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Stable vortex solitons in the Ginzburg-Landau model of a two-dimensional lasing medium
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We introduce a two-dimensional model of a laser cavity based on the complex Ginzburg-Landau equation
with the cubic-quintic nonlinearity and a lattice potential accounting for the transverse grating. A remarkable
fact is that localized vortices, built as sets of four peaks pinned to the periodic potential, may be stable without
the unphysical diffusion term, which was necessary for the stabilization in previously studied models. The
vortices are chiefly considered in the onsite (rhombic) form, but the stabilization of offsite vortices (square-
shaped ones) and quadrupoles is demonstrated too. Stability regions for the rhombic vortices and fundamental
solitons are identified in the model’s parameter space, and scenarios of the evolution of unstable vortices are
described. An essential result is a minimum strength of the lattice potential which is necessary to stabilize the
vortices. The stability border is also identified in the case of the self-focusing quintic term in the underlying
model, which suggests a possibility of the supercritical collapse. Beyond this border, the stationary vortex turns
into a vortical breather, which is subsequently replaced by a dipolar breather and eventually by a single-peak

breather.

DOI: 10.1103/PhysRevA.80.033835

I. INTRODUCTION AND THE MODEL

A generic model of the pattern formation in one-
dimensional (ID) and multidimensional lasing media is
based on the complex Ginzburg-Landau (CGL) equation
with the cubic-quintic (CQ) combination of nonlinear gain
and loss terms, which are added to the linear loss [1]. The
CQ nonlinearity makes it possible to create solitary pulses,
alias dissipative solitons [2], sitting on the stable zero back-
ground. In fact, CGL equations, including those of the CQ
type, find applications in many areas beyond the framework
of optics, and they have also drawn a great deal of interest as
general models of nonlinear dissipative media [3].

A challenging issue is the search for stable dissipative-
soliton solutions of two- and three-dimensional (2D and 3D)
versions of CGL equations. In that case, the potential insta-
bilities inherited from the 1D case, such as the failure of the
cubic gain (in the case of the CQ equation) to balance the
combined linear and quintic loss terms, are exacerbated by
the possibility of the collapse driven by the cubic self-
focusing term. As concern solitons with the embedded vor-
ticity (shaped as vortex rings), they are additionally vulner-
able to azimuthal perturbations that tend to split them [4,5].
In fact, the CGL equation of the CQ type was originally
introduced by Petviashvili and Sergeev [6], with the purpose
to develop a model admitting stable localized patterns. Then,
solutions for solitary pulses had been analyzed in detail in
the 1D version of this equation [7]. Further, stable 2D vorti-
cal dissipative solitons (alias spiral solitons, so called be-
cause of the shape of the constant-phase lines in them), with
vorticity (topological charge) S=1 and 2, were found in Ref.
[8]. Stable 3D (spatiotemporal) fundamental solitons, with
S§=0 [9-11], and two-soliton complexes, including rotating
ones [12], have been reported in models of lasing media
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based on the CQ CGL equation in the full 3D form. Recent
works were dealing with 3D dissipative vortical solitons [13]
and collisions between them [14].

The general form of the two-dimensional CQ CGL equa-
tion for the amplitude of the electromagnetic field, u(x,y,z),
which evolves along transmission distance z in a bulk lasing
medium with transverse coordinates (x,y), is [13]

; .
&_u = {‘ 5+ <§+B>Vi +(i+8)|ul? = v+ wlul* u,
<

(1)

where Vi is the Laplacian acting on x and y, the coefficients
which are scaled to be 1/2 and 1 account for the diffraction in
the transverse plane and the self-focusing Kerr nonlinearity,
positive constants &, e, and u represent the linear loss, cubic
gain, and quintic loss, respectively, and the self-defocusing
or self-focusing quintic correction to the Kerr nonlinearity is
represented by »>0 or »<<0. Note that, in the conservative
counterpart of the CQ CGL equation, i.e., the nonlinear
Schrodinger (NLS) equation with the CQ nonlinearity, the
quintic term must be self-defocusing (in the 2D and 3D set-
tings) to arrest the collapse driven by the self-focusing cubic
nonlinearity [4,15]. However, it was shown in Ref. [13] that
multidimensional fundamental and vortical dissipative soli-
tons may remain stable with the self-focusing sign of the
quintic term, the collapse being precluded by the action of
the quintic term in the dissipative part of the equation.
Actually, the physical meaning of all terms in Eq. (1) is
clear except for the one coming with coefficient 8, which
represents an effective spatial diffusivity. This term is known
in some specific models of large-aspect-ratio laser cavities,
just above the first lasing threshold. Those models are based
on the complex Swift-Hohenberg equation [16], which re-
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duces to the CGL equation if the fourth-order spatial deriva-
tives are neglected.

