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Abstract
The reductive perturbation method is a very powerful way of deriving simplified models
describing nonlinear wave propagation and interaction. In abstract frames chosen for the sake
of clarity, we describe the fundamentals of the method: envelope equations, long-wave
approximation, three-wave resonant interaction. We give an insight into the mathematical
properties of the perturbative schemes. Then some applications are given, which either
illustrate the typical situation or introduce additional features of perturbative expansions, and
have their own physical interest. The applications concern either nonlinear optics, especially
ultrafast, or wave propagation in ferromagnetic media, in the so-called electromagnetic or
polariton range.

(Some figures in this article are in colour only in the electronic version)

1. The reductive perturbation method

1.1. ‘Weakly’ nonlinear

Nowadays, research in physics devotes much attention to
nonlinear phenomena. What is the reason for this? In
fact, most physical phenomena are intrinsically nonlinear.
Newton’s gravitational attraction law involves a spatial
dependency as 1/r , the pendulum equation is transcendent,
considering the most elementary examples only.

However, the mathematical techniques used in the study
of these problems remained linear for a long time. It has
long been considered that two quantities were dependent
on each other when they were proportional only, i.e. any
nonlinear dependency was ignored. This happened because
the mathematics of the time was not able to yield a better
theory. Since then, many techniques of mathematical analysis
have been developed, often more successfully for linear
problems. As a fundamental example, the resolution of
sets of linear algebraical equations is well known, while
a polynomial equation of more than fourth degree cannot
be solved analytically in general. Regarding differential
equations, the same observation is made: if the equation or
the system is linear, Fourier analysis allows us to reduce it
to algebraical equations, which allows us to solve a large

part of the problems. Analogously, most of the problems
involving linear differential equations can be solved by means
of Fourier analysis, while for nonlinear differential equations
no equivalent procedure exists, and mathematical difficulties
are numerous.

To overcome these shortcomings in the mathematics,
physics has made use, in an almost systematical way,
of approximations that allow us to replace the initial
mathematical problem, nonlinear and not solvable, by another
one, linear and solvable. The small oscillations approximation
for the pendulum is a typical example. For some applications,
an intrinsically nonlinear physical system is put in a special
situation, for which a linear approximation can be used (e.g.
a transistor, in analogical electronics). The same approach is
used in the study of electromagnetic waves in ferromagnetic
media: the sample is immersed in a strong enough external
magnetic field. An important exception to this general scheme
is constituted by electromagnetic waves, whose behaviour, in
vacuum, seems to be exactly linear, insofar as this makes sense.
For visible frequencies in a transparent medium, and for all
sources existing on Earth before the laser was created, the
linear approximation is valid. Here, technological progress
allowed us to attain domains where this approximation is no
longer acceptable.
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The physical concepts related to the study of linear or
linearized phenomena are intimately related to mathematical
objects that make sense for linear problems only: frequency,
polarization, mode, . . . . The most natural approach, which is
also the most affordable technically, is to use a perturbation
method, the fist order of which is the linear approximation:
the slowly varying envelope approximation, typically. It can
thus be qualified as ‘weakly nonlinear’, in accordance with the
terminology of mathematicians.

It must be noticed that, if some evolution law is not
linear, the Fourier components are not conserved. Even
if the Fourier transform can be mathematically defined at
any time, this lack of conservation destroys its physical
meaning. The physical sense can be given by the trace
of the properties of the linearized system only. It is thus
necessary to avoid going too far away from the latter, i.e.
to use a weakly nonlinear approximation, in the above-
mentioned sense. Further, and especially in nonlinear optics,
the weakly nonlinear approximation may be fully justified on
experimental grounds, without the necessity for producing a
special situation.

However, many phenomena, although they are weakly
nonlinear in the sense that the frequency and so on still
have a meaning, diverge in their results from the linear
situation. This is due to the fact that small modifications
of an evolution law can yield large variations, if the evolution
time is long enough. In this frame, the multiscale analysis
is fully justified: it is a perturbative approach, whose first
order is a linear approximation, that allows us to write not
small corrections valid for the same evolution time as in the
linear approximation, but their cumulative effect for a very
long evolution.

1.2. Soliton theory

The reductive perturbation method is intimately related to
soliton theory. It is indeed well known and commonly used by
the specialists of the latter. Before we expose the fundamental
reasons for this association, let us explain what a soliton is.

The first observation of a soliton was experimental, as
far back as 1834, and due to J Scott Russell. Riding
alongside a canal, he observed ‘a large solitary elevation,
a rounded, smooth and well-defined heap of water, which
continued its course along the canal apparently without change
of form or diminution of speed’, and which was ‘preserving
its original figure’ for a very long distance [1]. (The full
passage can be found in many papers and books on soliton
theory and encyclopaedias.). It is thus a solitary wave,
i.e. here a single hump of water, which propagates without
deformation. In a linear non-dispersive medium, propagation
without deformation occurs for any wave. But if dispersion is
present, only a purely sinusoidal wave can propagate without
deformation; a wave packet always spreads out, a fortiori
does a solitary wave. If a nonlinear effect is present, it always
results in wave deformation, frequently in wave breaking [2].
However, the nonlinear and dispersive effects can compensate
together for a special wave shape: this is the soliton.

The theory of hydrodynamic solitons began in the 19th
century first with Boussinesq, who published in 1872 the

equation which has his name, which is a version of the
well-known Korteweg–de Vries (KdV) equation allowing the
propagation in both directions (while KdV is unidirectional)
[3]. Boussinesq solved this equation and gave the expression
of the KdV soliton 23 years before Korteweg and de Vries
themselves [4]. The KdV equation was fully solved much
later in 1967; however this resolution was again a pioneer
work in soliton theory, since it involved the construction of
the so-called inverse scattering transform (IST) method [5]. In
short, there is some mathematical transformation, called the
inverse scattering transform (IST) [6, 7], that generalizes the
Fourier transform and allows us to solve the Cauchy problem.
The method uses the resolution of an inverse problem, which
motivates its appellation. This scheme can be achieved for
a small set of nonlinear partial differential equations only,
among which is the KdV. These equations are called integrable
(or completely integrable). A mathematical property which
renders an equation integrable is the existence of a Lax pair
[8]. Further, integrable equations have the remarkable property
of possessing an infinite number of conservation laws.

A second type of soliton was discovered later: the
envelope soliton. In the same way as a single hump, a wave
packet involving some carrier wave modulated by an envelope
can be stabilized by the combined effect of dispersion and
nonlinearity. In this case the theory came first [9], with the
experiment only eight years later [10]. It demonstrated the
propagation of picosecond optical pulses in a fibre. The model
equation is here called the nonlinear Scrhödinger equation
(NLS); it is completely integrable.

The same mathematical model describes the diffraction
of a narrow beam in a planar optical waveguide filled with
a medium which presents the same cubic Kerr nonlinearity
as silica fibre. According to exactly the same mathematical
properties of the model, the stabilization of the beam occurs:
it is the spatial soliton, first observed in 1985 [11].

Thereafter the concept of the soliton has been widely
extended; a few examples will be given in this tutorial.

1.3. Multiple scales

A first close link between multiscale expansions and integrable
equations comes from the physical situations in which the latter
arise. Let us consider the KdV equation in hydrodynamics: the
formation of solitons assumes relations to be satisfied between
the amplitude of the solitary waves, their lengths, the canal
depth and the propagation distance. All these quantities are
lengths, whose orders of magnitude differ, but are in no way
arbitrary. From the physical nature of the phenomenon itself,
we have multiple scales. Regarding the envelope solitons, let
us consider, e.g., optical solitons in fibres. The wavelength,
the pulse length and the propagation distance are three lengths
measured along the fibre axis that are first distinguished by
their different orders of magnitude. Further, the formation of a
soliton occurs only if some relations are satisfied between these
orders of magnitude, and between them and that of the wave
amplitude. Here again, multiple scales exist in the physics
itself.

The formalization of the multiple scales involves the
introduction of some small perturbation parameter ε, so that
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the orders of magnitude of the various effects are determined
by means of their order in an expansion in a series of powers of
ε. This induces homogeneity properties of the mathematical
expressions considered. Therefore, the model equations
which are derived this way must satisfy these homogeneity
properties: the number of possible equations is hence rather
small. Consequently, a few equations are shown to account
for analogous phenomena in many very different domains of
physics. Such equations are called universal. An important
number of them are completely integrable, although this
property is very rare. This relates closely the multiscale
analysis or reductive perturbation method to soliton theory.

It has also been shown [12] that the reductive perturbation
method, when applied to some integrable equation, could lead
to some other equation, again integrable. This has been (and
is still) used to construct approximate solutions of integrable
equations and to study the mathematical properties of the latter
(see the short review in the physical frame in section 9.2).

The reductive perturbation method, or multiscale analysis,
seems to be initially due to Gardner and Morikawa [13],
concerning hydromagnetic waves in a cold plasma. The
method was used again by Washimi and Taniuti [14], applied
to the study of ion-acoustic waves. Taniuti and Wei wrote
a general theory of the derivation of the Korteweg–de Vries
(KdV) equation [15]. Let us also mention the derivation of
the KdV and Burgers’ equations, by Gardner and Su [16].
Taniuti and his co-workers initiated the method concerning
the envelopes, leading to the nonlinear Schrödinger (NLS)
equation. It is remarkable that the first paper in which this
equation has been derived using the reductive perturbation
method, i.e., a multiscale expansion, does not, properly
speaking, study an envelope problem [17]. The phase
of the complex variable satisfying this equation describes
the precession of a magnetic field around the propagation
direction. This situation, initially studied in a cold plasma,
has been applied to a ferromagnetic dielectric ever since [18].
Taniuti and Yajima have given a ‘perturbation method for a
nonlinear wave modulation’, deriving the NLS equation using
a multiscale method, in two papers, the first one using as initial
model a system of partial differential equations (PDEs) [19],
the second one being generalized to the integro-differential
systems [20].

Note that the reductive perturbation method is often
referred to as the WKB (Wentzel, Kramers, Brillouin) one,
especially in the mathematical community. However, the
original WKB method approximates the stationary solutions
to the (linear) Schrödinger equation, which quite differs from
the problems we are considering here.

1.4. A word about the convergence proofs

Rigorously, a formal asymptotic expansion does not prove
anything: it must be proved that the difference between the
solution of the initial model and that of the asymptotic model
becomes effectively very small as the perturbative parameter
tends to 0. This is called the convergence of the expansion. The
convergence of multiscale expansions is not an easy problem
and is far beyond the scope of this tutorial. Regarding the

asymptotics of slowly varying envelope type, the first studied
situation seems to be that of nonlinear geometrical optics
[21, 22]: it is the situation where the nonlinear effect (self-
phase modulation) is strong enough to arise at distances
comparable to the length of the considered short pulse.
The propagation of the envelope at group velocity is
directly modified by this phenomenon. This situation is
mathematically more simple than that of the NLS-type
asymptotics, since it involves only two scales instead of three.
It corresponds physically to higher intensities and shorter
propagation distances. Once this was done, mathematicians
began to study the three scale expansions and succeeded in
justifying the NLS-type asymptotic in media with a cubic
nonlinearity [23]. The next step concerns the NLS and Davey–
Stewartson (DS)-type asymptotics, in media with a quadratic
nonlinearity [24, 25]. Long-wave asymptotics have also been
justified, e.g., the convergence of the Burgers asymptotics for
shock waves in ferromagnetic media has been recently proved
[26]. The formal derivation had been published nine years
previously [27].

From these convergence proofs, I note two details of
great importance for physics. First, the convergence can
only be justified on finite length intervals of the evolution
variable, time or propagation distance depending on the point
of view. This evolution variable corresponds to a particular
scale that will be characterized by a typical length L0. It
means that, after a propagation distance of a few L0, the NLS-
type approximation will no longer be valid. This accounts for
the experimental fact that the spatial optical solitons ‘do not
exist’ or, more exactly, that instead of propagating indefinitely
without any deformation, as the corresponding solution of
the NLS equation does, these structures break up after a few
diffraction lengths. If the convergence of the asymptotic is
taken into account, it is known that the exact solution of the
Maxwell equations must diverge from that of the NLS after a
few L0. This is exactly what has been observed; the length of
diffraction plays the role of the above characteristic length L0.
This qualitative remark was already conjectured in [19].

The second point that intervenes in these mathematical
problems, and is retrieved in experiments, is the competition
between the soliton formation and the diffusions. Studying
experimentally spatial solitons in a planar waveguide, it has
been noticed that the stimulated Rayleigh wing and Raman
diffusions could occur together with the Kerr effect and modify
in an important way the formation of solitons as much as
the interactions between modes [28, 29]. The observed
results depend on the relative intensity of the various nonlinear
couplings: stimulated Rayleigh diffusion, stimulated Raman
diffusion, self-phase modulation, cross phase modulation. A
trace of this appears in the convergence proofs: indeed, Joly,
Métivier and Rauch have proved that, under certain conditions,
the convergence could be justified only if some conditions,
called transparency conditions, were satisfied [30]. A rough
interpretation of these transparency conditions is that all the
diffusions can be neglected. It is remarkable that difficulties
appearing in purely mathematical aspects of the question
correspond very closely to experimental features. A complete
analysis of this problem remains an open issue.

