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We present generic outcomes of collisions between stable solitons with intrinsic vorticity S=1 or S=2 in the
complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, for the axially symmetric configura-
tion. An essential ingredient of the complex Ginzburg-Landau equation is an effective transverse diffusivity
�which is known in models of laser cavities�, as vortex solitons cannot be stable without it. For the sake of
comparison, results are also included for fundamental three-dimensional solitons, with S=0. Depending on the
collision momentum, �, three generic outcomes are identified: merger of the solitons into a single one, at small
�; quasielastic interaction, at large �; and creation of an extra soliton, in an intermediate region. In addition to
the final outcomes, we also highlight noteworthy features of the transient dynamics.
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I. INTRODUCTION

The complex Ginzburg-Landau �CGL� equations consti-
tute a mathematical framework for modeling nonlinear dy-
namics in-situations close to pattern-forming transitions in
various dissipative media, such as optical cavities, viscous
fluid flows and thermal convection, reaction-diffusion mix-
tures, and others �1�. An important class of patterns observed
in these media and reproduced by the CGL equations are
localized �solitary� pulses, alias dissipative solitons �DSs�
�2–4�. The search for stable DS solutions is a challenge in
modeling two- and three-dimensional �2D and 3D� media,
because of the possibility of the critical or supercritical col-
lapse, in the 2D and 3D geometry, respectively, under the
action of the self-focusing cubic nonlinearity. In addition to
that, multidimensional localized states with intrinsic vortic-
ity, i.e., vortex solitons, are prone to instability against azi-
muthal perturbations that tend to split them �5,6�.

It is well known that a physically relevant model which
may support stable DSs in any dimension is provided by the
CGL equation with the cubic-quintic �CQ� nonlinearity. This
equation was originally introduced by Petviashvili and Ser-
geev �7� in the 2D form, with the objective to generate vor-
tical DSs. In the 1D version of the same model, solitary-
pulse solutions and their stability were then investigated in
detail �8�. Nonlinear optical media that feature the CQ re-
sponse include chalcogenide glasses �9� and some organic
materials �10�.

Actually, stable 2D vortical solitons, with topological
charge �vorticity� S=1 and 2, were constructed in the frame-
work of the CQ CGL equation in Refs. �11�. Stable funda-
mental �S=0� 3D localized states were found as spatiotem-
poral DSs in optical models based on equations of the same
type �12–15�. 3D double-soliton complexes, including rotat-
ing ones �16�, have been found too. Finally, 3D vortex soli-
tons with S=1, 2, and 3 have been obtained recently, as
solutions to the CQ CGL equation �17,18�. The stability of

the latter solutions was analyzed in terms of the growth rates
of perturbation eigenmodes, and verified in direct simula-
tions.

Once stable solitons are available, a problem of great in-
terest is to consider collisions between them. In this work,
we aim to investigate collisions in the framework of the fol-
lowing CQ CGL equation in three dimensions �17,18�, focus-
ing on vortex solitons:

iUz + �1

2
− i���Uxx + Uyy� + �D

2
− i��Utt

+ �i� + �1 − i���U�2 − �� − i���U�4�U = 0. �1�

In terms of nonlinear optics, U is the local amplitude of the
electromagnetic wave in the bulk medium which propagates
along axis z, the transverse coordinates are x and y, while the
temporal variable is t=T−z /V0, where T is time and V0 is the
group velocity of the carrier wave. The coefficients which
are scaled to be 1/2 and 1 account, respectively, for diffrac-
tion in the transverse plane and the self-focusing Kerr non-
linearity, ��0 is the effective diffusivity in the transverse
plane, real constants �, �, and � represent, respectively, the
linear loss, cubic gain, and quintic loss �the basic ingredients
of the CQ CGL equation �7��. Here ��0 accounts for the
self-defocusing quintic nonlinearity, that may compete with
the cubic term, according to the experimental observations
�9,10�, D is the group-velocity dispersion �GVD� coefficient
�D	0 �D
0� corresponds to the anomalous �normal�
GVD�, and ��0 accounts for the dispersion of the linear
loss.

The model to be investigated will be taken in the form of
Eq. �1� with zero spectral filtering parameter ��=0�, which
admits free motion of solitons along axis z, and thus makes
collisions between them possible �19�. On the contrary to
that, free motion in plane �x ,y� is impeded by the diffusivity
term �the one with �	0� in Eq. �1�. As shown in Refs.