In the general case, the diffusivity term is artificial as an
ingredient of the two-dimensional CGL model of the laser
cavity. Nevertheless, it was concluded in Ref. [13] that B
>0 was a necessary condition for the stability of vortex
dissipative solitons in the multidimensional setting, while
fundamental solitons might be stable at S=0. Thus, an im-
portant issue is to find a physically relevant modification of
the 2D and 3D CGL models, with =0 (without the unphysi-
cal diffusivity), which would support stable localized vorti-
ces. The objective of the present work is to demonstrate that
this purpose can be achieved by adding a transverse periodic
potential to Eq. (1), i.e., replacing that equation by

P .
a—u= —5+iV(x,y)+éVi+(i+8)|u|2—(iv+ﬂ)|u|4 u,
Z

()

with a potential that can be induced by a grating, i.e., peri-
odic local modulation of the refractive index in plane (x,y).
In the simplest case, the effective potential of the grating
may be approximated by

V(x,y) = Vylcos(2x) + cos(2y)], (3)

where the scaling invariance of Eq. (2) was employed to fix
the transverse periods of the potential in the x and y direc-
tions to be 7, assuming that these periods are equal.

In bulk photonic media, permanent gratings can be writ-
ten by means of a known optical technology [17]. In addi-
tion, in photorefractive crystals virtual photonic lattices may
be temporarily induced by pairs of extra laser beams illumi-
nating the sample in the directions of x and y in the ordinary
polarization, while the probe beam is launched along axis z
in the extraordinary polarization [18].

It is also relevant to notice that CGL-type equations de-
scribe laser cavities, where the mode-locked optical signal
performs periodic circulations, as averaged models (see, e.g.,
the derivation for ring fiber lasers [19]). Therefore, in the
general case, the transverse grating is not required to fill the
entire cavity. A localized component, such as a holographic
phase plate, might be sufficient, provided that it induces the
same phase distortion as potential V(x,y) in one circulation.

Stationary solutions to Eq. (2) are sought for as

u(x,y,2) = *U(x,y), (4)

with real propagation constant k and complex function
U(x,y) satisfying equation

ikU=| - 5+iv(x,y)+év’j+(i+s)|U|2—(iv+ w|U*|U.

(5)

In the presence of the periodic (lattice) potential, stable vor-
tices are built as compound objects, consisting of four sepa-
rate peaks of the local power (density). The four peaks are
set in four cells of the lattice (in fact, each peak may be
approximately considered as a tightly localized fundamental
soliton). Two basic configurations of the so constructed vor-
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tices are known: “rhombuses,” alias onsite vortices, with a
nearly empty cell surrounded by the filled ones [20,21], and
“squares,” alias offsite vortices, which feature a densely
packed set of four filled cells, without an empty site in the
middle [22]. The topological charge (vorticity) of these pat-
terns is provided by phase shift 77/2 between adjacent peaks,
which corresponds to the total phase circulation of 2w
around the pattern, as it should be in vortices with topologi-
cal charge S=1.

The stabilization of vortex solitons by periodic potentials
was predicted in various settings [20-24]. In the experiment,
stable localized vortices with S=1 were created in the above-
mentioned photorefractive crystals equipped with the virtual
photonic lattice [25]. In a certain sense, the lattice potential
gives rise to an effective nonlocality in the medium. In this
connection, it is relevant to mention that the stabilization of
vortex solitons by nonlocal nonlinearities in uniform media
was also predicted in a number of theoretical works [26] and
demonstrated in an experiment [27].