3



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 043001 Tutorial

A

L

D 1/ε

1/ε

3

ε2

Figure 1. The various length scales of the KdV soliton. A: small
amplitude, L: long wavelength, D: much longer propagation
distance.

2. Long-wave expansions

After these considerations about the history and the interest
of the method, let us describe it more precisely, beginning
with the most typical situations and with the long-wave
approximation. One of the first studies devoted to this matter
is [16], which derives the equations of Burgers and KdV
for hydrodynamical waves in shallow water. The Burgers’
equation describes an equilibrium between the nonlinearity
and the dissipation, and the formations of smooth shock
profiles. The KdV equation describes an equilibrium between
the nonlinearity and the dispersion, and the formation of
localized pulses propagating and crossing each other without
deformation, called solitons. There exists an electromagnetic
wave mode in ferromagnetic media which obeys either the
Burgers’ equation [27] or the KdV one [31], depending on the
values of the wave amplitude and the damping constant.

We consider a solitary wave with long length L, weak
amplitude A, propagating on a distance D, long with regard to
L. The orders of magnitude of A,D and L are not independent,
but are all expressed by means of a single small parameter
ε, through A ∝ ε2, L ∝ 1/ε and D ∝ 1/ε3, as shown in
figure 1. Let us compare these assumptions to the historical
soliton observed by Russell [1]. It was ‘preserving its original
figure some thirty feet long and a foot to a foot and a half in
height’, and was lost ‘after a chase of one or two miles’. The
amplitude A ∼ 0.3 m is small relative to both the channel
depth and the length L ∼ 10 m of the solitary wave, and
propagated on a distance D of 2 or 3 km. However, the
amplitude is rather high with respect to a KdV approximation
valid on such a distance. It would indeed involve a perturbation
parameter ε ∼ √

L/D ∼ 1/10, and the amplitude in
the KdV approximation should be A ∼ ε3L ∼ 1 cm.
For much higher amplitude, higher-order corrections to the
KdV model must be taken into account. However, they modify
the soliton shape and speed, but do not prevent it from existing,
as the experiment proves. Due to the robustness of solitons,
the validity range of the perturbative computation is in general
much wider than what is expected from the mathematics.

The relative size of the various terms is determined as
follows. The KdV equation is

∂τg + Pg∂ξg + Q∂3
ξ g = 0. (1)

It involves a spatial derivative ∂3
ξ g, which accounts for

dispersion. It can easily be proved that the first-order derivative
∂ξg can account for propagation only and that the second-
order derivative ∂2

ξ g involves energy losses. This justifies that
the dominant dispersion term has this form. If the length of
the solitary wave is large, L ∼ 1/ε with ε � 1, then the

dispersion term is about ∂3
ξ g ∼ ε3g. It must arise at the

propagation distance (or equivalently propagation time) D,
accounted for in the equation by the term ∂τg ∼ g/D. Hence
1/D ∼ ε3. Regarding the nonlinear term, if it has the form
g∂ξg its order of magnitude is g2/L ∼ εg2. The formation
of the soliton requires that the nonlinear effect balance the
dispersion. Hence it must have the same order of magnitude
and ε3g = εg2. Hence g ∼ ε2.

In principle, the model derived this way is valid for waves
with amplitudes and lengths and for propagation distances
which satisfy these conditions and for very small values of ε

only. Many experiments, such as the observation by Russell,
show that the validity range of the model is in many cases
much wider, at least for the qualitative behaviour of the wave.

2.1. A model and scales

In [32, 33] the derivation of a KdV-type asymptotic was
studied, starting from a rather general class of systems of
PDEs, which contains in particular the Maxwell–Landau
model which is used in the description of electromagnetic wave
propagation in a ferromagnetic dielectric (cf section 6.1). The
general system can be written as

(∂t + A∂x + E) �u = B(�u, �u), (2)

where the function �u of the variables x and t is valued in
R

p,A and E are p × p matrices and B : R
p × R

p −→ R
p is

symmetrical bilinear (∂x denotes the partial derivative operator
∂/∂x). For the sake of clarity, we choose special matrices
A and E, that allow us to put in evidence the hypothesis that
appears during the derivation of the general case, together with
their interpretation from a more physical point of view, while
reducing the computations and abstract notations as much as
possible. These matrices are

A =

⎛
⎜⎜⎝

1 0 2 1
0 −1 1 1
2 1 0 0
1 1 0 0

⎞
⎟⎟⎠ , E =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 s 0

⎞
⎟⎟⎠ ,

�u =

⎛
⎜⎜⎝

u

v

q

r

⎞
⎟⎟⎠ , (3)

with s being a real parameter. No special assumption is made
about B. The vectors of the canonical basis will be denoted
by �α, �β, �γ , �δ, and the corresponding components of B by
Bα,Bβ, Bγ and Bδ . The choice of A and E is motivated for the
sake of simplicity in the presentation and does not correspond
to any particular physical situation.

The function �u is expanded in a power series of a small
parameter ε as

�u = ε2�u2 + ε3�u3 + · · · , (4)

where �u2, �u3, etc are functions of ‘slow variables’ defined by

ξ = ε(x − V t), τ = ε3t, (5)

with V being a velocity to be determined. Let us check that
equation (5) accounts for the scales shown in figure 1. The
wave profile will be described by some function g(ξ). Its
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length corresponds thus to some fixed value ξ0 of ξ . According
to (5), it yields a length of the solitary wave in physical units
L = (x − V t)0 = ξ0/ε, large with order 1/ε. Analogously,
the evolution is accounted for by values of the τ variable. A
given propagation time corresponds to a finite value τ0 of τ

and hence to a large time t0 = τ0/ε
3. The corresponding

distance D ∼ 1/ε3 is obtained by multiplying t0 by the finite
velocity V .

The fact that the expansion begins with a term of order ε2

is equivalent, physically, to specifying the order of magnitude
of the amplitude, according to figure 1. A priori, expansion
(4) may begin with a term of order ε, but it is easily checked
that, for the considered time scales, this does not yield any
evolution equation.

At first order ε2, equation (2) gives

E�u2 = 0, (6)

that is q2 = r2 = 0. At following order ε3, we get the equation

E�u3 + (A − V )∂ξ �u2 = 0, (7)

which yields, assuming that �u vanishes at infinity and taking
into account the results of the previous order,

(1 − V )u2 = 0, (−1 − V )v2 = 0, (8)

for the two first equations, in the kernel of E. It is seen that
two propagation velocities are allowed: V = ±1. One of the
first effects of the ansatz (5) is to select a single velocity. We
choose arbitrarily V = +1. While v2 = 0, �u2 describes then
a wave with some polarization, corresponding to this choice:
�u2 = g�α, where g is a function of the slow variables to be
determined. The choice of the special matrix A assumes that
V is a simple eigenvalue. It is clear that, generally, this is
a necessary condition to obtain the KdV asymptotic. On the
other hand, it can be noticed that V and �α are not the eigenvalue
and eigenvector of A itself, but of its restriction to the kernel
of E and projection onto it. The components of the system (7)
outside the kernel of E allow us to obtain the expressions of q3

and r3,

q3 = −2gξ , r3 = −1

s
gξ , (9)

where the index denotes the derivative (gξ = ∂ξg).
At order ε4, the equation is

E�u4 + (A − V )∂ξ �u3 = B(�u2, �u2). (10)

It can be split into three parts: the u component, corresponding
to the selected propagation mode, the v component,
corresponding to the other (in the general case: others)
propagation mode that belongs to the kernel of E, and the
two others components that are not in this kernel. The u
component of equation (10) is a compatibility condition for g,

−2(1 + 1/s)gξξ = g2Bα (�α, �α) . (11)

If the coefficients of equation (11) are not both zero, it does not
have any nonzero bounded solution. The following conditions
must thus be satisfied (hypotheses 1 and 2):

s = −1 and Bα (�α, �α) = 0. (12)

The equation corresponding to the v component, or the �β
mode, gives

v3 = −1

2
gξ − 1

2
Bβ (�α, �α)

∫ ξ

g2, (13)

while the last two equations give expressions for the
components that do not belong to the kernel of E:

q4 = ϕξ + 3
2gξξ − (

1
2Bβ (�α, �α) + Bδ (�α, �α)

)
g2, (14)

r4 = −2ϕξ + 3
2gξξ +

(
1
2Bβ (�α, �α) + Bγ (�α, �α)

)
g2, (15)

where we have set u3 = ϕ.
Using the previous results, we get, from the compatibility

conditions, i.e. from the u component of the equation obtained
at order ε5, the evolution equation for g as

∂τg + Pg∂ξg + Q∂3
ξ g = Rϕ2

∫ ξ

g2. (16)

The scalar coefficients P,Q and R are defined by

P = −Bβ(�α, �α) + 2Bγ (�α, �α) − 4Bδ(�α, �α) + Bα(�α, �β)

− 2Bα(�α, �γ ) + 4Bα(�α, �δ), (17)

R = −Bβ(�α, �α)Bα(�α, �β), (18)

and Q = 9/2. If the additional condition R = 0 is satisfied
(hypothesis 3), equation (16) reduces to the KdV equation

∂τg + Pg∂ξg + Q∂3
ξ g = 0. (19)

Let us recall that this equation is the first one that was solved
by the IST method [5, 34] and that the first observed soliton, a
wave in a canal, can be described by this model.

2.2. Physical meaning of the hypotheses

In addition to the hypotheses implicitly made by the particular
choice of the matrices A and E, especially the fact that
the selected propagation mode is non-degenerated, the
above formal derivation of the KdV equation necessitates
three hypotheses that have been clarified. Two of them involve
the nonlinearity, the third concerns in fact a derivative of the
dispersion relation of the linearized system. Let us consider
the latter. The linearized system is

(∂t + A∂x + E) �u = 0. (20)

The pulsation and the polarization vector corresponding to
a given wave vector k will be denoted by ω(k) and �u(k),
respectively. They satisfy

(−iω(k) + Aik + E) �u(k) = 0. (21)

The dispersion relation is drawn in figure 2. It contains
some elements which are characteristic for a large number
of physical dispersion relations and can be used as a typical
example for their interpretation. To analyse it in the long-wave
approximation, i.e. when k tend to 0, we look for ω in the form
of a power series of k as

ω = ω0 + ak + bk2 + ck3 + O(k4). (22)

At order k0, it is seen that ω0 must be an eigenvalue of
E. In the considered special case, and taking s = −1, E

has two nonzero eigenvalues 1 and −1, for the eigenvectors
�γ± = �γ ± i�δ. These values of the pulsation ω correspond
to global oscillations of the material that do not propagate
and that I will denote by resonances, cf figure 2. Zero is
a double eigenvalue of E. Then, let us try to determine the
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k
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-1

-1

ω

α
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Figure 2. The dispersion relation of a linearized abstract model,
showing the ‘long-wave’ type modes �α and �β, and the ‘resonant’
modes �γ+ and �γ−.

following order in the k expansion of the dispersion relation.
It is found that a = ±1, with either u or v null, i.e. two
modes, with the polarization vectors �α and �β and the velocities
V = ω/k = ±1. We retrieve the two propagation modes of
long-wave type obtained during the derivation of the KdV
equation. We have been able to determine the role of the
various components of the system, and in particular to give
an interpretation of those belonging to the kernel of E as
resonances.

Continuing the computation to the following order, having
chosen a = +1, i.e. the �α mode, we obtain the value of b,
from which the second derivative of the dispersion relation is
deduced: d2ω/dk2|k=0 = −4i(1 + 1/s). It is deduced that the
condition s = −1, hypothesis 1, is equivalent to

d2ω

dk2

∣∣∣∣
k=0

= 0. (23)

It is here equivalent to the requirement that E is antisymmetric,
which ensures that the system is conservative. Computing the
coefficient c in the same way, it is shown that the coefficient
Q of the KdV equation (19) is

Q = −1

3

d3ω

dk3
(0). (24)

Formulae (23) and (24) are in fact general.
The two hypotheses, 2 and 3, that concern the nonlinearity,

obviously cannot be explained by the study of the linearized
equation (20). These are particular expressions of a very
general condition called the ‘transparency’ condition in the
rigorous mathematical theory of multiscale expansions by Joly,
Métivier and Rauch [30]. Hypothesis 2 excludes the quadratic
self-interaction of the chosen propagation mode, while
hypothesis 3 excludes the interaction of distinct polarizations
at same order. If hypothesis 2 is not satisfied, the nonlinear
term appears sooner in the expansion. The nonlinear evolution
of the wave will be described by a nonlinear evolution equation
other than KdV, and for other space, amplitude and time scales.
If the hypothesis 3 is not satisfied, the above computation is
valid, but the evolution equation is equation (16) instead of
KdV. It is an integro-differential equation, involving a cubic
nonlinear term.

