.5. �c� The appearance of a
single cluster and two counter-rotating “unfinished vortices,” at �
=1. �d� Two counter-rotating “unfinished vortices,” at �=2.5. �e�
The quasielastic collision, at �=4.

FIG. 4. �Color online� Isosurface plots of intensity �U�x ,y , t��2,
showing the splitting of the double- and four-humped rotating “un-
finished vortices.” �a� The input taken from Fig. 1�d� at z=90, and
�b� the respective eventual set of two fundamental solitons at z
=278. �c� The input from Fig. 2�e� at z=110, and �d� the eventual
state at z=310. The simulations were run on the grid of size 193
�193�601 for �a� and �b�, and 201�201�601 for �c� and �d�.

MIHALACHE et al. PHYSICAL REVIEW E 78, 056601 �2008�

056601-4



1�d� and 2�d�, respectively� into a set of two fundamental
solitons, at values of z essentially larger than those corre-
sponding to Figs. 1–3, is shown in Fig. 4.

Dipole and quadrupole clusters of fundamental solitons,
which are generated by the inelastic collisions of �+1,−1�
and �+2,−2� vortex pairs, respectively, feature very slow ex-
pansion in the course of the post-collision evolution, as dem-
onstrated by Fig. 5 �both examples displayed in the figure
pertain to the initial kick factor of �=1�. The dynamics of
the expansion is additionally illustrated in Figs. 6�a� and 6�b�
by plots displaying the size of the clusters and their total
energy, defined as per Eq. �5�, as functions of z.

The slowly expanding clusters are very robust objects. In
particular, the evolution of the dipolar and quadrupolar clus-
ters �two- and four-soliton ones� under the action of a sud-
denly applied 10% white-noise perturbation demonstrates, in
Figs. 6�c� and 6�d�, quick suppression of the perturbation.
The most essential feature providing for the robustness of the
clusters is the opposite sign of the field in adjacent solitons,
i.e., repulsion between them. In this connection, it is relevant
to mention that the dynamics of weakly nonstationary 2D
and 3D soliton clusters was studied in detail, in various con-
servative and dissipative settings �24–27�.

III. CONCLUSION

In this work, we aimed to study collisions of counter-
rotating 3D solitary vortices, with opposite topological
charges �S. To the best of our knowledge, this dynamical
process was not considered before, in three-dimensional con-
servative and dissipative models alike. We used the simplest
3D model which admits stable vortex solitons, viz., the com-

plex Ginzburg-Landau equation with a cubic-quintic nonlin-
earity, which may be realized in terms of laser cavities. The
phenomenology of the vortex-antivortex collisions in this
model is completely different from what was reported in re-
cent work �19� in collisions between vortices with equal to-
pological charges �in particular, collisions between corotat-
ing vortices do not generate soliton clusters�. Slow collisions
give rise to the merger of the colliding vortices into one or
two slowly expanding dipole or quadrupole clusters formed
by two or four fundamental solitons, in the cases of S=1 and
2, respectively. Faster collisions generate pairs of counter-
rotating “unfinished vortices” �in the combination with a
soliton cluster or without it�. Later, the unfinished vortices
split into soliton pairs. The pairs of the “unfinished vortices,”
as well as dipolar or quadrupolar clusters, if they emerge in
pairs, feature counter-rotation, which is subject to gradual
braking under the action of the diffusion. Eventually, the
collisions become elastic. It is noteworthy that the dipole and
quadrupole clusters generated by the collisions are very ro-
bust aggregates.