In this work, we chiefly focus on the identification of the
stability region for rhombic vortices in the framework of
model (2), which are usually most stable objects [21] al-
though stable squares will be presented too. In addition to the
compound vortices, four peaks arranged in the form of a
rhombus or square may represent a quadrupole, with alter-
nating signs of the peaks [21]. We will produce examples of
stable rhombic quadrupoles in the present model.

Besides the stability of the compound vortices supported
by the lattice, another central topic of this work is the exten-
sion of the stability to the above-mentioned case of v<<0,
i.e., the self-focusing quintic nonlinearity, which is known to
cause the supercritical collapse in 2D conservative media
[28]. It will be demonstrated that, if other parameters are
fixed, there is a certain negative critical value of v up to
which the vortices remain stable. Beyond the critical point,
the stationary vortices are replaced by oscillating vortical
breathers, which perform periodic oscillations, keeping the
phase structure corresponding to the vortices. At still larger
values of (—v), the vortex breather becomes unstable, being
replaced by a dipolar breather, which is built of two peaks
filling cells which sit on the diagonal of the lattice. Further,
at much larger —v, the dipole gets destabilized too, being
replaced by a single-peak breather and eventually all stable
patterns disappear.

The stability of various patterns considered in this paper
is identified by way of systematic direct simulations of their
self-trapping from localized inputs and subsequent tests of
the evolution under the action of added random perturba-
tions. In dissipative models, this approach is sufficient to
unambiguously determine the stability of various patterns,
while in their conservative counterparts an accurate compu-
tation of stability eigenvalues for modes of small perturba-
tions is necessary, as perturbed stable solutions keep oscillat-
ing indefinitely long rather than relaxing back to the
stationary shape (see, e.g., Refs. [20-24], [26], and [28-31]).

The rest of the paper is organized as follows. Before ad-
dressing the main topic of the stability of vortices, in Sec. II
we consider fundamental (single-peak) 2D dissipative soli-
tons in the present model. The stationary vortex solitons
(chiefly rhombuses) are considered in Sec. III, where we also
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present examples of stable square-shaped vortices and qua-
drupoles. Vortical and dipolar breathers are reported in Sec.
IV, and Sec. V concludes the paper.

II. FUNDAMENTAL DISSIPATIVE SOLITONS
A. Mode of simulations

The existence of stable fundamental solitons in the
present model is not surprising, as they are known in the 2D
CGL equation corresponding to Eq. (2) without the lattice
potential, V=0 [8] (unlike localized vortices, which cannot
be stable in that case). Nevertheless, 2D fundamental soli-
tons in the CGL equation with the lattice potential were not
studied before, and it is relevant to report basic results for
them here—in particular, for the sake of comparison with
localized vortices, which will be considered below.

All localized patterns—fundamental solitons, vortices,
quadrupoles, and dipoles—studied in this work were found
as established objects (artractors of the dissipative model) by
means of direct simulations of Eq. (2) based on the use of the
fourth-order Runge-Kutta algorithm. Laplacian Au was com-
puted using a centered five-point finite-difference formula.
The sizes of the integration domain were 140 X 140 for the
fundamental solitons and 200X 200 for vortices, including
an absorption layer ten points wide adjacent to each edge of
the domain, which was introduced to prevent the reflection
of radiation waves shed off by evolving localized objects.
After a particular stationary solution was found, it was used
as the initial configuration for a new run of simulations, with
slightly modified parameters of Eq. (2), with the aim to find
an attractor corresponding to the modified parameters. We
note that, in the case of a sufficiently strong self-focusing
quintic nonlinearity, i.e., relatively large (—v) in Eq. (2) (see
Sec. IV below), the “established object,” to which the direct
simulations converged, was not a stationary pattern but
rather a robust well-localized breather.

In the case when the simulations converged to stationary
established states, their stability was additionally tested by
adding to them random perturbations at the amplitude level
of 10% and running the subsequent simulations—typically
up to z=400 for fundamental solitons and z=1400 for vorti-
ces. The evolution of the amplitude of the pattern [the largest
value of |U(x,y)|], instantaneous propagation number k(z)
[extracted from the numerical data with the help of Eq. (5)
and averaging over space], and the total power,
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FIG. 1. (Color online) The stable fundamental soliton at param-
eter values chosen as per Eq. (7).