PHYSICAL REVIEW A 77, 033817 �2008�

1050-2947/2008/77�3�/033817�6� ©2008 The American Physical Society033817-1

http://dx.doi.org/10.1103/PhysRevA.77.033817


�17,18�, this term is necessary for the stability of vortex DSs,
while fundamental solitons, with S=0, may be stable at
�=0 as well.

In the general case, analysis of collisions between local-
ized objects in the 3D space is quite involved, requiring
heavy simulations of the full 3D equations. In particular, in
the framework of the CGL equation with �=�=0, where the
free motion is possible both in transverse plane �x ,y� and
along axis z, the collision between zero-spin solitons is con-
trolled by four parameters: relative transverse and axial ve-
locities of the solitons, and two respective aiming parameters
�in terms of the optical model, the aiming parameter related
to the motion along z is realized as the temporal separation
between the solitons when their separation in the �x ,y� plane
attains a minimum�. Examples of collisions between 3D DSs
with S=0 were reported in Ref. �15�, in the model with �
=0 and �	0. Outcomes observed in those simulations in-
cluded fusion of the solitons into a single one �sometimes, it
rather looked as destruction of one of the colliding objects�,
or quasielastic interaction �mutual bounce of the solitons�.

As said above, if the colliding solitons carry vorticity, the
CGL equation must include the term proportional to diffusiv-
ity parameter �	0, otherwise the solitons are unstable.
Then, as their motion in the transverse plane is suppressed by
the diffusivity term, the collision depends on two parameters,
viz., the relative velocity in the axial direction and the related
aiming parameter, which is the distance between parallel tra-

jectories of the colliding solitons. In this work, we focus on
the more tractable setting, by choosing the diffusivity coef-
ficient �	0 and zero aiming parameter, when the 3D collid-
ing solitons form a coaxial configuration. A systematic
analysis is more feasible in that case, due to the inherent
axial symmetry �nevertheless, the numerical integration of
the CGL equation is performed in the Cartesian coordinates,
which guarantees that all potentially dangerous perturbations
are incorporated, including those which may break the axial
symmetry�. As collisions between 3D vortex solitons have
never been studied before, the consideration of the coaxial
setting as the first step in tackling this complex problem may
be quite appropriate.

The rest of the paper is structured as follows. The model
equation and setting for the analysis are formulated in Sec.
II, results of the analysis are reported in Sec. III, and the
paper is concluded by Sec. IV. The results are formulated in
a compact form, which demonstrates the outcome of the col-
lision as a function of parameters of the physical setting.

II. THE CUBIC-QUINTIC GINZBURG-LANDAU MODEL
AND STABLE SOLITONS

In the general case, the 3D CGL equation with the CQ
nonlinearity takes the form of Eq. �1� �17,18�. All coeffi-
cients in Eq. �1� are well-known physical parameters, except

FIG. 1. Cross-section shapes of typical stable 3D dissipative
solitons, with S=0,1 ,2, in the transverse �r� and temporal �t� di-
rections, for �=0.5, �=1, and �=2.3 �in panel �b�, the temporal
shapes for S=2 completely overlap with that for S=1�.

FIG. 2. The real and imaginary parts, �r and �i, of the radial
shapes for S=0 �a�, S=1 �b�, and S=2 �c�. The parameters are as in
Fig. 1.

FIG. 3. The real and imaginary parts, �r and �i, of the temporal
shapes for S=0 �a�, S=1 �b�, and S=2 �c�. The parameters are as in
Fig. 1.

FIG. 4. The largest instability growth rate vs � for 3D vortex
dissipative solitons: �a� S=1, �b� S=2. Other parameters are �=1,
�=0.5, and �=0. The arrows indicate centers of the stability
intervals.
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for a more “exotic” one, �. The diffusivity term proportional
to � appears in a model of laser cavities, where it is gener-
ated by the interplay of the dephasing of the local polariza-
tion in the dielectric medium, cavity loss, and detuning be-
tween the cavity’s and atomic frequencies �20�. As said
above, we will keep �	0, to secure the stability of the vor-
tex solitons, and we will set �=0, to admit the free motion of
the solitons along axis z.