λ

L

D

Figure 3. The various length scales of an envelope problem. λ:
wavelength, L: pulse length, large with respect to λ, D: propagation
distance, large with respect to L.

3. Envelopes

3.1. The model for envelope solitons

The nonlinear evolution of a wave packet involves several
scales, which are either lengths measured along the
propagation direction or the corresponding time, the phase
velocity being a constant of the problem [6]. The first length
scale is the wavelength λ of the carrier that will be the reference
length (zero order). Intervening then is the length L of the wave
packet, which must be large with regard to the wavelength, so
that an approximation of slowly varying envelope type can
be envisaged. A third scale is the propagation distance D, cf
figure 3. The evolution of the envelope on distances D of the
same order as L—there would be in this case two scales only—
is, in the linear case, a transport at the group velocity. The
effect of the dispersion appears at larger propagation distances.
The situation where a nonlinear effect perturbs this transport
has been introduced by Hunter under the name of nonlinear
geometrical optics [21]. It has given rise to the first rigorous
convergence proofs, cf section 1.4. What we are interested in
here is the formation of solitons that represent, according to
certain definitions, an equilibrium between the dispersion and
the nonlinear effect. The propagation distances D we have to
consider are thus those at which the dispersion appears. D
will thus typically have the same order of magnitude as the
dispersion length or temporal Fresnel length

Lf = �t2

2πk2
. (25)

In this expression, k2 = d2ω/dk2 measures the dispersion and
�t is the initial pulse duration. With the above notations,
�t = nL/c and k2 = (2n′ + ωn′′)/c, where n′ and n′′ are
the first and second derivatives of the refraction index n with
regard to the pulsation ω = 2πc/λ. Hence, from expression
(25) we get

D = Lf = n2

2n′ω + n′′ω2

L2

λ
. (26)

It is easily seen that the ratio n2/(2n′ω + n′′ω2) is
dimensionless. The most simple procedure is to treat it as
a number of order ε0. From this, it is deduced that

λ

L
∼ L

D
∼ ε, (27)

which will be the perturbative parameter.
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Let us consider as a numerical example the first solitons
created in an optical fibre by Mollenauer et al [10]. The
wavelength was λ = 1.55 µm, the propagation distance, i.e.
the length of the fibre, D = 700 m, and the pulse duration
�t = 7 ps, which corresponds to a length L = 1.4 mm. We
get λ/L = 10−3 and L/D = 2×10−6. A first rough approach
is to take, e.g., ε = 2 × 10−5, and then claim that λ/L = 50ε

and L/D = 0.1ε have the same order of magnitude as ε. It is
correct in some sense; in any case it works. However, we can
do better if we take into account the fact that the dispersion
coefficient (2n′ω + n′′ω2)/n2 is small in a silica fibre at the
considered wavelength. Using the data of [10] we get a value
about 7 × 10−3 for this quantity, and it is seen that relation
(26) holds with quite good accuracy. For technical reasons, it
is quite difficult to include the assumption that the dispersion
coefficient is small in the multiscale expansion. In general the
first approach will be used for the mathematical derivation and
the second to specify the validity range of the result in some
specific physical situation.

The nonlinear effects will appear at a propagation distance
with such an order of magnitude if the wave amplitude belongs
to a given range. Formally, a weak amplitude of order ε is
considered. This must obviously be understood with regard
to some reference amplitude that, physically, depends on
coupling constants. Due to dimension problems, to fix the
reference amplitude is not obvious. However, if the order
zero is assigned to the physical value of the coupling constant,
the order of magnitude of the amplitude is that of the ratio
of the second harmonic (produced in a non-resonant way)
to the fundamental. More precisely, it is assumed that all
the coupling constants have the same order of magnitude.
Then the reference amplitude A0 is such that the order of
magnitude of the nth harmonic (produced in a non-resonant
way) is (A0)

n. Except in a few very specific situations, this
simplifying assumption is consistent with experimental results.
Otherwise the weakest couplings might be disregarded. A
further assumption can also be included in the perturbative
scheme to account for their weakness, in a way similar to
the weak damping assumption introduced in section 6.2. The
above considerations give a physical interpretation of the weak
amplitude hypothesis, valid in any physical frame and more
especially in nonlinear optics. In other physical frames, the
wave amplitude can easily be compared to another quantity
involved in the problem, with the same dimension, that will
be used as a reference. As an example, concerning the
hydrodynamical surface waves, the wave amplitude is a length
and can thus be compared to another characteristic length
of the problem. In magnetic media, either the saturation
magnetization of the material or an applied magnetic field
will be used as a reference.

Let us consider the set of equations

uxx − utt = u + β(u + v)2, (28)

vxx − vtt = −v − β(u − v)2. (29)

Equations (28) and (29) have no physical meaning, but allow
us to present the method with a minimum of computations,
avoiding the introduction of abstract notations. We look for

solutions of the form

�u = �u1(ε(x − V t), ε2t) ei(kx−ωt) + c.c. + O(ε2) (30)

(�u = (u, v), c.c.: complex conjugate). �u is expanded
simultaneously in a power series of the perturbative parameter
ε and in a Fourier series of the fundamental phase ϕ = kx−ωt

as

�u =
∑

n�1,p

εn�up
n eipϕ. (31)

In this expansion, the profiles �up
n = (

u
p
n , v

p
n

)
are functions of

slow variables defined by

ξ = εx, T = εt, τ = ε2t. (32)

The variable τ accounts for the evolution on long-range
propagation. Indeed, a given value τ0 of τ corresponds to
a time t = τ0/ε

2 and to a propagation distance D = V τ0/ε
2.

The shape of the pulse is accounted for by the variable ξ ; a
given value ξ0 of ξ corresponds in the same way to a length
L = ξ0/ε. Since the wavelength λ is assumed to be the
reference length of order ε0 by the above definitions, it is
seen that the relation (27) is satisfied. The variable T of the
same order as ξ accounts for the evolution of the wave on
propagation distances comparable to the pulse length. It will
be seen that this evolution is the transport at the group velocity,
V , accounted for by a mere (x − V t) dependency. I do not
introduce a priori this dependency, in order to show how it
appears by itself during the application of the perturbation
method. Regrouping the terms in ε1 eipϕ , we obtain the
equations

(−p2k2 + p2ω2)u
p

1 = u
p

1 , (33)

(−p2k2 + p2ω2)v
p

1 = −v
p

1 . (34)

There are two possible polarizations, u or v, and for each one
a dispersion relation:

p2ω2 = p2k2 ± 1. (35)

The expansion (31) assumes that ω and k each have a unique
value. This implies that a polarization and a particular
branch of the dispersion relation (35) must be chosen and
furthermore that the latter would be satisfied by a single
harmonic, arbitrarily chosen. Physically, this means that we
exclude taking into account the multiple wave interactions,
such as stimulated diffusions or resonant harmonic generation.
The study of these necessitates a modification of the ansatz, an
example of which will be given in the following section. Note
that in some particular situations a formal expansion will be
able to yield an asymptotic model, which leaves the diffusions
aside, but whose convergence will be prevented by them. We
choose

u1
1 = f (ξ, T , τ ), ω =

√
k2 + 1, (36)

and all other components u
p

1 , v
p

1 are zero (except u−1
1 = f ∗).

At order ε2, we obtain the equations

(−p2k2 + p2ω2)u
p

2 + 2ip(k∂ξ + ω∂T )u
p

1 = u
p

2 + R
p

2 , (37)

(−p2k2 + p2ω2)v
p

1 + 2ip(k∂ξ + ω∂T )u
p

1 = −v
p

1 + S
p

2 , (38)
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where R
p

2 and S
p

2 are nonlinear terms defined by

R
p

2 = β
∑

q+r=p

(
u

q

1 + v
q

1

) (
ur

1 + vr
1

)
, (39)

S
p

2 = −β
∑

q+r=p

(
u

q

1 − v
q

1

) (
ur

1 − vr
1

)
. (40)

The evolution of the amplitude f at the first order, i.e. for
times t about 1/ε for which T = εt has a finite value, is given
by equation (37) for the fundamental harmonic p = 1. The
nonlinear term R1

2 is zero. The terms involving u1
2 simplify,

due to the dispersion relation (36), and we get finally

(k∂ξ + ω∂T )f = 0. (41)

The solution of this transport equation is obviously f =
f (ξ − V T ), with V = k/ω. We check that the expression
of V coincides with the usual expression of the group velocity
V = dω/dk, using the dispersion relation (36).

We note that u1
2 is free, together with u−1

2 = u1
2
∗
, and that

the other profiles u
p

2 and v
p

2 are entirely determined: this is
imposed by the choice of the polarization of the leading order.
The nonzero nonlinear terms are R±2

2 = −S±2
2 = βf 2 and

R0
2 = 2 − S0

2 = β |f |2 only. The nonzero terms of the second
order are deduced from this; they are

u0
2 = v0

2 = − 2β|f |2, u2
2 = β

3
f 2, v2

2 = −β

5
f 2, (42)

and their complex conjugates.
The evolution of the amplitude f at second order, i.e. for

times t of order 1/ε2, for which the slow variable τ has a
finite value, is given by equation (28), at order ε3, and for the
fundamental harmonic p = 1. It is written, after simplification
of the terms in u1

3,

2i(k∂ξ + ω∂T )u1
2 + ∂2

ξ f + 2iω∂τf + ∂2
T f

= 2β
[
f

(
u0

2 + v0
2

)
+ f ∗ (

u2
2 + v2

2

)]
. (43)

The key of the problem is the determination of the evolution of
the correction at second order u1

2 with regard to the first-order
time T. Let us consider it in detail. We make the change of
variables

ξ̃ = ξ − V T, T̃ = T . (44)

Equation (43) can then be put into the form

∂T̃ u1
2 = �(ξ̃). (45)

Indeed, f is a function of ξ̃ only thus, according to (42), the
same holds for u0

2, v
0
2, u

2
2 and v2

2 . Hence,

u1
2 = T̃ �(ξ̃ ) + u1

2(0). (46)

If T̃ (or T) remained bounded, we could stop here, but we are
looking for the evolution of f at times t of the order of 1/ε2, i.e.
for values of T̃ of the order of 1/ε. For these values, u1

2 given
by (46) is no longer a term of order ε2, but becomes of order
ε, comparable to the leading term u1

1 = f . It is consistent
to incorporate this ‘secular’ part of u1

2 into the leading term
f . Hence we impose that the solution u1

2 remains bounded
or more exactly sublinear: limT −→+∞ u1

2

/
T = 0. From this

we deduce that u1
2 is a function of ξ̃ = ξ − V T only and that

�(ξ̃) = 0, i.e.

∂2
ξ f + 2iω∂τf + ∂2

T f = −2β
(
f u0

2 + f ∗u2
2

)
. (47)

Using (41) and (42), equation (47) reduces to the nonlinear
Schrödinger equation (NLS)

2iω∂τf +

(
1 − k2

ω2

)
∂2
ξ f +

116

15
β2f |f |2 = 0. (48)

We check directly from the dispersion relation (36) that the
coefficient of the dispersive term is(

1 − k2

ω2

)
= ω

d2ω

dk2
. (49)

The nonlinear term of the initial system (28), (29) has
been chosen in order to give an example of all nonlinear
contributions that may appear in the term of self-phase
modulation for a quadratic nonlinearity. These terms always
involve some intermediary, that is either the second harmonic
(u2

2 in the example) or the rectified or mean value field u0
2.

In the example, the nonlinear dependency with regard to
the second field component v was chosen in such a way
that both the cascaded interactions through v2

2 and the one
through v0

2 are involved by the nonlinear coefficient of the
NLS equation. Hence it can be noticed that, even if a single
polarization component, here u, is involved by the first order,
the harmonics of the other polarization can intervene in the
expression of the self-phase modulation coefficient. Of course,
in a given situation, this depends on the physical properties
of the nonlinear interactions between the various polarization
components.

3.2. Interactions of wave packets

To provide evidence the interactions of envelopes, we use a
similar procedure; the difference is that several fundamental
phases are considered. Several interaction types can be
described this way: resonant or non-resonant, and involving
more or fewer waves. The description of the non-resonant
interactions remains in principle very close to the previous
case. The resonant interactions present interesting features, in
particular the fact that two scales only are involved. Indeed,
the resonant interaction may occur on propagation distances
of the order of the pulse size, which reduces the number of
scales to two. Further, the pulses that interact this way have in
general group velocities that differ from each other. They thus
cannot coexist on propagation distances that are large with
regard to their length. Their dispersion will thus be negligible
during the interaction. The typical case is that of three waves,
for which the asymptotic model is completely integrable: this
is the situation we are interested in.