This work, as well as Ref. �19�, that deal with the colli-
sions of co-rotating 3D vortex solitons with equal intrinsic
vorticities, �S ,S� �S=1 and 2�, report results for coaxial con-
figurations. A challenging problem is the analysis of colli-
sions in a more general geometrical setting. Another gener-
alization, which would be relevant to the models of laser
cavities, may be taking into regard the third-order group-
velocity dispersion, as was done, in the context of the two-
dimensional complex Ginzburg-Landau equation with the
cubic-quintic nonlinearity, in Ref. �28�.
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FIG. 5. �Color online� Contour plots of �U�x ,y , t��2 at t=0 dem-
onstrate slow expansion of the dipole and quadrupole clusters taken
from Figs. 1�b� and 2�d�, respectively. The dipole cluster is shown
at z=100 �a� and z=3700 �b�, and the quadrupole one—at z=130
�c� and z=3700 �d�.

FIG. 6. �Color online� Evolution of the radii of the two-soliton
and four-soliton clusters �a� and of their total energies �b� in the
course of their slow expansion. Panels �c� and �d� show the evolu-
tion of the total energy of the two- and four-soliton clusters, to
which strong white-noise perturbation was added at z=3400 and z
=3500, respectively.

COLLISIONS BETWEEN COUNTER-ROTATING SOLITARY … PHYSICAL REVIEW E 78, 056601 �2008�

056601-5



�1� I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 �2002�;
B. A. Malomed, in Encyclopedia of Nonlinear Science, edited
by A. Scott �Routledge, New York, 2005�, 157.

�2� N. N. Rosanov, Spatial Hysteresis and Optical Patterns
�Springer, Berlin, 2002�.

�3� J. Lega, J. V. Moloney, and A. C. Newell, Phys. Rev. Lett. 73,
2978 �1994�; Physica D 83, 478 �1995�.

�4� S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S.
Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T.
Knodl, M. Miller, and R. Jager, Nature �London� 419, 699
�2002�; Z. Bakonyi, D. Michaelis, U. Peschel, G. Onish-
chukov, and F. Lederer, J. Opt. Soc. Am. B 19, 487 �2002�; E.
A. Ultanir, G. I. Stegeman, D. Michaelis, C. H. Lange, and F.
Lederer, Phys. Rev. Lett. 90, 253903 �2003�; N. N. Rosanov,
S. V. Fedorov, and A. N. Shatsev, ibid. 95, 053903 �2005�.

�5� W. J. Firth and D. V. Skryabin, Phys. Rev. Lett. 79, 2450
�1997�.

�6� B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Opt.
B: Quantum Semiclassical Opt. 7, R53 �2005�.

�7� A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt.
47, 291 �2005�.

�8� V. I. Petviashvili and A. M. Sergeev, Dokl. Akad. Nauk SSSR
276, 1380 �1984� �Sov. Phys. Dokl. 29, 493 �1984��.

�9� B. A. Malomed, Physica D 29, 155 �1987�; O. Thual and S.
Fauve, J. Phys. �Paris� 49, 1829 �1988�; S. Fauve and O.
Thual, Phys. Rev. Lett. 64, 282 �1990�; W. van Saarloos and P.
C. Hohenberg, ibid. 64, 749 �1990�; V. Hakim, P. Jakobsen,
and Y. Pomeau, Europhys. Lett. 11, 19 �1990�; B. A. Malomed
and A. A. Nepomnyashchy, Phys. Rev. A 42, 6009 �1990�; P.
Marcq, H. Chaté, and R. Conte, Physica D 73, 305 �1994�; N.
Akhmediev and V. V. Afanasjev, Phys. Rev. Lett. 75, 2320
�1995�; H. R. Brand and R. J. Deissler, ibid. 63, 2801 �1989�;
R. J. Deissler and H. R. Brand, ibid. 72, 478 �1994�; 74, 4847
�1995�; 81, 3856 �1998�; V. V. Afanasjev, N. Akhmediev, and
J. M. Soto-Crespo, Phys. Rev. E 53, 1931 �1996�; J. M. Soto-
Crespo, N. Akhmediev, and A. Ankiewicz, Phys. Rev. Lett.
85, 2937 �2000�; W. Chang, A. Ankiewicz, and N. Akhme-
diev, Phys. Lett. A 362, 31 �2007�.