In the conservative counterpart of the CQ CGL equation,
i.e., the nonlinear Schrödinger equation with the CQ nonlin-
earity, the quintic term must be self-defocusing �in the 2D
and 3D geometries�, to arrest the collapse induced by the
self-focusing cubic term �5,21�. However, the self-
defocusing sign of the quintic term is not necessary for the
stability of the multidimensional DSs, because the collapse is
prevented by the stronger effect of the quintic term in the
dissipative part of the equation �17�. The sign of the GVD
coefficient D is not crucial either, because the existence of
stable fundamental and vortical 3D solitons was demon-
strated for both D	0 �17� and D
0 �18�, both cases being
relevant to optics �D
0 gives rise to strong phase chirp
along the temporal direction in the soliton�.

First we look for stationary DS solutions to Eq. �1� in the
form of

U�z,x,y,t� = ��r,t�exp�ikz + iS�� , �2�

where r and � are the polar coordinates in plane �x ,y�, S
�0 is the above-mentioned integer vorticity �the fundamen-
tal solitons correspond to S=0�, k is a real wave number, and
complex function ��r , t� obeys the stationary equation

�1

2
− i����rr +

1

r
�r −

S2

r2 �� +
1

2
D�tt

+ �i� + �1 − i�����2 − �� − i�����4�� = k� , �3�

where we set �=0, as said above. Localized solutions to this
equation must decay exponentially at r , �t�→
, and as rS at
r→0.

Below, we consider the following set of parameters:
D=1 �anomalous GVD�, �=1, �=0.1, �=0.4, and �=0.5.
We will consider stationary DSs with vorticities S=0, S=1,
and S=2. To generate these solutions, we simulated the
propagation of zero-vorticity and vortical localized pulses
forward in z, within the framework of the radial version
of Eq. �1�, obtained by the substitution of U�z ,x ,y , t�
=��z ,r , t�exp�iS��, using the following axially symmetric
input pulses:

��0,r,t� = ArS exp�− �1/2��r2/�2 + t2/�2�� , �4�

with some constants A, �, and �. The standard Crank-
Nicholson scheme was used for the numerical integration
�typically, with transverse and longitudinal step sizes �r
=�t=0.2 and �z=0.01�. The nonlinear finite-difference
equations were solved with the help of the Picard iteration
method, and the resulting linear system was then handled by
means of the Gauss-Seidel iterative procedure. To achieve
reliable convergence to stationary states, ten Picard and four
Gauss-Seidel iterations were usually sufficient. The wave
number �k� of an established solution was found as the cor-
responding value of the z derivative of the phase of ��z ,r , t�,
provided that it became independent on z, r, and t up to five
significant digits. Typical radial and temporal cross sections
of the stable DSs with S=0,1 and S=2 are shown in Figs.
1–3 for �=2.3 �the radial and temporal shapes are shown,
respectively, across t=0 and r=rmax, where local power

FIG. 5. �Color online�. Contour plots display the evolution of
field �U� in plane �t ,z�, for three collision scenarios at different
values of kick � for the solitons with S=0: �a� merger into a single
soliton, at �=1; �b� creation of an extra soliton, at �=2; �c� quasi-
elastic collision, at �=4.

FIG. 6. �Color online�. The same as in Fig. 5 but for vortex
solitons with S=1: �a� �=1, �b� �=2, �c� �=4.
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���r , t��2 attains its maximum�. It is noteworthy that, while
the temporal shapes of the solitons with S=1 and 2 are vir-
tually identical in terms of ���, they are quite different as
concerns their real and imaginary parts; see Figs. 3�b� and
3�c�. The wave numbers �with five significant digits� corre-
sponding to the DSs shown in Fig. 1 are k=0.443 42 for S
=0, k=0.500 40 for S=1, and k=0.503 87 for S=2.

We stress that the above numerical procedure does not
guarantee the stability of the so found vortex states, as they
may be subject to instability against azimuthal perturbations
�17,18�. The full stability of the vortex DSs was identified
through the computation of instability growth rates for eigen-
modes of small perturbations. To this end, a perturbed solu-
tion to Eq. �1� was looked for as

U = ���r,t� + f�r,t�exp��z + iJ�� + g��r,t�exp���z − iJ���

�exp�ikz + iS�� , �5�

where integer J and �generally, complex� � are the azimuthal
index and growth rate of infinitesimal perturbations repre-
sented by eigenmodes f and g. The substitution of this ex-
pression in Eq. �1� leads to linearized equations which were

solved by means of the same numerical methods as in Refs.
�17,18�.