Le us consider the same academic example (28), (29) as
in the previous subsection. The expansion will now have the
form

�u =
∑

j=1,2,3

∑
n�1,p

εn�up

j,n eipϕj , (50)

in which ϕj = kjx − ωj t , for j = 1, 2, 3, are three
fundamental phases, and the profiles �up

j,n = (
u

p

j,n, v
p

j,n

)
are

functions of the slow variables:

ξ = εx, T = εt. (51)

8
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Note the change with regard to the previous section: there is no
‘long’ propagation variable τ here, for the reasons mentioned
above. We assume that the leading term is

�u = ε(�u1 eiϕ1 + �u2 eiϕ2 + �u3 eiϕ3 + c.c.) + O(ε2), (52)

where we have set u1
j,1 = uj (j = 1, 2, 3). For convenience,

we also use the notations u−j = u−1
j,1 and ϕ−j = −ϕj ,

for j = 1, 2, 3, so we can write equation (52) in the form
�u = ε

∑
j=±1,±2,±3 �uj eiϕj + O(ε2).

To the first order in ε, it is found that uj must satisfy
equations (33) and (34), i.e. that each wave belongs to some
linear mode. We assume that waves 1 and 2 belong to the u
mode and wave 3 to the v mode, i.e.

ωj =
√

k2
j + 1, �uj = (uj , 0), for j = 1, 2, (53)

ω3 =
√

k2
3 − 1, �u3 = (0, v3) . (54)

At order ε2, for the u component and the harmonic eiϕj , we get
the equation(−k2

j u
1
j,2 + 2ikj ∂ξuj

) − (−ω2
ju

1
j,2 − 2iωj∂T uj

)
= u1

j,2 + β
∑

ϕl+ϕm=ϕj

(ul + vl)(um + vm). (55)

For wave 1, equation (55) becomes, taking (53) into
account, and after division by 2iω1,

∂ξV1u1 + ∂T u1 = β

iω1

∑
ϕl+ϕm=ϕ1

(ul + vl)(um + vm), (56)

where V1 = k1/ω1 is the group velocity of wave 1. If no
resonance condition of the type ϕl + ϕm = ϕ1 is realized,
equation (56) reduces to

V1∂ξu1 + ∂T u1 = 0, (57)

which accounts for a mere transport at the group velocity. We
assume thus that one of these resonance conditions is realized.
By an adequate choice of the notations, it can always be written
as ϕ1 = ϕ2 + ϕ3, i.e.

ω1 = ω2 + ω3, k1 = k2 + k3. (58)

Condition (58) accounts for the phase matching and can also
be seen, if these are electromagnetic waves, as the condition
for the conservation of the photon energy and impulsion.
Equation (55) then becomes

V1∂ξu1 + ∂T u1 = β

iω1
u2v3. (59)

For wave 2, we have ϕ2 = ϕ1 − ϕ3, thus the components
involved by the nonlinear term of equation (55) are �u1 =
(u1, 0) and �u−3 = (0, v∗

3). Equation (55) reduces to

V2∂ξu2 + ∂T u2 = β

iω2
u1v

∗
3 . (60)

Since wave 3 belongs to the other mode, the linear part of
equation (55) for j = 3 does not contain f3, but contains u1

3,2,
and can be solved for the latter, whose value has no interest
for us. In an analogous way, the other equation of the initial

system, written at order ε2 and for the Fourier component eiϕ3 ,
reduces to

V3∂ξv3 + ∂T v3 = −β

iω3
u1u

∗
2. (61)

The system yielded by the three equations (59), (60)
and (61) is known under the name of ‘three-wave resonant
interaction system’ (3WRI) [35]. It is completely integrable
by the IST method [38].

3.3. Stimulated backscattering and soliton exchange

The transform u1 = ig1, u2 = ig2, v3 = ig3 allows us to write
the 3WRI system (59)–(61) in the standard form

∂T g1 + V1∂ξg1 = A1g2g3,

∂T g2 + V2∂ξg2 = A2g1g
∗
3 , (62)

∂T g3 + V3∂ξg3 = A3g1g
∗
2 ,

where A1 = β/ω1, A2 = −β/ω2, A3 = β/ω3.
In a special physical situation, the main question will be to

determine whether the phase matching condition (58) can be
realized, and how, taking into account the dispersion relation.
In the case of the present example, with the above choice of
the polarizations of the three waves, a solution exists for each
k2 and can be easily computed explicitly.

An important remark is that, in the frame of the reductive
perturbation method, the phase matching is assumed to be
realized exactly. It is well known in nonlinear optics,
for cascaded second-order nonlinearities [39], that a phase
mismatch does not prevent the interaction, if it is weak enough.
The expression for wave 1 is

ũ1 = εf1(εx, εt) ei(k1x−ω1t) + O(ε2). (63)

Introducing a weak phase mismatch k1 = k2 + k3 + εδk =
k′

1 + εδk, it becomes

ũ1 = εf1(εx, εt) eiεδkx ei(k′
1x−ω1t) + O(ε2). (64)

Setting f ′
1 (εx, εt) = f1 (εx, εt) exp (iεδkx), the expression

(64) of ũ1 is reduced to (63), but with k′
1 = k2 + k3, that is the

exact phase matching. In other words, because the approach
is perturbative, a zero represents more often an infinitely small
quantity of order ε than a quantity effectively equal to zero.
Thus, the exact phase matching means approximate phase
matching at order ε, due to the perturbative nature of the
approach itself. However this gives rise to difficulties when
one intends to apply it to a special physical situation. Indeed,
mathematically, the perturbative parameter ε is a varying
quantity that can take values as small as we want. The phase
mismatch δk, in general, does not depend on ε; it is finite,
and thus, from the mathematical point of view, it is very large
with regard to ε. But, in a concrete physical situation, the
perturbative parameter ε is a quantity that, although small,
is fixed, and hence finite too, and it may happen that δk is
smaller that this finite value attributed to ε. In this case,
the absence of nonlinear coupling which is deduced from the
theory will contradict the experimental results. A procedure
allowing us to describe the observed coupling, in a way that
is satisfactory from the mathematical point of view, consists

9
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Figure 4. Resonant three-wave interaction: an incident optical
soliton and an incident polariton soliton, almost resonant (top and
bottom, in front), give rise to an optical soliton with different
helicity (centre), which is transformed into two solitons again (top
and bottom, rear). The chosen reference frame is bound to the wave
with medium velocity.

of introducing a dependency of the dispersion relations with
regard to the perturbative parameter, in such a way that the
phase mismatch goes to 0 when ε tends to 0. Such an approach
has been successfully applied to the nonlinear Faraday effect
[40], parametric optical solitons [41, 42], and polarization
interactions in a planar optical waveguide [43].

The 3WRI system (62) has been derived in the frame
of electromagnetic waves in ferromagnetic media in [44].
Explicit expressions for the group velocities Vj and the
(real) interaction constants Aj were obtained, allowing,
together with the known results about the 3WRI system [35],
identification of the various possible types of interaction.

We know three types of behaviour, depending on the
relative signs δj = sgn Aj of the interaction constants and
on the relative magnitudes of the velocities. We assume that
V1 < V2 < V3. The three cases are as follows.

(i) The three constants have the same sign: δ1 = δ2 = δ3.
(ii) The constant whose sign differs from the others

corresponds to the wave with the medium velocity: δ1 =
δ3 = −δ2.

(iii) The constant whose sign differs from the others
corresponds to a wave with an extreme velocity, e.g.,
δ3 = −δ2 = −δ1.

The last case corresponds to a backscattering of wave 3 to
wave 1, stimulated by wave 2 (stimulated backscattering,
SBS). In ferromagnetic media, the typical situation is when
waves 1 and 3 are two optical waves (branches PO and N, see
figure 12 in section 6.1) with opposite directions, and wave 2
is a magnetostatic wave (branch PA), propagating in the same
direction as the incident wave 3. The two optical waves can
have either polarization, and thus the interaction can modify
the wave polarization or not.

The interaction type (ii) is a soliton exchange. Each
soliton contained in wave 2 with median velocity disappears
to give rise to a soliton in each of the other two waves.
Conversely, if the two waves 1 and 3 with extreme velocities
contain two resonant solitons, the energy can be transferred
to a soliton of the wave 2. The latter is however unstable: if

the resonance is only approximate, the soliton of the wave 2
gives rise to the two initial solitons again. The soliton 3,
the faster one, is delayed, while the soliton 1, slower, is
brought forward. This interaction can be described by explicit
solutions [35], an example of which is drawn in figure 4. In
the case of initial wave packets containing several solitons,
each of which is in resonance with a soliton contained in the
other wave, the main effect of the interaction is to quickly
separate these solitonic components and to transform the
incident wave packets into strings of solitons. In ferromagnetic
media, this type of interaction can occur in particular between
two ‘optical’ waves with different helicity and a polariton.
Soliton exchange occurs when the polariton belongs to the
‘acoustic’ branch PA and propagates in the same direction
as the two other waves. When it propagates in the opposite
direction, we can see evidence of a transition point: if the
angle ϕ between the propagation direction and the static field
is between about 55◦ and 90◦, soliton exchange occurs, else
stimulated backscattering occurs.

The interaction type (i) can lead to an explosion in a finite
time. It does not occur in ferromagnetic media, at least for
parallel plane waves. Dark solitons of the 3WRI system, and
their interaction with bright solitons, have also been evidenced
[36, 37].

4. Multi-dimensional problems

The models presented in the above sections are one
dimensional. We chose for the presentation of the general
NLS-type expansion the situation called ‘temporal’, where the
variable that describes the shape of the wave packet is parallel
to the propagation direction, to make use of the terminology of
nonlinear optics. A continuous beam can also be considered,
and its extension in a transverse dimension can be studied: it
is the situation known as a ‘spatial soliton’. Some essential
properties of the reductive perturbation method appear only
when the temporal dependency is considered. This justifies
our presentation choice, since the ‘spatial solitons’ have no
less interest and importance for physics than the ‘temporal’
solitons. On the other hand, several authors have already
noticed that a laser pulse has always a finite duration and that
the pulse called ‘spatial’ is always in fact spatio-temporal. This
leads naturally to the study of bi- or tridimensional pulses.

4.1. A ‘spherical’ pulse

If in the multiscale expansion (31), (32), that leads to the NLS
equation, x is replaced by a tridimensional variable �x, the
scales that will give an account of the wave packet evolution
will be typically

ξ = ε(x − V t), η = εy, ζ = εz, τ = ε2t. (65)

The change of scales defined by (65) can be used in the
description of a ‘spherical’ pulse or, more exactly, of a pulse
whose extension in the two transverse directions y and z and in
the longitudinal direction x has the same order of magnitude.
In nonlinear optics, these kinds of pulses are called ‘light
bullets’, when they propagate without deformation.
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Let us denote by ξj one of the three slow variables ξ, η

and ζ that describe the shape of the wave packet. Taking into
account the coherence constraint of the perturbation method,
which imposes that integer powers of ε only arise, what are the
possible choices for ξj , apart from the one given by (65)? If ξj

is of order ε0, the extension of the pulse in the corresponding
direction will be of the same order as the wavelength λ. Then
the slowly varying envelope approximation will no longer be
valid. If in contrast ξj is of order ε2, the second derivative ∂2

ξj

will not appear in the multi-dimensional evolution equation
of NLS type that will be obtained. Thus, the diffraction
or the dispersion corresponding to this variable will not be
taken into account. In other words, all happens as if the
pulse were infinite in this direction. This can be interpreted
in a more physical way, for an optical ‘spatial soliton’: it
is equivalent to considering the propagation of a beam on
a distance small with regard to its diffraction length. The
pulse does not propagate far enough to be diffracted. In its
theoretical description, it can thus be considered as infinitely
wide. Still regarding optical solitons, but in the temporal case,
the situation is formally analogous. Let us consider some
orders of magnitude. In numerous experimental situations,
the propagation length D is about a few cm. Let us choose to
fix D = 4 cm. For a wavelength λ = 1 µm, the perturbative
parameter is then ε = √

λ/D = 200. The characteristic
length of the pulse, when it is described by a variable ξ of
order ε1, ξ = ε(x − V t), is L = ελ, and the corresponding
duration is T = L/c � 660 fs. If the variable ξ is in contrast
of order ε2, ξ = ε2(x −V t), the duration of the pulse becomes
T = ε2λ/c = D/c � 130 ps. Thus, a pulse of 130 ps must be
considered as infinitely long. Therefore, the change of scales
(65), and the notion of the light bullet, can be meaningful for
such a propagation distance, only if the pulse duration is at
most about 1 ps. For some applications, the considered sizes
are even smaller. The pulse duration for which the dispersion
must be taken into account decreases in proportion.

However, even when the scale of the initial longitudinal
pulse variations is long enough for the dispersion to be
negligible, in the frame of a linear evolution, it may happen that
the modulational instability or the stimulated diffusions create
during the propagation a much faster longitudinal modulation,
for which the dispersion is no longer negligible.