P=ff|u(x,y,z)|2dxdy, (6)

were monitored in the course of the simulations. The solution
was identified as stable if the amplitude and shape of the
pattern relaxed back to the unperturbed configuration.

It is necessary to stress that, along with completely stable
stationary solutions, weakly unstable ones were found too.
Indeed, after the stationary solution has been perturbed by
the addition of white noise, it quickly relaxes to the unper-
turbed state. Then the instability eventually develops, how-
ever in some cases it is extremely slow: the energy may have
grown for less than 10% after propagation over z=1000.
Such states are attractors in the sense that the input beams
originally converge to them. The “lifetime” of the unstable
states diverges at boundaries of the stability domain, there-
fore there was a small uncertainty in locating the stability
boundaries using results of the direct simulations.

In terms of the physical applications, unstable localized
modes, as they are defined above, are meaningful objects in
models of amplifying media, where the transmission distance
is always finite; hence the existence length of the unstable
soliton may be readily made larger than the size of the me-
dium. On the other hand, only truly stable solitons are rel-
evant to models of mode-locked laser cavities, where the
circular transmission of the light beam makes the effective
propagation length infinitely large.
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FIG. 2. (Color online) Characteristics of the fundamental soliton versus 8. Red (thin) and blue (thick) segments depict unstable and stable
soliton subfamilies. Crosses are data points representing numerical results.
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FIG. 3. (Color online) The same as in Fig. 2 but versus €.

In those cases when localized modes could not self-trap in
the course of the evolution or existed temporarily but even-
tually turned out to be unstable, the eventual state of the
system might be either simply zero or a disordered pattern of
speckles filling the entire integration domain (a typical ex-
ample of the pattern can be seen below in the last panel of
Fig. 13). Naturally, the decay to zero was observed when the
dissipation was too strong versus the gain, i.e., coefficients &
and/or u in Eq. (2) were too large or coefficient & was too
small. In the opposite case, when the loss was too weak in
comparison with the gain, the system would switch into the
speckle pattern that filled out all lattice cells.

The simulations started from a stationary state found for
parameter values

5=04, =185 u=1, v=01, Vo=1 (7)

in Eq. (2), which is a typical case that gives rise to stable
solitons and vortices. Then, the analysis was extended by
varying all the parameters until hitting a border at which the
simulations would cease to converge to a localized state.

B. Results for fundamental solitons

Starting from an input in the form of a beam (in terms of
laser cavities) with an isotropic Gaussian profile, it was
straightforward to find a stable fundamental soliton. The
stable fundamental soliton existing at parameter values given
in Eq. (7) is shown on Fig. 1. Extending the analysis by
varying parameters 6, €, u, v, and V,, we have produced
characteristics of the family of the fundamental solitons
which show, in Figs. 2—6, their integral power [see Eq. (6)],
propagation constant, and amplitude as functions of these
parameters (in Figs. 5 and 6, the dependence of the ampli-

tude on v and V, is not shown, as the amplitude remains
practically constant within the ranges of the variation in the
parameters in those cases).

The figures explicitly display subfamilies of stable and
unstable solitons (recall that unstable ones self-trap from the
input beam but are eventually destroyed by perturbations).
Further, except for the case of Fig. 6, neither stable nor un-
stable soliton exists outside of ranges of the parameters dis-
played in Figs. 2-5. Actually, at 5> &,,,,=0.602 *0.003 (see
Fig. 2), e<gn,=1.506+0.006 (Fig. 3), &> tmax
=1.48£0.02 (Fig. 4), and v<w,,;,=-0.605 = 0.005 (Fig. 5),
the system relaxes into the zero state (the critical values are
given with error margins determined by the procedure of the
identification of stable and unstable regions in the parameter
space, as specified above). On the other hand, at &> g,
=3.125+0.125, p<pui,=0.385%0.010, and v> v,
=0.931+0.006, the evolution leads to the establishment of a
delocalized speckle pattern. A natural conclusion is that the
subfamilies of stable and unstable solitons are bordered, re-
spectively, by parameter regions where the system evolves to
the zero state or to the speckle-filled one.