The fundamental DSs are stable in their entire existence
domain, whereas the vortex solitons are stable only in a part
of their existence domain �17,18�. For our choice of the pa-
rameters we have found that the solitons are stable in the
following intervals of variation of the cubic gain parameter
�: 2.144���2.373 �for S=0�, 2.075���2.425 �for S=1�,
2.135���2.417 �for S=2�. These intervals of stability are
outcomes of the linear stability analysis for the vortex DSs,
see Fig. 4, where, fixing �=1, we display the largest insta-
bility growth rate vs nonlinear gain � for vortex dissipative
solitons with S=1 and S=2. Note that actual borders of the
stability regions for the vortex solitons with vorticity S are
determined by the perturbation eigenmodes with J=S.

Thus to study generic outcomes of collisions between
DSs, one should take a pair of stable solitons with shapes
shown above, separated by large temporal distance T. The
solitons are set in motion by “kicking” them in the
axial direction, i.e., multiplying each soliton by exp��i�t�.
Note that, with �=0, Eq. �1� supports the Galilean inva-
riance in this direction, i.e., the application of the kick
to the original soliton, U0�z , t ,x ,y�, generates an exact solu-
tion in the form of a “walking” soliton, U��z , t ,x ,y�
=U0�z , t�a� ,x ,y�exp��i�t− ia�2z /2�.

III. RESULTS

To solve Eq. �1� with the initial condition �at z=0� corre-
sponding to collisions between two stable identical solitons,
initially separated by large temporal distance T, a fully 3D
implicit �Crank-Nicholson� finite-difference scheme was
used, with typical transverse and longitudinal step sizes �x
=�y=�t=0.2 and �z=0.01. Similar to the simulations out-
lined in the previous section, the resulting nonlinear finite-
difference equations were solved using the Picard iteration
method, and the ensuing linear system was then dealt using
the Gauss-Seidel elimination procedure. To achieve good
convergence, ten Picard and four Gauss-Seidel iterations
were typically needed. In most cases, we used 501 discreti-

000

FIG. 7. �Color online�. The same as in Fig. 5, but for vortex
solitons with S=2: �a� �=0.5, �b� �=2, �c� �=4.

FIG. 8. �Color online�. Isosurface plots of total intensity
�U�x ,y , t��2, showing the precollision and postcollision dynamics in
the case of the merger, for different values of the propagation dis-
tance: z=25 �a�, z=28 �b�, z=30 �c�, z=35 �d�, z=40 �e�, z=60 �f�.
Here S=2, �=0.5, and the simulations were run on the grid of size
201�201�501.

FIG. 9. �Color online�. The same as in Fig. 8, in the case of the
creation of an extra soliton, for S=2 and �=2. Here, z=6 �a�, z
=7 �b�, z=8 �c�, z=9 �d�, z=10 �e�, z=12 �f�. The simulations were
run on the grid of size 201�201�501.

FIG. 10. �Color online�. The same as in Fig. 8 in the case of a
quasielastic collision, for S=2 and �=4. Here, z=3 �a�, z=3.5 �b�,
z=4 �c�, z=4.5 �d�, z=5 �e�, z=5.5 �f�. The simulations were run on
the grid of size 201�201�501.
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zation points for t, while the number of the mesh points for x
and y that provided for the required accuracy depended on
the vorticity: 160�160 points for S=0, 193�193 for S=1,
and 201�201 for S=2.

Results of systematic simulations of soliton collisions
may be adequately represented by outcomes observed at the
following values of parameters in Eq. �1�: D=1 �anomalous
GVD�, �=1, �=2.3, �=0.1, �=0.4, and �=0.5 �recall that
we also set �=0�, while kick parameter � was varied. In this
case, the 3D solitons with S=0,1 ,2 �and also with S=3� are
all stable �17,18�, being characterized by the following val-
ues of the energy �alias norm�:

E � 2�	
0




rdr	
−


+


dt���r,t��2, �6�

E�S=0�
52, E�S=1�
171, and E�S=2�
310.
We have studied collisions for DS pairs with vorticities

�S ,S�= �0,0�, �1,1�, and �2,2�. While we are chiefly interested
in the interactions between vortex solitons, the results for S
=0 are included too, for comparison.