4.2. Generalization of the NLS equation

The theory of envelope soliton propagation in (1+1)
dimensions is based on the NLS equation (48), i.e., modifying
a little the notations,

iAfτ + Bfξξ + Cf |f |2 = 0, (66)

where f is the complex amplitude of the wave, τ is the
propagation variable, ξ is the variable that describes the pulse
shape and A,B and C are real coefficients. Note that the
variable ξ can also describe the transverse profile of the pulse
as its longitudinal profile. In the latter case, it is ordinarily
written in optics as a time variable t. In the same way, the
evolution variable τ can be transformed from a time into a
distance z, simply multiplying by the velocity. The latter
case corresponds to the experimental situations in nonlinear

optics, in which the propagation distance (length of the fibre,
distance between two optical devices) is straightforwardly
identified, while the propagation time is too fast to be accessed
directly.

A well-known but essential property of the NLS equation
is that it is completely integrable by means of the IST method
whatever the value of the coefficients A,B and C [6, 9]. It
admits solutions of soliton type if BC > 0 and solutions of
dark-soliton type if BC < 0. The most simple generalization
of the NLS equation to (2+1) dimensions is

iAfτ + Bfξξ + Cfηη + Df |f |2 = 0, (67)

with the same notations as above and A,B,C and D being
real coefficients. Equation (67) is called the two-dimensional
nonlinear Schrödinger equation (2D NLS). It accounts, e.g.,
for the propagation of a continuous optical beam in a bulk
isotropic Kerr medium. But the 2D NLS equation is never
integrable and does not admit any stable localized solution:
the self-focusing leads mainly to collapse [45].

Let us present another generalization of the NLS equation,
which is ‘better’ in the sense that it conserves a large number
of its properties, the Davey–Stewartson (DS) system:

iAfτ + Bfξξ + Cfηη + Df |f |2 + Ef ψ = 0,
(68)

αψξξ + βψηη = γ |f |2ξξ + δ |f |2ηη .

The function ψ is real valued, and A,B,C,D,E, α, β, γ

and δ are real coefficients, which depend on the considered
particular physical situation. This model was initially
introduced in order to describe the bidimensional evolution
of hydrodynamical wave packets [46]. It involves an auxiliary
field ψ , which can be called a rectified field, because in optics
it results from the optical rectification of the wave. This field
describes a solitary wave, in the sense of an isolated oscillation,
contrarily to an envelope soliton, i.e., there is no carrier.

The DS system (68) reduces obviously to the 2D NLS
equation (67) if ∣∣∣∣α γ

β δ

∣∣∣∣ = αδ − βγ = 0, (69)

but in this case only. It is thus more general than the 2D
NLS equation. In fact, the DS system is the relevant model
for most propagation problems for a single polarization in
(2+1) dimensions, as soon as a quadratic nonlinearity and an
anisotropy are present.

The DS system is integrable by means of the IST
method for some values of its coefficients. The multi-
dimensional systems that possess this property are very rare
[47]. Rigorously speaking, the system (68) is called DS when
it is integrable only.

4.3. The zero-order term

The essential difference between a DS-type system (68) and
the 2D NLS equation (67) above is the presence of the auxiliary
field ψ in DS. It usually represents the continuous component
of the field, or its mean value, also called rectified field.
In an expansion comparable to that of section 3.1, it often
happens that the computation of the zero harmonic, and more
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precisely of the term u0
2, presents some difficulties. These

are the grounds for the appearance, in (2+1) dimensions, of
the second equation of the DS-type system. Let us see how
it works on an example. I choose again as starting point
an equation without physical significance, but allowing us to
present the computations in the simplest way possible:

uxx + uyy − utt = uxxxx + (u2)xx, (70)

where u is expanded as in section 3.1, equation (31), with the
slow variables defined by (65), without the third dimension
z. At the beginning, the perturbation method applies in a
way completely analogous to what has been seen in (1+1)
dimensions, starting from the system (28), (29). At order ε

we obtain the dispersion relation of the linearized equation,
ω2 = k2 + k4. We set u1

1 = f . At order ε2, the transport
equation analogous to equation (41) fixes the value of the
velocity V as

V = dω

dk
= k

ω
(1 + 2k2). (71)

The second harmonic at this order is computed without any
difficulty: u2

2 = f 2/3k2.
The changes appear in the computation of the zero

harmonic u0
2. The equations obtained at order ε2 are analogous

to equations (37) and (38) of section 3.1. Note that the left-
hand-side member of the latter is zero when p = 0, i.e. for the
continuous component under consideration. In the present
case, the right-hand-side member also contains derivatives
only, and the corresponding equation is trivial. The equation
that allows the computation of u0

2 must then be sought at a
higher order, here the order ε4; it is the partial differential
equation

(1 + V 2)∂2
ξ ψ + ∂2

ηψ = ∂2
ξ |f |2, (72)

where ψ = u0
2. In (1+1) dimensions, i.e. if the η dependency is

suppressed, it can be integrated to yield the explicit expression

u0
2 = ψ = 1

1 + V 2
|f |2 . (73)

In (2+1) dimensions, this is no longer possible. At order ε3 we
obtain, in a way analogous to the (1+1)-dimensional case of
section 3.1, the nonlinear evolution equation satisfied by the
amplitude f of the fundamental as

2iωfτ + fηη + Pfξξ + 2
3f |f |2 + 2k2f ψ = 0, (74)

with P = 1 − V 2 + 6k2. The set of equations (72), (74) is
the asymptotic model which governs the evolution of the wave
packet, it is of DS type. If the η dependency is suppressed,
it reduces to the NLS equation (66), with the coefficients
A = 2iω,B = P and

C = 2/3 +
2k2

1 + V 2
. (75)

This type of behaviour is very general, it can be generalized to
(3+1) dimensions and to models describing the non-resonant
interaction of several polarizations. Applications to nonlinear
optics, using nonlinear susceptibility tensors [48], and to
electromagnetic wave propagation in a ferromagnetic medium
[49] are presented in section 8.
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Figure 5. The line soliton of the DS system: it is the fundamental
soliton given by the IST.

It should be noted that the DS system may arise more
generally to account for the interaction between a solitary wave
ψ and a pulse envelope f . For example, it has been derived
among other asymptotic models from the set of two coupled
NLS equations which models a two-component Bose–Einstein
condensate [50].

4.4. Davey–Stewartson solitons

Whatever the value of its coefficients is, the above DS-type
system (68) can be written in the form

ifζ + ε1fξξ + fηη + ε2f |f |2 + νf ψ = 0,
(76)

ψξξ + µψηη = |f |2ξξ ,

where µ and ν are real constants and ε1, ε2 = ±1. The system
(76) is integrable if and only if the two conditions

µ = −ε1, ν = −2ε2 (77)

are satisfied. There are thus four cases of integrability,
depending on the signs of ε1 and ε2. Line solitons exist in
all sign cases, cf figure 5. Solutions algebraically decreasing
in all directions, called lumps, exist if ε1ε2 = −1 [51]. The
1-lump solution is drawn in figure 6. Solutions exponentially
decreasing in all directions, called dromions, exist if ε1 = +1
[52–54], cf figure 7. In this case, the system DS is called DS I.
The dromions involve non-trivial values of the auxiliary or
rectified field ψ at infinity, as drawn in figure 8. These values
can describe two incident solitary waves that interact with the
main pulse. The physical interpretation of this interaction is
detailed in section 8.4.

4.5. Transverse variations of the long waves

It has been seen above that taking into account the transverse
dimensions, when studying envelope solitons, describes
‘spherical’ wave packets, whose dimensions are of the same
order in all directions. The situation radically differs if long
waves are considered. Indeed the NLS-type descriptions
involve three scales, the first of which is that of the wavelength
λ. It is this scale, and more precisely the wave vector �k,
which specifies the propagation direction. In the case of the
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| f |2

ξ

η

Figure 6. The lump solution of the DS system. It is an analytical
solution algebraically decaying at infinity.
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Figure 7. Dromion of the DS I system. It is a true tridimensional
soliton, stable and exponentially decaying in all directions. It
involves the particular shape of rectified field ψ shown in figure 8.
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Figure 9. The various scales involved by the study of the transverse
variations of the long waves. L: length of the solitary wave, L′: its
transverse extension, D: propagation distance, with
1 � L � L′ � D.

long waves, there are only two scales left. The long-wave
approximation can be defined as a limit of oscillating waves,
whose wavelength λ tends to infinity. The oscillation of the
carrier then becomes very slow and merges with the variable
ξ = ε(x − V t) which describes the shape of the wave packet.
This gives an interpretation of the reduction of the number
of scales. There is no preferential direction defined by �k any
more; this direction is now fixed by the variable ξ of order ε.

It is clear that if we introduce the transverse variables
εy, εz of the same order as ξ , we will not give rise to the
transverse evolution in the y and z directions of a wave
propagating along the x-axis, but merely allow this wave to
propagate in any direction. In order to study the evolution of
the wave with respect to transverse perturbations, one must
first define its propagation direction, that is the direction of
the faster variation. Hence the transverse variables must be
‘slower’ than ξ , and we will have an ansatz of the type

ξ = ε(x − V t), η = ε2y, ζ = ε2z, τ = ε3t.

(78)

This means that the longitudinal extension of the wave will be
L ∝ 1/ε, its transverse extension L′ ∝ 1/ε2, very large with
regard to L, as illustrated in figure 9. The asymptotic model
which can be obtained with this type of scaling is typically the
Kadomtsev–Petviashvili (KP) equation:

∂ξ

(
∂τf + µf ∂ξf + ν∂3

ξ f
)

+ ρ∂2
ηf = 0. (79)

Equation (79) is integrable by means of the IST method. The
scaling (78) has been introduced first for magnetosonic waves
[55]. However, the KP equation (79) is essentially known
for describing the evolution of hydrodynamical surface waves
[7, 56]. In this situation, the real coefficients µ, ν and ρ are

µ = 3V

2h
, ν = V

(
h2

6
− T

2ρ0g

)
, ρ = V

2
, (80)

where g is the gravity acceleration, h is the depth of the pond,
T is the surface tension of the fluid, ρ0 its specific mass, f

is the height of its free surface and V = √
gh is the wave

velocity. When the effect of gravity dominates, the coefficient
ν is positive, and equation (79) is called KP II. It admits
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ξ

η

f

Figure 10. Interaction of two line soliton solutions of the
Kadomtsev–Petviashvili equation. They undergo a shift in position
at the interaction point.

line soliton-type solutions, which are stable, but no localized
solution. The interaction between two line solitons is drawn
in figure 10. It has been observed at sea. When the surface
tension dominates, what happens is that, in water at ordinary
temperatures, for very small values of the depth h, less than
about 5 mm, ν is negative, and equation (79) is called KP I. In
this case the line solitons are unstable; on the other hand the
equation admits localized algebraically decreasing solutions,
called lumps [51, 57].

5. Higher orders and KdV hierarchy

5.1. Corrections to the long-wave approximation

A large number of nonlinear partial differential equations can
be reduced, by means of the multiscale expansion method,
to the KdV equation. The conditions have been clarified, cf
section 2.1 and [32]. In other words, KdV solitons can exist in
a large number of physical situations. From another point of
view, the IST method allows us to solve the asymptotic model
KdV and gives thus an approximate solution of the starting
problem, in a very general way.

This first approximation of the solution is acceptable
in special situations only, in which the orders of magnitude
of the amplitude, of the solitary wave dimensions, and of
the propagation distance or time are specified. As soon as
we depart from these values, corrections become necessary.
As long as the order of magnitude of the propagation time
is not modified, these corrections are taken into account
in a way completely analogous to a classical perturbation
expansion, introducing terms of higher order with respect to
the perturbative parameter ε. These corrections are solutions
of a KdV equation linearized about the leading term, with
a right-hand-side member depending on the previous orders,
such as e.g. equation (85) below. The KdV asymptotic involves
a slow time variable τ = ε3t . It is hence expected to be valid
for a finite value τ0 of τ : the corresponding physical time is
t0 = τ0/ε

3, and hence KdV is valid on propagation distances
or times with the same order of magnitude as 1/ε3. When
one wants to describe the propagation on longer distances or

times, further difficulties arise. Indeed, as has been noticed
above, a small correction, cumulated over a long distance, can
produce a large effect. The solutions of the linearized KdV
equation present terms called secular, which increase linearly
with time. Let us consider a small correction, say of order
εp. If it increases linearly during a very long time, of order
1/εq , it becomes obviously a quantity of order εp−q . It is thus
very large if q is greater than p. To avoid this, we impose that
the correction solutions of the linearized KdV equation are
bounded or at least grow slower than linearly with time (such
a behaviour is called ‘sublinear’). In other words, we arrange
that these secular terms vanish. The latter are characterized by
particular source terms in the right-hand-side member. Hence
we have to set conditions to be satisfied by the previous orders,
in such a way that these secular-producing terms vanish.
Note that this reasoning is exactly the same as we used in
section 3.1 in order to derive the NLS equation.