Intrinsic frontiers between the stable and unstable sub-
families are found at the following points: 6=0.253 =0.003
in Fig. 2, £=2.22+0.03 in Fig. 3, and ©=0.59 £ 0.03 in Fig.
4. The entire family shown in Fig. 5 is stable. As concerns
the role of strength V,, of the lattice potential, it does not
impose any limitation on the stability of the fundamental
solitons, i.e., they are stable not only in the interval displayed
in Fig. 6 but actually at all values of V,, that were considered.
Note that stable 2D fundamental solitons in the uniform
space, reported in previous works [8], correspond to point

Vy=0 in Fig. 6.
For more negative v, namely v,;,=—0.605=0.005>v
>, =—0.94+0.015, oscillating states of a single-peak
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FIG. 4. (Color online) The same as in Fig. 2 but versus .
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-0.5 :

FIG. 5. (Color online) The two
panels show the same as their left
and middle counterparts as in Fig.
2 but versus v. The dependence of
the amplitude on » is not shown
here, as this dependence is ex-
tremely weak.
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breather type are found. Such structures are studied below in
the framework of vortex instabilities (see Sec. IV).

III. VORTICES
A. Rhombus-shaped vortex solitons

As mentioned in Sec. I, in this work we chiefly focus on
the localized complexes with topological charge S=1 built of
four tightly bound peaks that form a rhombus (onsite vorti-
ces). A set of images illustrating the distribution of the local
amplitude in stationary rhombic vortices is presented in Fig.
7. In all cases, the phase shift between neighboring local
maxima of the intensity is 7/4, matching the definition of
the vortex with S=1. In the conservative system, due to the
symmetry of the NLS equation, the amplitude pattern of the
stable vortex is symmetric with respect to the symmetry axes
of the potential (x=0, y=0, and x= *y).

Careful examination of panels (c), (f), and (h) in Fig. 7
reveals that the vortex pattern features a weak spirality (alias
“chirality” in the sense that the vortex with S=—1 would
feature the opposite spirality). In fact, the presence of the
spirality is readily explained by the lack of the invariance of
the CGL equation with respect to the complex conjugation
(unlike the conservative NLS equation, where the conjuga-
tion may be compensated by the reversal of sign of the evo-
lution variable, z). In fact, the spirality is a well-pronounced
feature of vortex solutions to the CGL equations in the free
2D space [8].

B. Stability limits for the vortex solitons

Results concerning the stability of the vortex solitons
against the variation in parameters o, &, u, and v are pre-
sented in Figs. 8—11 in essentially the same way as was done
above for the fundamental solitons (cf. Figs. 2-5). In particu-

-06 -04 -02 0 02 04 06 08 1

\%

lar, the intrinsic borders between subfamilies of stable and
unstable vortices are found at 6=0.305%0.005 in Fig. 8, €
=2.12*+0.03 in Fig. 9, and ©=0.78 £0.03 in Fig. 10.

Like in the case of the fundamental solitons, in these fig-
ures the stable and unstable subfamilies abut on parameter
regions where the system evolves into the zero state or de-
velops the delocalized speckle pattern, respectively. The
former outcome of the evolution of input beams is observed
at 0> 0,,=0.599*£0.004 in Fig. 8 at e<ey,
=1.518£0.007 in Fig. 9, and at u> u,,,=1.48+0.03 in
Fig. 10. The delocalized pattern appears at O< 3,
=0.15*+0.03 in Fig. 8, at e>¢€,,,=2.75%+0.05 in Fig. 9, at
Mw<Umin=047*x0.01 in Fig. 10, and at v>wv,,
=0.585*+0.004 in Fig. 11. Notice that no unstable stationary
vortex has been found when v was varied.

In some cases, vortex solitons may become unstable in a
very narrow interval adjacent to the region where the evolu-
tion leads to the decay to zero (a feature that was not found
for fundamental solitons). This small interval is found about
0=0.602 in Fig. 8, about £=1.51 in Fig. 9, and about u
=1.5 in Fig. 10. The accurate computation of the width of
these narrow unstable stripes would require prohibitively
long simulations.