Gradually increasing initial kick �, we have observed the
following outcomes �the initial separation was typically T
=30, but variation of T did not affect the results�:

�i� Merger of the two solitons into one, at small values of
�, namely, in intervals ��1.1 for S=0, ��1.2 for S=1, and
��1.4 for S=2.

�ii� Generation of an extra soliton, according to scheme
1+1→1+1+1, at intermediate values of �, namely, in inter-
vals 1.1
��2.2 for S=0, 1.2
��2.4 for S=1, and 1.4

��2.4 for S=2. Note that a similar effect of “soliton
birth” was observed experimentally in the case of collinear
collisions of two one-dimensional dissipative spatial solitons
in periodically patterned semiconductor amplifiers �22�. Our
results show that the soliton creation is a generic feature of
collisions of both fundamental �S=0� and spinning �S�0�
solitons described by the CGL equation.

�iii� Quasielastic interactions at larger �, i.e., �	2.2 for
S=0, �	2.4 for S=1, and �	2.4 for S=2. In this case, the
solitons pass through each other, and after the collision they
feature velocities slightly smaller than they had originally.

These three collision scenarios are illustrated in Figs. 5–7
by pictures of the evolution of the field in the plane of �t ,z�.

Another detailed illustration of the three generic outcomes
of the collisions �for the solitons with S=2� is provided by
the 3D plots displayed in Figs. 8–10. These figures clearly
show that the solitons suffer considerable deformations in the
course of the collisions. Also the total energy �norm� of the
solitons strongly changes during the collision process. The
evolution of the total energy is shown in Fig. 11 �for the case
of the merger� and Fig. 12 �for the cases of the creation of
the extra soliton, and quasielastic collision�. In these figures,
labels �0,0�, �1,1�, and �2,2� stand for the respective values of
S of the colliding solitons.

In the case shown in Fig. 11, the merger is signalized by
eventual drop of the energy to half of the initial level, while
the appearance of the extra soliton is seen through the jump
of the energy to 150% of the initial value. In the case of the
quasielastic collision, the energy drops temporarily, but
eventually recovers the initial value �the curves for S=2 and
S=1 in Fig. 12�b� need additional propagation distance to
stabilize at the original energy levels�.

Note that the energy may attain very high values at an
intermediate stage of the merger �exceeding the initial energy
by a factor of �5 in Fig. 11�b��, before dropping eventually
to 50% of the initial value. On the contrary, in the case of the
generation of the extra soliton, the total energy may tempo-
rarily drop to �50% of the initial value, before establishing
itself at the eventual level of 150% �see the curve for S=2 in
Fig. 12�a��.

IV. CONCLUSION

We have performed a systematic analysis of collisions
between stable 3D dissipative solitons with vorticities S=1
and 2, as well as S=0, in the complex Ginzburg-Landau
equation with the cubic-quintic nonlinearity. The simulations
were carried out for the axially symmetric configuration, but
using the Cartesian coordinates, hence we may be sure that
the entire dynamical process is stable against symmetry-
breaking perturbations. Depending on the initial kick applied
to the solitons, ��, three generic outcomes of the collisions
have been identified, for all values of S: merger of the soli-
tons into a single one, at small �; quasielastic passage

FIG. 11. �Color online�. The evolution of the total energy in the
case of the merger into a single soliton, for S=0, �=1 �a�; S=1,
�=1 �b�; S=2, �=0.5 �c�.

FIG. 12. �Color online�. The same as in Fig. 11: �a� when the
collision results in the creation of an extra soliton ��=2�; �b� for the
quasielastic collision ��=4�.
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through each other, at large �; and the generation of an extra
soliton, at intermediate values of � �the process of “soliton
birth”�. Not only the outcomes, but also transient dynamics
have been studied in detail.

This paper reports results of the first analysis of collisions
between vortex solitons in the 3D space. The analysis may
be extended in various directions, including on-axis colli-
sions between two solitons with different vorticities �in par-

ticular, one of them may have S=0�, and noncoaxial colli-
sions in a more general geometric setting.
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