5.2. The secular solutions of the linearized KdV equation

The inhomogeneous linearized KdV equation can be solved
by means of the inverse scattering transform method [58, 59].
The secular-producing terms in the right-hand-side member of
the equation have been characterized in several ways, and first,
as resonant terms. The KdV equation is written in the form

∂tf − 6f ∂xf + ∂3
xf = 0. (81)

Denote by φk and ψk the Jost functions [6], solutions of the
scattering equation associated with KdV, with

φk x ∼→ +∞ e+ikx, ψk x ∼→ −∞ e+ikx, (82)

where k is a real or a purely imaginary root of the scattering
data a(k), denoted by k = iκl (l = 1, 2, . . . , n). Further, we
define �k = φ2

k and �k = ∂x

(
ψ2

k

)
. The functions

�k e−8ik3t and �k e−8ik3t (83)

satisfy the homogeneous linearized KdV equation. The
solution of the Cauchy problem for the inhomogeneous
equation is obtained by an explicit expansion on the basis
of the functions �k or on that of the functions �k .

In order to characterize the secular-producing terms, we
expand the right-hand-side member onto the functions �k .
The coefficients are functions of time, which can be expanded
in a way that generalizes in some sense a Fourier transform.
One of the components oscillates with the pulsation 8ik3 as
the solution (83) of the homogeneous linearized KdV equation
does, or decreases as e−8κ3

j t , if k = iκj belongs to the discrete
spectrum. This term is resonant and is the source of a secular
term. The right-hand-side members that are not secular-
producing are thus characterized in the following way: for
each component on �k , the sub-component of it that evolves
in the same way as the solution of the homogeneous equation
must be zero.

Second, the secular-producing terms are interpreted as
conserved densities of the KdV equation. The latter can be
written with the help of the Jost functions ψk as [58]

Aj (x, t) = 2(−1)j
n∑

l=1

κ
2j−1
l Cl(t)ψ

2
l (x, t)

+
i

π

∫ +∞

−∞
k2j−1r(k, t)ψ2

k (x, t) dk, (84)
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where Cl(t) and r(k, t) are, respectively, the normalization
coefficient of the bound states and the reflection coefficient.
They characterize the scattering data. We deduce from (84)
that the derivative ∂xAj (x, t) of a conserved density is a linear
combination and integral of �k , and the temporal evolution
of the scattering data is exactly the one which ensures that
this combination represents a solution of the homogeneous
linearized KdV equation. After a study of the reciprocal
property, the secular-producing terms can be identified with
the spatial derivatives of the conserved densities [59].

5.3. Higher-order times and the KdV hierarchy

Let T0, L0, A0 be a time, a length, and a value of the wave
amplitude, characteristic for the system. According to figure 1,
the perturbative parameter ε is defined in such a way that the
length of the solitary wave is L0/ε and its amplitude ε2A0. As
written above, the KdV-type asymptotic is valid for times up
to T0/ε

3. Small corrections to this asymptotic, cumulated over
very long times, can indeed modify greatly the behaviour of
the wave. In order to reach larger values of the time variable,
we pursue the perturbative approach, following the idea of
Kraenkel, Pereira and Manna [60–62], introducing higher-
order time variables τj = ε2j+1t, j = 1, 2, . . . . In other
words, we still have some starting model, e.g. equation (2),
and we are looking for an approximate model with the help
of expansion (4), in which we assume that the profiles depend
not only on the slow variables defined by (5) but also on
higher-order time variables τ1 = τ, τ2, τ3, etc. The leading
term is characterized by an amplitude, denoted by g in
section 2.1, and which will be denoted here by ϕ2 in order
to recall that it is a quantity of order ε2. The expansion will
also involve higher-order terms, described by the amplitudes
ϕ4, ϕ6, etc, corresponding to corrections of order ε4, ε6, etc
(the expansion must have a certain parity). The equation
giving the evolution of the leading term ϕ2 with regard to τ3

is obtained by imposing that the following term ϕ4 is bounded
or more exactly sublinear. The equation which determines the
evolution of this term is

∂τ1ϕ4 + P∂ξ (ϕ2ϕ4) + Q∂3
ξ ϕ4 = ∂τ2ϕ2 − γ2∂

5
ξ ϕ2 + O2. (85)

Here O2 refers to an expression depending on ϕ2, without a
linear term, and γ2 is a real coefficient, which can be computed
[63, 64]. The condition to be satisfied is thus that equation
(85) does not admit any secular solution. Through an explicit
computation in the case where ϕ2 is the one-soliton solution
of the KdV equation, Kodama and Taniuti [58] have noticed
that the secular-producing terms are those linear with regard to
the solution of lowest order ϕ2. The secular solutions ϕ4 will
thus vanish if the linear terms vanish from the right-hand-side
member of equation (85). To achieve this, we impose that ϕ2

satisfies some partial differential equation such that

∂τ2ϕ2 = −γ2∂
5
ξ ϕ2 + O2. (86)

We still need to determine the nonlinear terms of equation (86),
represented by O2. They are not free but imposed by the
compatibility condition between the KdV equation (19) and
equation (86), which is the Schwartz condition ∂τ1∂τ2ϕ2 =
∂τ2∂τ1ϕ2. The only equation which possesses the same

homogeneity properties as the right-hand-side member of (85),
and which satisfies this condition, is the second equation of
what is called the KdV hierarchy [62, 32].

The KdV hierarchy is the family of equations [65]

∂Tn
g = ∂XLng (n integer) (87)

where L is a recurrence operator defined by

L = −1

4
∂2
X − g +

1

2

∫ X

dX(∂Xg). (88)

For n = 1, it is the KdV equation, with a normalization
different from that of equation (19) (P is replaced with 3

2 ,
Q with 1

4 ). We identify it with equation (19) using the relations

g = P

6Q
ϕ2, X = ξ and T1 = 4Qτ1. (89)

For n = 2, the equation of the hierarchy (87) is

∂T2g = 1
16∂5

Xg + 5
4 (∂Xg)∂2

Xg + 5
8g∂3

Xg + 15
8 g2∂Xg. (90)

An important property is the existence of the τ Hirota function
[66], which is a function of all variables (X, T1, T2, . . .),
related to g through

g(X, T1, T2, . . .) = 2∂2
X ln τ(X, T1, T2, . . .)

(to avoid any confusion between the τ Hirota function and the
time variables τj ). The existence of τ ensures that a solution
g of the system yielded by all equations of the hierarchy exists
and hence that the Schwartz condition is satisfied at any order.
After an adequate choice of the proportionality constant γ2,
the time variables of order 2 (the variable τ2 of the expansion
and the variable T2 of the hierarchy) are connected by

T2 = −16γ2τ2. (91)

The evolution equation to be satisfied by ϕ2 is thus

−1

16γ2
∂τ2ϕ2 = ∂ξL2ϕ2. (92)

This way, the linear terms have been removed from
equation (86). It remains to justify that this procedure, that
removes all linear terms from the right-hand-side member of
the linearized KdV equation, assuming it to be polynomial
with regard to the solution of KdV, ensures that the solution
of the linearized equation is bounded [59]. Considering the
relations existing between the conserved densities Aj and the
recurrence operator L, defined by (88), which allows us to
write the hierarchy, it is possible. Indeed, it is easily seen that
when the linear terms are removed using the above procedure,
the terms proportional to ∂xAj exactly are removed. And these
terms are the secular-producing ones, as seen above.

On the other hand, the right-hand-side member of the
linearized KdV equation which governs the evolution of ϕ6

involves ϕ4, a solution of (85). It is thus necessary to see,
when a solution of the linearized KdV equation itself is used
in the right-hand-side member, which part of it is secular-
producing and which part is not. This is not too difficult.
Indeed, this solution is given by its expansion on the basis
of �k , and we have characterized the fact that a source term
is secular-producing or not by some criterion, which involves
the coefficients of this expansion and their t-dependency. A
last point remains to be considered: the dependency of the
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higher-order terms with regard to the higher order times, it is
governed by a linearized KdV hierarchy [32]. Finally, we can
justify that the higher-order terms are not secular-producing
and prove that the formal expansion contains bounded terms
only.

5.4. The soliton of the hierarchy

Repeating the same procedure at any order, the equation
governing the evolution of v with respect to any time variable
Tn is equation (87) of the hierarchy, with

Tn = −(−4)nγnτn, (93)

where γn, n = 3, 4, . . . , are time scaling coefficients. As
mentioned above, all equations of the KdV hierarchy are
compatible together, in the sense that for any given initial data
a function g(X, T1, T2, T3, . . .) satisfying equation (87) for any
value of n can be found. This solution can be found using the
inverse scattering transform (IST) method, at least in principle
[63]. Indeed, all equations of the hierarchy are completely
integrable by means of the IST method. Furthermore, they
can all be described in the IST formalism using the same
spectral problem [6], which ensures their compatibility. The
scattering data (R+(k),D+,j , kj ) are defined in the same way
for all equations, only their time evolution differs for each time
variable Tn. The time evolution is given by

R+(Tn) = R+(0) e�n(k)Tn , (94)

D+,j (Tn) = D+,j (0) e�n,j Tn , (95)

kj (Tn) = kj (0). (96)

The index n refers to the nth equation of the hierarchy. The
evolution factors are �n,j = �n(kj ) and �n(k) = −iωn(2k),
where ωn(k) is the dispersion relation of the nth equation of
the hierarchy linearized. It is seen from relation (96) that
the discrete spectrum (kj ) is constant with regard to any of
the time variables Tn. Therefore, the number of solitons and
their characteristics are not modified by the higher-order time
evolution. The evolution of the spectral data with regard to all
the higher-order time variables can then be written as a single
exponential factor for each spectral component,

R+(T1, T2, . . .) = R+(0, 0, . . .) exp

( ∞∑
n=1

�n(k)Tn

)
. (97)

Using expressions (87), (88) of the equations of the hierarchy,
the expression of the complete time evolution factor is reduced
to

∞∑
n=1

�n,j (k)Tn = �j t, with �j =
∞∑

n=1

(2εκj )
2n+1γn.

(98)

Obviously formula (98) is valid only if the power series
converges. Note that the coefficients of the latter are the time
scaling coefficients γn. For a one-soliton solution, the above
formulae show that the introduction of a sequence of higher-
order time variables and of all equations of the KdV hierarchy

-2

-2

-1

0

1

1

0

-1

π /4

π /4 π /2

π / 2

θ

θ

(a)

(b)

θM

θM θt

θt

Figure 11. Plot of the five first approximate values
Vn = V +
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p=1 (β/εn)
2n of the velocity V of the soliton of the full

KdV hierarchy, against the angle θ between the propagation
direction and the exterior field. Solid line: n = 0, dotted line:
n = 1, large dashed: n = 2, dashed-dotted line: n = 3, short
dashed: n = 4. For a soliton parameter, β = 0.1 (a), β = 1.5 (b).
For θ > θt , all curves are superposed: the first approximation (KdV)
is valid. For θM < θ < θt , the series converges: a KdV
approximation with higher-order terms is valid. For θ < θM , the
series does not converge: the KdV-type soliton does not exist.

yield nothing but a renormalization of the soliton speed
[63, 33],

g = 2b2sech2b

(
X +

∞∑
n=1

(−b2)nTn

)
, (99)

with b being the soliton parameter. In the case of magnetic
solitons [64], it can be written using the physical variables as

�Hw = 12Q

P
�h1β

2 sech2 β(x − Vt), (100)

where

V = V +
∞∑

n=1

4nβ2nγn. (101)

where V is the group velocity, �h1 is the polarization vector,
�Hw is the wave magnetic field and β is the dimensional soliton
parameter, β = εb.

The convergence of the perturbative scheme is closely
related to the convergence of the power series (101) defining
the velocity V . An example of computation showing the
first partial sums of the latter, against the angle θ between
the propagation direction and the applied field, is drawn in
figure 11. It is seen that, for θ close to π/2, the first
approximation (KdV) gives almost the exact speed, while
for small angles the series diverges. When θ is less than
some threshold value θM , the series does not converge and
the whole perturbative approach is not valid. When θ > θM

(insofar that we can deduce it from the soliton speed only), the
KdV approximation will correctly describe the wave evolution.
Moreover, the KdV equation itself will give an acceptable
description above some value θt of the angle θ , while this
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first-order approximation needs to be corrected by higher-order
terms below θt (note that the threshold value θM is precisely
defined, while θt is only an order of magnitude depending on
the accuracy required). It is reasonable to think that the same
kind of conclusion holds in a more general situation, involving
several solitons and radiation.