�10� F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, J.
Non-Cryst. Solids 274, 232 �2000�; G. Boudebs, S. Cheruku-
lappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez,
Opt. Commun. 219, 427 �2003�.

�11� C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L.
Zhao, and Y. Nie, J. Opt. Soc. Am. B 19, 369 �2002�.

�12� G. S. Agarwal and S. Dutta Gupta, Phys. Rev. A 38, 5678
�1988�.

�13� E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, Jr., J.
Opt. Soc. Am. B 24, 2948 �2007�.

�14� R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M.
Suzuki, M. Turu, and H. Kuroda, J. Opt. A, Pure Appl. Opt. 6,
282 �2004�.

�15� L.-C. Crasovan, B. A. Malomed, and D. Mihalache, Phys. Rev.
E 63, 016605 �2001�; Phys. Lett. A 289, 59 �2001�.

�16� D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, Phys. Rev. Lett. 97,
073904 �2006�.

�17� D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, Phys. Rev. A 75, 033811 �2007�; 76, 045803
�2007�.

�18� J. M. Soto-Crespo, N. Akhmediev, and P. Grelu, Phys. Rev. E
74, 046612 �2006�; N. Akhmediev, J. M. Soto-Crespo, and P.
Grelu, Chaos 17, 037112 �2007�.

�19� D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, Phys. Rev. A 77, 033817 �2008�.

�20� P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, Opt. Express
13, 9352 �2005�; J. M. Soto-Crespo, P. Grelu, and N. Akhme-
diev, ibid. 14, 4013 �2006�; V. Skarka and N. B. Aleksić, Phys.
Rev. Lett. 96, 013903 �2006�.

�21� A. Desyatnikov, A. Maimistov, and B. Malomed, Phys. Rev. E
61, 3107 �2000�; D. Mihalache, D. Mazilu, L.-C. Crasovan, B.
A. Malomed, and F. Lederer, ibid. 61, 7142 �2000�; D. Mi-
halache, D. Mazilu, L. C. Crasovan, I. Towers, A. V. Buryak,
B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, Phys.
Rev. Lett. 88, 073902 �2002�.

�22� H. Sakaguchi, Physica D 210, 138 �2005�.
�23� E. A. Ultanir, G. I. Stegeman, C. H. Lange, and F. Lederer,

Opt. Lett. 29, 283 �2004�.
�24� M. Soljacic, S. Sears, and M. Segev, Phys. Rev. Lett. 81, 4851

�1998�.
�25� A. S. Desyatnikov and Yu. S. Kivshar, Phys. Rev. Lett. 88,

053901 �2002�.
�26� Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner,

Phys. Rev. Lett. 89, 273902 �2002�; D. Mihalache, D. Mazilu,
L.-C. Crasovan, B. A. Malomed, F. Lederer, and L. Torner,
Phys. Rev. E 68, 046612 �2003�; L.-C. Crasovan, Y. V.
Kartashov, D. Mihalache, L. Torner, Y. S. Kivshar, and V. M.
Perez-Garcia, ibid. 67, 046610 �2003�; D. Mihalache, D. Ma-
zilu, L.-C. Crasovan, B. A. Malomed, F. Lederer, and L. Tor-
ner, J. Opt. B: Quantum Semiclassical Opt. 6, S333 �2004�;
L.-C. Crasovan, G. Molina-Terriza, J. P. Torres, L. Torner, V.
M. Perez-Garcia, and D. Mihalache, Phys. Rev. E 66, 036612
�2002�.

�27� D. V. Skryabin and A. G. Vladimirov, Phys. Rev. Lett. 89,
044101 �2002�.

�28� H. Sakaguchi and B. A. Malomed, Physica D 159, 91 �2001�.

MIHALACHE et al. PHYSICAL REVIEW E 78, 056601 �2008�

056601-6