Note that the range of coefficient v, which accounts for
the conservative part of the quintic nonlinearity, is extended
in Fig. 11 into the region of the quintic self-focusing (v
<0) up to point

Vpmin =— 0.515 = 0.015 (8)
at which a different destabilization mechanism comes into
play, replacing the stationary vortex by its breather counter-
part, which, however, keeps the vorticity, i.e., remains an
intrinsically coherent complex even if being nonstationary
(oscillating). This issue and the evolution of the vortical

FIG. 6. (Color online) The
same as in Fig. 5 but versus V.
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() Vo=4

FIG. 7. (Color online) The shape of the rhombus-shaped (onsite) vortices found near boundaries of their stability domain (all the
examples represent stable vortices). Except for parameter values indicated in the panels, all others are as in Eq. (7).

breather with the subsequent increase in —v will be consid- vortices are presented in Fig. 12, namely, the stabilization of
ered in Sec. III C. the vortex solitons by the lattice potential [recall that the

The most essential new results for the rhombus-shaped starting point of the present work is the fact that, in the

033835-6



STABLE VORTEX SOLITONS IN THE GINZBURG-LANDAU ...

095

0.9

PHYSICAL REVIEW A 80, 033835 (2009)
1.6

1.55 \

1.5 ¢
1.45
1.4 ¢

max|ul

1.3 |
1.25

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

) )

FIG. 8. (Color online) The same as in Fig. 2 but for the family of rhombic (onsite) vortices.

uniform space, vortex solitons can never be stable in the 2D
(or 3D) CGL equation without the diffusivity term, which is
usually unphysical in models of lasing media]. The most
essential finding reported in Fig. 12 is that the stabilization
takes place if the lattice is strong (deep) enough, viz., at V
> (Vo)min=0.38 = 0.04 (the stability of the vortex was veri-
fied by direct simulations up to V=4 and there is no reason
to expect that the vortex will not be stable in a still deeper
lattice). Finally, we note that, as well as the case of the fun-
damental solitons, Figs. 11 and 12 do not show the depen-
dence of the amplitude on v and V|, because the amplitude
remains almost constant within the parameter ranges shown
in the figures.

C. Instability modes

Because the stabilization of the vortices is a central topic
of this work, it is relevant to describe typical modes of the
development of their instability in those cases when the vor-
tices are unstable. In the 2D CGL equation in the uniform
space (without the lattice potential), where the localized vor-
tices can never be stable, the instability splits them into a few
fundamental solitons [8] (this scenario, determined by the
instability of the axially symmetric ring-shaped vortex
against azimuthal perturbations, is roughly the same as in
conservative models, which are based on equations of the
NLS type [4,29)).

Systematic simulations of the present model reveal two
essentially different scenarios of the evolution of unstable
vortices. One of them is observed when the strength of the
lattice potential, V, is large enough for the stabilization of
the vortex, but other parameters are out of the respective
stability range. A typical example of the development of this
instability is displayed in Fig. 13 for £=2.4, the other param-

eters being as in Eq. (7) (as seen from Fig. 9, this value
indeed falls into the instability interval).

The instability scenario presented in Fig. 13 can be sum-
marized as follows. The four peaks of the local power, which
form the vortex, start to oscillate, at first synchronously, but
then the oscillations become mutually incoherent. At the next
stage, the peaks stretch into extended spots, and, eventually,
the spots extend over the entire lattice, creating the speckle
pattern. A variety of essentially the same scenario (not shown
here) is observed, for instance, at §=0.2, with other param-
eters fixed as per Eq. (7) (this point indeed corresponds to
the instability of the vortex, as seen from Fig. 8). The differ-
ence is that two power peaks tend to coalesce before suffer-
ing the stretching and the instability development is essen-
tially slower.

A very different instability mode is observed when the
strength of the lattice potential is insufficient for the stabili-
zation of vortices. A typical example of that is displayed for
V,=0.15 in Fig. 14. This scenario also starts with oscillations
of each power peak. This first stage of the unstable evolution
is very long. Then, two peaks leave their original positions
and merge. The fused peak and two others start erratic mo-
tion, then the double peak again splits into two, and, eventu-
ally, four mutually incoherent peaks continue a slow random
walk across the lattice. Thus, in this case the pattern stays in
the form of a set of four well-localized peaks and the transi-
tion to the speckled pattern does not take place.