6. Long waves in ferromagnetic media

6.1. Introduction: linear theory and envelope solitons

The evolution of a magnetic momentum �M in a magnetic field
�H is described by the equation

∂t
�M = −δµ0 �M ∧ �H, (102)

where δ is the gyromagnetic ratio (δ > 0) and µ0 is the
magnetic permeability in vacuum. In a ferromagnetic medium,
this relation remains valid in first approximation for the
magnetization density �M of the medium. A more accurate
model is obtained by replacing the field �H by an effective
field, which contains several additional terms accounting for
the inhomogeneous exchange interaction, the anisotropy, and
by adding to the equation a phenomenological term which
accounts for the damping. This model is due to Landau
and Lifschitz, and takes their name. If the field �H is
constant, equation (102) is easily solved: �M rotates around
�H , with a pulsation ωL = δµ0H , corresponding to the Larmor
precession (H is the norm of �H ). An incident wave with the
same frequency will be able to resonate with this eigenmode:
it is the ferromagnetic resonance. However, the resonance
pulsation ωR is equal to ωL only if the wave propagates parallel
to the magnetic field. In the other cases, it is higher and takes
at most the value δµ0

√
H(H + M), when the propagation is

perpendicular to the field. We commonly use the following
parameters: the saturation magnetization m and the ratio
α = H/m of the applied magnetic field to it. Indeed, a
uniform magnetic field is usually applied to the sample, in
order to saturate the magnetization. From the experimental
point of view, this allows us to avoid that the domain walls
perturb the wave propagation. From the theoretical point of
view, the presence of a static term is a necessary condition
to make use of a perturbative approach. Strictly speaking,
the field �H which we call ‘static’ or ‘external’ is not the
applied field, but the magnetic field effectively created by
it inside the material. Otherwise, demagnetizing factors
should be taken into account. With these notations, the
ferromagnetic resonance frequency ωR ranges from δµ0mα

to δµ0m
√

α(1 + α).
The evolution of the magnetic field �H is described by the

Maxwell equations. We assume that, regarding its dielectric
properties, the material is perfectly linear and isotropic, and
we denote by c = 1/

√
ε̂µ0 the light velocity based on its

dielectric constant ε̂. The Maxwell equations then reduce to

−�∇( �∇ · �H) + � �H = 1

c2
∂2
t ( �H + �M). (103)

The system yielded by the Landau–Lifschitz equation (102)
and the wave equation (103) describes electromagnetic wave
propagation in a ferromagnetic medium [67, 68]. �H, �M

k

γm(α+1)

ω c

γmα KdV

mKdV

PO

N

PA

MSW

OW

OW

γm α(α+1)

= 0

= 0

= 0

= π/2

= π /2

Figure 12. Dispersion relation of the electromagnetic waves in
ferromagnetic media, with the indication of the various modes, and
for several values of the angle ϕ between the propagation direction
and the applied magnetic field. OW : optical waves, MSW :
magnetostatic waves. The proper electromagnetic waves are PO:
optical with positive helicity, PA: acoustic with positive helicity, N:
with negative helicity. KdV, mKdV: long-wave modes governed by
the KdV and by the modified KdV equations, respectively.
m = (δµ0/c)Ms (USI).

and t are replaced below by the normalized quantities
δµ0 �H/c, δµ0 �M/c and ct , then the constants δµ0 and c
take the value 1. Among the waves of electromagnetic
nature that can propagate in a ferromagnetic medium, there
are so-called optical waves, denoted by OW in figure 12,
whose frequency is large enough with respect to the Larmor
frequency ωL/2π = δµ0H/2π so that the magnetic effects
can be neglected. Magnetostatic waves, MSW in figure 12,
are intensively studied [69]. Very close to the resonance
frequency, the phase velocity ω/k and the group velocity
dω/dk of the wave become very small with regard to the
light velocity. The equations describing the propagation of
the wave become that of the magnetostatic, the propagation at
the light velocity can indeed be considered as instantaneous
and the retardation terms in the Maxwell equations can be
neglected. Most of the experimental studies about solitons
in ferromagnetic media concern magnetostatic waves and
moreover guided modes of them in thin films [70–74].

We here consider electromagnetic waves, or polaritons,
for which neither the retardation nor the magnetic effects
are negligible [75]. Regarding the temporal solitons in
(1+1) dimensions, focusing and defocusing regimes are
distinguished [76–78]. Following the standard procedure
presented in section 3.1, a multiscale expansion leads to a
NLS-type asymptotic model,

iAfτ + Bfξξ + Cf |f |2 = 0. (104)

The amplitude f is a function of the slow variables ξ =
ε(x − V t) and τ = ε2t , and describes the wave envelope.
Precisely, the magnetization is written as

�M = �M0 + εf �m1
1 ei(kx−ωt) + c.c. + O(ε2), (105)

where �m1
1 is a polarization vector defined by

�m1
1 =

⎛
⎝−iγµm sin ϕ

iγµm cos ϕ

−γ 2ω

⎞
⎠ , (106)
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Figure 13. Schematic representation of the domains where the
modulation of an electromagnetic wave is either stable (BC < 0), or
unstable (BC > 0), on a plot of the dispersion relation.

where we have set, in normalized units, γ = 1 − k2/ω2

and µ = 1 + αγ . As mentioned above, α is the ratio of
the applied magnetic field to the saturation magnetization m,
and ϕ is the angle between the static uniform magnetization
�M0 = (m cos ϕ,m sin ϕ, 0) and the propagation direction x.

The pulsation ω and the wave vector k satisfy the dispersion
relation

µ2m2 cos2 ϕ + γµ(1 + α)m2 sin2 ϕ = γ 2ω2, (107)

drawn in figure 12. V = dω/dk is the group velocity.
Let us recall the well-known Lighthill criterion: if the

product BC of the coefficients of the nonlinear term and of
the dispersive term is positive, a periodic modulation of the
envelope f is unstable [79], and soliton formation can occur
[9], while if BC is negative, the modulation is stable, but
the solitons do not exist. It is known that in contrast dark
soliton formation can occur in this case [80]. The question that
arises is to determine the sign of the product BC as a function
of the physical parameters. In the particular case where the
propagation direction is parallel to the uniform field, it is seen
that the waves with positive helicity, corresponding to the
branches PO and PA on the representation of the dispersion
relation (figure 12), undergo a modulational instability and
can yield solitons (BC > 0), while the waves with negative
helicity, i.e. the branch N, are modulationally stable (BC < 0).
When the propagation direction is not parallel to �M0 any
more, modulationally stable regions appear for the waves with
positive helicity, as drawn in figure 13 [77]. The effect of
the damping on the wave packets [81] and the interaction
of the two modes (nonlinear Faraday effect) [40] have been
considered.

6.2. KdV-type solitons

Consider the ‘long-wave’ limit of a wave with negative helicity
N. As illustrated by the dispersion relation (figure 12), this
wave propagates at the velocity

√
(α + sin2 ϕ)/(α + 1), where

ϕ is the angle between the propagation direction and the
applied field and α is the ratio of the latter to the saturation
magnetization. It is shown, using the slow variables

ξ = ε(x − V t), τ = ε3t, (108)

that the propagation of this type of ‘long waves’ is governed
by the KdV equation [31]:

gτ + Pggξ + Qgξξξ = 0, (109)

where P and Q are real known constants and g is the wave
amplitude: the wave magnetic field and the magnetization are
both proportional to ε2g.

This assumes a negligible damping. The latter can be
taken into account by modifying the Landau equation (102) as

∂t
�M = −δµ0 �M ∧ �H +

σ

‖ �M‖
�M ∧ ( �M ∧ �H), (110)

where σ is a negative damping constant, δ is the gyromagnetic
ratio and µ0 is the magnetic permeability in vacuum. We use
below normalized quantities, so that the constants are replaced
with one. A multiscale expansion involving the slow variables

ξ = ε(x − V t), τ = ε2t, (111)

leads to the Burgers’ equation [27]

gτ + Pggξ + Rgξξ = 0 (112)

as an asymptotic model. Here P has the same value as in
equation (109) and R is a real constant. Explicit computation
shows that P is positive and R negative. Here, the magnetic
field and the magnetization are proportional to εg. Recall that
the Burgers’ equation (112) can be linearized by means of the
so-called Hopf–Cole transformation [6, 2]. A linear scaling
for the time τ and the amplitude g reduces the problem to
P = 1 and R = −1. The Hopf–Cole transformation is

g = −2∂ξ ln F, (113)

then F is a solution of the heat equation

Fτ = Fξξ . (114)

If we choose for F a linear combination of exponentials, we
obtain the particular solution

g = 2
∑n

i=1 fivi e−vi (x−vi t)

1 +
∑n

i=1 fi e−vi (x−vi t)
, (115)

which describes the propagation of n shock profiles and
their coalescence, cf figure 14. A generalization to (2+1)
dimensions [27] yields a Burgers’ type asymptotic model,
not integrable, which is sometimes referred to as the
Zabolotskaya–Kokhlov equation [82]. However, explicit
solutions can be given; they describe the coalescence of n
quasi-one-dimensional wave fronts, all propagating in the
same direction [83]. A complete mathematical proof of
the convergence of this asymptotic has been recently given
[26, 84]. Here, the direction of the transverse modulation is
perpendicular to the plane yielded by the applied field and
the propagation direction. A modulation along the other
transverse direction also arises; it involves a small drift of
the wave. The corresponding asymptotic model is derived by
means of the change of scales

ξ = ε(x − V t), η = ε2(y − Ut),

ζ = ε2z, τ = ε3t.
(116)

Despite the presence of a transverse velocity U, it remains in
the general frame defined by figure 9 in section 4.5. Indeed,
the transverse variables η and ζ are slow with regard to the
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Figure 14. Coalescence of shock waves described by the Burgers’
equation. Three successive shock fronts are seen on the leftmost
curve, at τ = −200. They coalesce to yield finally a single front on
the rightmost curve, at τ = +10.

longitudinal variable ξ , and U is a small correction of the
velocity V . It is remarkable that the transverse modulation
possesses such a drift velocity, whose direction is fixed by that
of the applied magnetic field. The value of the perturbative
parameter ε is determined by the length of the solitary wave.
It is seen that the Burgers’ model (112) is obtained for
propagation times much smaller than the KdV solitons (109):
of order 1/ε2 instead of 1/ε3. The required amplitudes also
differ, because they are adjusted so that the nonlinear effect
arises at the expected time. A weak damping assumption of
the form

σ = εσ̃ (117)

allows us to describe the simultaneous arising of both effects.
Using both the tridimensional expansion (116) and the weak
damping assumption (117), we obtain a rather complete
treatment of the problem [85]. The magnetization writes

�M = �m + ε2g �m1 + O(ε3), (118)

and the magnetic field �H is expanded in an analogous way.
The lowest order in the perturbation theory, ε2, fixes the
polarizations �m1 and �h1. The following order ε3 fixes
the longitudinal velocity to V =

√
(α + sin2 ϕ)/(1 + α),

characterizing the considered propagation mode, together with
the transverse velocity U = V (1 − 1/V 2) tan ϕ. At order ε4,
we obtain the following evolution equation for the amplitude
g:

(gτ + Pggξ + Qgξξξ + Rgξξ )ξ + Sgηη + T gζζ = 0. (119)

This equation is of KP type, with an additional non-
conservative term Rgξξ . The latter vanishes if the damping
is negligible, i.e., formally, if the hypothesis (117) can be
replaced by σ ∈ o(ε). If in addition the problem is reduced
to (2+1) dimensions, assuming that there is a transverse
modulation in one direction (y, z or other) only, equation (119)
reduces exactly to KP. The explicit computation of the
coefficients allows us to determine their sign: Q is negative,
and S and T positive. Equation (119) is thus KP I that admits
algebraically decreasing bidimensional localized solutions,
called lumps [51]. An example of such a solution is drawn in
figure 15.

ξ
g

η

Figure 15. Solution lump of the Kadomtsev–Petviashvili equation.
It is a stable solitary wave localized in two dimensions, which
decays algebraically in all directions.

ξ

M0

Figure 16. The structure of the solitons of the ‘relativistic domain
walls’ type. The magnetization vector �M0 rotates for one complete
turn around the ξ -axis, and propagates in this direction.

6.3. Relativistic domain walls and solitons

Beside the spin waves, a type of strongly nonlinear waves
exists in ferromagnetic media, called relativistic domain walls.
Explicit exact solutions of the Maxwell–Landau equations
have been obtained [86]. These waves have the following
structure: the magnetization density vector rotates around
the propagation direction, its tip describing a helical curve,
that propagates along its axis, cf figure 16. This type of
structure is close to that of the domain walls. Further, their
analytic expressions are rather close to those which have
been given by Landau for the latter [87]. A multiscale
approach of ‘long-wave’ type allows us to find an alternative
description for them. The energy of the structures depends
mainly on the magnitude of the magnetization gradient and
hence increases as the size of the structure decreases. The
long-wave approximation is thus in fact a weak amplitude
approximation, although the zero-order term in the expansion
itself varies. Nakata showed that, in this limit, the evolution
of this type of wave is governed by the mKdV equation and
obtained soliton solutions corresponding to one turn of the
magnetization around the propagation direction [88]. As an
interpretation, let us consider two parallel domain walls, in
which the magnetization rotates in the same direction: when
they join together, there is some topological obstruction to their
annihilation and their coupling yields a propagating structure.
Corrections to this type of model have been given, describing
the effect of damping [89], inhomogeneous exchange and
anisotropy [90], the eventual presence of free charges (it
leads to an additional damping) [91] and the antiferromagnetic
character of the medium [92].