D. Examples of the square-shaped vortex and quadrupole

As mentioned in Sec. I, the lattice potential in conserva-
tive systems (described by NLS equations) supports, in ad-
dition to the onsite (rhombus-shaped) vortices, their offsite
counterparts built as squares and quadrupoles. The present
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FIG. 9. (Color online) The same as in Fig. 3 but for the family of rhombic (onsite) vortices.
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FIG. 10. (Color online) The same as in Fig. 4 but for the family of rhombic (onsite) vortices.

dissipative model also readily gives rise to stable patterns of
these two types. To construct them, the fundamental soliton
was approximated by a fitting formula,

2A
cosh[a(x + y)] + cosh[a(x — y)]’

Ulx,y) = )
in which amplitude A and inverse width a are determined
from numerical data. Then, quadrupoles and square-shaped
vortices were constructed as the corresponding linear super-
positions of position- and phase-shifted expressions taken as
per Eq. (9). Finally, direct simulations produced established
patterns of the types sought for (see typical examples in Figs.
15 and 16). The stability of these patterns against added ran-
dom perturbations was also verified in direct simulations.

IV. VORTICES IN THE MODEL WITH THE SELF-
FOCUSING QUINTIC NONLINEARITY

It was shown in Fig. 11 that the family of rhombic vorti-
ces extends, as a stable one, into the region of the self-
focusing conservative part of the quintic nonlinearity, up to a
certain point [see Eq. (8)], if other parameters are fixed as in
Eq. (7). This means that the quintic loss suppresses the trend
to the supercritical collapse [28] despite the action of the
quintic self-focusing term. Eventually, the increase in —v
leads to destabilization of the vortex at a point given by Eq.
(8). Nevertheless, the vortex is not destroyed beyond this

24
2t 1
20 1
18 | 1
16 | 1
14 | 1
12+ 1
10 | 1
8

-0.4 -0.2 0

A%

0.2 0.4 0.6

border. Instead, it turns into a vortical breather, with the
heights of the four peaks featuring regular oscillations. As
shown in Fig. 17, all the peaks oscillate quasiharmonically,
with equal frequencies and amplitudes and phase shifts of
/2 between the local oscillations, i.e., the same as phase
shifts between the peaks which form a stable vortex. In turn,
the phase shifts between values of the complex field at the
peak points also start to oscillate, as one can conclude from
Fig. 17, but the total phase circulation around the breather
remains equal to 27, i.e., the oscillations do not destroy the
intrinsic coherence of the vortex (another example of a 2D
system, although a discrete and conservative one, where the
instability of stationary vortices does not destroy them but
rather transforms these objects into vortical breathers, is the
2D Salerno model with the competition of onsite self-
focusing and offsite self-defocusing cubic terms [30]). Addi-
tional simulations demonstrate that, in the region of its exis-
tence, the vortical breather is stable against random
perturbations.

The vortical breather remains a robust and coherent dy-
namical complex approximately up to v=-0.85 if other pa-
rameters keep their values as fixed in Eq. (7). Then, this
breather loses its stability, featuring a spontaneous transfor-
mation into a dipolar breather. The latter localized mode is
composed of two harmonically oscillating peaks, which keep
on average the phase shift between them close to 7, although
the instantaneous value of the phase difference oscillates,
roughly, between 0.47 and 1.27 (see Fig. 18). As well as the

-0.4

-0.2 0
A%

0.2 0.4 0.6

FIG. 11. (Color online) The same type of the dependences as in Fig. 5 but for the family of rhombic vortices. Note that values v<0,
corresponding to the self-focusing quintic nonlinearity, are also included in this plot. It is extended up to a negative value of v at which the
stationary vortex loses its stability, being replaced by a vortical breather (see Sec. III C).
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25 *\ 1 45 1 FIG. 12. (Color online) The
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208 ] 3'2 bic vortices. The figure shows the
A ~ 25| | most essential result of the work,
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vortical breathers, the oscillating dipole maintains its integ- oscillations are strongly anharmonic but nevertheless regular
rity in the region where it exists, irrespective of the addition and periodic.
of random perturbations. Thus, we conclude that the increase in —v gradually leads

With the subsequent increase in —v, the oscillating dipole to the degradation of the shape of the breathing complexes
also loses its stability, being replaced by a single-peak from four peaks through two peaks to one. Nevertheless, a
breather (a pulsating counterpart of the fundamental soliton), noteworthy fact is that four- and two-peak patterns, as long
whose shape and oscillations are displayed in Fig. 19. The as they exist, maintain their intrinsic integrity, i.e., the vor-
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FIG. 13. (Color online) Evolution of an unstable vortex with e=2.4. Other parameters are chosen as in Eq. (7).
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FIG. 14. (Color online) Evolution of an unstable vortex in the case of a small amplitude of the lattice potential, Vy=0.15. Other

parameters are fixed as in Eq. (7).
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FIG. 15. (Color online) The amplitude and phase structure of a stable square-shaped (offsite) vortex found at values of parameters taken
as in Eq. (7).
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FIG. 16. (Color online) The same as in Fig. 15 but for a stable quadrupole.
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FIG. 17. (Color online) Regular oscillations of amplitudes of the four peaks which constitute a persistent vortical breather, and phase
shifts between them, at v=—0.53 (just after the loss of the stability of the stationary vortex). Other parameters keep the same values as in Eq.

(7).
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FIG. 18. (Color online) Right panels: a snapshot of the amplitude and phase distribution in a stable dipolar breather found at
v=-0.85 (just after the vortical breather has lost its stability and rearranged into the dipole). Other parameters remain the same as in
Eq. (7). Left panels display regular oscillations of amplitudes of the two peaks that constitute the breather and of the phase difference

between them.
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FIG. 19. (Color online) A stable single-peak breather found at »=—-0.882 (after the dipolar breather has lost its stability). Other parameters

remain the same as in Eq. (7).

ticity in the former case and the dipolar structure in the latter.
At still larger values of —v, namely, —»=0.9 [assuming, as
before, that the other parameters are fixed as per Eq. (7)], any
input decays to zero (a single peak may perform a few os-
cillations before disappearing).

V. CONCLUSION

This work aimed to introduce a 2D model of dissipative
media, such as laser cavities, which would be able to support
stable localized vortices under physically relevant conditions
(i.e., without postulating an artificial diffusivity). We have
demonstrated that this purpose may be achieved by means of
a periodic lattice potential, which represents a transverse
grating in the lasing medium. The analysis was chiefly re-
ported for the vortex solitons of the onsite type, built as
rhombuses, but offsite (square-shaped) vortices and rhombic
quadrupoles were considered too. The stability region for the
rhombic vortices, along with that for fundamental solitons,
has been identified in the parameter space of the model, and
generic scenarios of the evolution of the localized vortices
have been explored in the case when the vortices are un-
stable. In particular, a minimum strength of the lattice poten-
tial necessary for the stabilization of the vortices has been
found. If the potential is not strong enough, the vortex splits
into a set of four uncorrelated fundamental solitons. On the
other hand, if the instability is caused by “wrong” values of
other parameters, the unstable vortex either decays to zero or

spreads out into an irregular speckle pattern covering the
entire domain.

The stability of the vortex solitons was also analyzed in
the case when the conservative part of the quintic term in the
CGL equation accounts for the self-focusing, which poten-
tially may lead to the supercritical collapse in the 2D setting.
A stability border for the vortices has been found in this case.
If the strength of the quintic self-focusing exceeds the critical
size, the stationary vortex is replaced by its oscillating coun-
terpart (the vortical breather), which maintains the intrinsic
vortical structure. Under still stronger self-focusing, the vor-
tex breather is replaced by a dipolar breather and that one, in
turn, is supplanted by a single-peak breather. Eventually, un-
der very strong quintic self-focusing, all solutions decay to
ZEero0.

This work may be naturally extended in various direc-
tions. In particular, it may be interesting to study possibilities
to stabilize higher-order vortices and “supervortices” (circu-
lar chains of compact vortices, with an independent global
vorticity imprinted onto them), which should be based on
more complex ring-shaped chains of localized peaks [31].
Another obviously interesting extension may be to consider
the stabilization of localized vortical patterns in three-
dimensional CGL models.
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