For a propagation parallel to the external magnetic
field, the situation is strongly modified, a NLS equation is
derived, in which the complex variable is ψ = M

y

0 + iMz
0 ,

where �M0 is the leading term of the magnetization and
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x is the propagation direction [18]. For a static field
almost parallel to the polarization direction, and assuming
that the inhomogeneous exchange interaction dominates, the
asymptotic model satisfied by ψ becomes a derivative NLS-
type equation [93].

The effect of transverse perturbations on these structures
can be studied by means of a multiscale expansion, which
leads to the integro-differential set of equations [94]

θτ + µθξξξ +
µ

2
(θξ )

3

= −γ θξξ − ρ� + θξ

∫ ξ

−∞

(
ρ� − γ θ2

ξ

)
dξ ′, (120)

�ξ = �θξ − (
θ2
η + θ2

ζ

)
, (121)

�ξ = −�θξ + θηη + θζζ , (122)

where µ, γ and ρ are real constants, which can be expressed
as functions of the physical parameters. The stability of the
solutions depends closely on the sign of the ρµ product, which
is always positive. v = θξ , where θ is the precession angle of
the magnetization �M0 around the propagation direction x, i.e.,

�M0 =
⎛
⎝ mx

mt cos θ

mt sin θ

⎞
⎠ . (123)

Equation (120) presents an obvious analogy with the following
one, often called the modified Kadomtsev–Petviashvili (mKP)
equation: (

vτ + µvξξξ + 3
2µv2vξ

)
ξ

= −ρvηη. (124)

Recall that the mKP equation above, contrarily to the KP
equation (79), is not integrable. It admits however line soliton-
type solutions, since, when it is reduced to one dimension, it
yields the mKdV equation. Equation (120) admits exactly
the same reduction and thus exactly the same line solitons.
The stability of these solutions with respect to a longitudinal
perturbation is essentially governed by the mKdV equation.
It is thus the stability of the soliton. Regarding transverse
perturbations, the situation radically differs. The stability
properties of mKP are the same as those of KP [7]. Let us
recall that if the µρ product is negative, the KP equation is
called KP I, and its line solitons are unstable with respect
to slow transverse perturbations. If µρ is positive, they are
stable, and the equation is KP II. With regard to fast transverse
oscillations, the stability results are inverted, and it is for KP I
that the line soliton is stable with regard to these kinds of
perturbations.

The stability of the line soliton of the system (120)–
(122) has been discussed numerically and analytically [94]:
the results are inverted with respect to the case of KP or
mKP. Because µρ is always positive, the line solitons are
unstable under transverse perturbations. The interactions of
line solitons, as well as a localized initial input, always give rise
to wave breaking, as far as numerical computations have been
run. This instability is related to the fact that the first of the
conservation laws of mKdV is not satisfied by equations (120)–
(122). It gives rise to the emission of other solitary waves,
which seem to belong to the propagation mode governed by
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Figure 17. The instability described by equation (120) gives rise to
the emission of a solitary wave of another type. Plot of cos θ , after
an evolution time τ � 6, starting from initial data containing two
line solitons linearly superposed. Instead of evolving to a smooth
interaction pattern comparable to the one of figure 10, it gives rise to
a narrow deformation in the direction ξ of the propagation.

KdV, cf figure 17. The direct numerical resolution of the
Maxwell–Landau system showed the same kind of instability
and wave emission, out of the long-wave approximation [95].
A perturbative approach of oscillations of these structures has
shown in an analogous way spin wave emission [86].

6.4. Interaction of long waves

The above-mentioned emission of KdV-type waves by the
transverse instability of the relativistic domain walls can be
interpreted as an interaction between the two types of solitary
waves. The interaction between two incident solitary waves,
each of which belongs to one of the two modes, has been
studied in the one-dimensional situation, i.e. assuming that the
two incident waves are plane waves propagating in the same
direction [31]. The equations describing the interaction are
obtained by means of a multiscale expansion using the slow
variables ξ = εx, τ = εt .

The computation shows that, in order that the asymptotic
model can describe the interaction, the magnetic field
expansion must begin with

�H = �H0 +
√

ε �H1 + O (ε) . (125)

This means that, in order for this interaction to occur, the wave
amplitude must be much higher than what is necessary for the
self-interactions studied above.

It is seen that the leading term of zero order is

�H0 = α

⎛
⎝ m cos ϕ

m sin ϕ cos θ

m sin ϕ sin θ

⎞
⎠ , (126)

i.e., that it describes a precession of the magnetization around
the propagation axis x. The precession angle θ is a function
of the variable ξ − V0τ , which accounts for a propagation at
the velocity

V0 =
√

α

1 + α
. (127)

This expression describes in first approximation the relativistic
domain walls. Note that the angle ϕ between the propagation
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direction and the uniform applied field is a constant
geometrical parameter of the problem, while the angle θ is
a dynamical variable. The following term �H1 is split into a
transverse component

H⊥
1 = H

y

1 + iHz
1 = (� + i�) eiθ (128)

and a longitudinal component Hx
1 ∝ �. The function �

accounts for the variations in the norm of the transverse
component H⊥ = H⊥

0 +
√

εH⊥
1 + O(ε) of �H , i.e. for the

variations of the angle ϕ (recall that ‖ �M‖ is a constant). It
is the propagation mode which under certain conditions can
support KdV solitons, and which, by convenience, we will
denote by this name. The other component, �, accounts for the
variations of the direction of H⊥. It is in fact some correction
to the precession angle θ of the magnetization around the
propagation direction. In other words, � is a correction to
the function θ which describes the relativistic domain wall; it
contains all information regarding the retroaction of the KdV
soliton onto this wave.

The system of equations which describes the interaction
then becomes(

∂ξ 2 − λ∂2
T

)
� = F,

(
∂ξ 2 − ∂2

T

)
� = G. (129)

The constant λ is equal to V 2
0

/
V 2

1 , where V0 is the velocity of
the relativistic domain wall-type waves, given by (127), and
V1 that of the waves of the KdV mode, i.e.,

V1 =
√

α + sin2 ϕ

1 + α
. (130)

T = V0τ is a normalized time variable, and the source terms F
and G are functions of θ,�,� and their derivatives. Equations
(129), written in an integral form, can be solved explicitly
for particular initial data, for which dθ/dξ approaches the
distribution 2πδ(ξ − T ). This expression of the precession
angle θ can describe an incident mKdV soliton, in the
limit where its size is very small with regard to all other
lengths involved in the problem. The latter assumption
is consistent with the rest of the theory and physically
reasonable. We denote by v the normalized velocity v =
1/

√
λ, corresponding to the physical velocity V1. If the

incident KdV wave is � = g(ξ − vT ), there is a transmitted
wave � = T g, for ξ > T , i.e. after the interaction, cf
figure 18, and a reflected wave, which appears in the expression
of � before the interaction point, adding a term to the
expression of the incident wave:

� = g(ξ − vT ) − Rg

(
−v − 1

v + 1
(ξ + vT )

)
, for T > ξ .

(131)

The reflection and transmission coefficientsR and T have been
expressed explicitly as functions of the normalized velocity v.

As happens frequently in soliton interactions, the mKdV
soliton described by θ + ε� undergoes a shift. The shift � is
proportional to the integral of g(ξ) over ξ ′ < 0, i.e., behind
the relativistic domain wall. The sign of the shift � is thus the
sign of the incident solitary wave of the KdV mode. If this
sign is positive, this wave corresponds to an augmentation of
the induction �B, and the relativistic domain wall is delayed.
In the opposite case it is brought forward by the interaction.

V

V
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ξ = ε x

y

z

g

g

- g

∆

Figure 18. Schema of the interaction between a KdV soliton and a
relativistic domain wall. Dotted line, the incident waves; solid line,
the result of the interaction. The relativistic domain wall is shifted
for �, while the KdV soliton is partially transmitted and partially
reflected. Only relative movement is depicted.

6.5. Interactions between long waves and envelopes:
shock wave emission

An envelope soliton, or rather a localized packet of fast
oscillating waves, can also interact with long solitary waves,
consisting of a single oscillation, the duration of which has
the same order of magnitude as the wave packet. This type of
interaction can arise in the frame of soliton-type propagation
of the wave packet, i.e. when the nonlinear effects have an
order of magnitude comparable to that of the dispersion or
of the diffraction. The model accounting for wave packet
propagation and interaction with the solitary waves is thus a
generalization of the NLS equation, which involves one or
several auxiliary fields describing the solitary waves. The
simplest situation yields the Davey–Stewartson (DS) system.

Another situation, which has been the focus of many
mathematical studies, is the so-called nonlinear geometrical
optics. Its mathematical importance is due to the fact that
the convergence proofs for the multiscale expansion are much
more accessible in this case. It is the situation where the
nonlinear effect occurs at propagation distances of the same
order of magnitude as the pulse length. This means that the
nonlinear effect, which is much more intense than in the case
of a NLS model, perturbs the transport at the group velocity.
An alternative interpretation is to consider that the pulse length
is very large, so that the dispersion is negligible.

Let us now look for the asymptotic description of an
electromagnetic wave propagating in a ferromagnetic medium
as described by the Maxwell–Landau model (102) and (103),
corresponding to the nonlinear geometrical optics regime. We
use an expansion analogous to (105), just as to derive the
NLS model, but the profiles �Mp

n are now functions of the slow
variables [96]

τ = ε2t, ξ = ε2x, η = ε2y, ζ = ε2z.

(132)

In the special case where the static field is parallel to the
propagation direction, the amplitude g of the wave packet
satisfies the nonlinear transport equation

iAfτ + iAvfξ + Bf |f |2 + Cf � + Evf

∫ τ

−∞
∂ξ |f |2 = 0,

(133)
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where A,B,C and E are real constants and v is the group
velocity. Equation (133) is solved directly, writing the
amplitude g in the form g = reiθ . It is found that r = r(�ξ ′)
and

θ(�ξ ′, τ ) = B − E

A
r2(�ξ ′)τ +

C

A

∫ τ

τ1

�(�ξ ′, τ̂ ) dτ̂ , (134)

with ξ ′ = ξ − vτ, �ξ ′ = (ξ ′, η, ζ ). The first nonlinear effect
is thus a phase modulation proportional to both the time and
the squared wave amplitude. But this modulation presents a
second term involving an auxiliary field � = �H 0,x

2 , which is a
component of the term of order ε2, corresponding to the zero
harmonic, in the Fourier expansion of the magnetic field. In
other words, � can describe an isolated oscillation, without a
carrier. The equation describing its evolution is(

V 2
0 ∂2

ξ + ∂2
η + ∂2

ζ − ∂2
τ

)
� = P∂2

τ r2, (135)

where P is a real constant and V0 is the propagation velocity
(127) of the relativistic domain walls, but it is also the velocity
(130) of the KdV-type waves when they propagate parallel to
the static field (ϕ = 0). � describes waves belonging to this
mode, in three dimensions. The solution of equation (135)
is the sum of a solution of the homogeneous equation and a
particular solution �+(�ξ ′) satisfying((

V 2
0 − v2

)
∂2
ξ ′ + ∂2

η′ + ∂2
ζ ′
)
�+ = Pv2∂2

ξ ′r
2. (136)

If the solitary waves propagate faster than the fast oscillating
wave, V0 > v and equation (136) is a Poisson equation, which
admits the solution

�+(�ξ1) =
∫ ∫ ∫

R
3

ρ(�u)d�u
‖�ξ1 − �u‖ , (137)

with ρ = Pv2∂2
ξ r2, d =

√∣∣V 2
0 − v2

∣∣, ξ1 = ξ ′/d and �ξ1 =
(ξ1, η, ζ ). This solution is smooth even if the wave packet is
very localized, and if the support of r reduces to a point or to
a line.

If in contrast the fast oscillating wave packet is the faster
one, V0 < v, then equation (136) has the form of a wave
equation. Let us choose the following particular expression of
the wave intensity:

r2 = aH(ξ ′)δ(η), (138)

where H is the Heaviside function and δ the Dirac distribution.
This intensity corresponds to the front end of a long pulse,
emitted though a long and narrow slot. The solitary wave �+

of it emitted by the wave packet is then

�+ = −aPv2

2d2

[
δ

(
η +

ξ ′

d

)
+ δ

(
η − ξ ′

d

)]
. (139)

It is thus singular, concentrated on the two half-planes η =
±ξ ′/d . The localized pulse emits a solitary wave, which
remains smooth as long as the pulse velocity is lower than that
of the solitary waves, but becomes a shock wave in the inverse

v
v

V0V0

V0

V0

Figure 19. Schema showing the waves emitted by a source moving
with a velocity �v. Left, their propagation velocity is larger than that
of the source: the wave remains smooth. Right, the source
propagates faster: the waves concentrate on a cone.

case, as shows the schema of figure 19. This phenomenon
can be compared to the emission of an acoustic shock wave
by a supersonic aircraft and to Tcherenkov emission. If the
propagation direction is not parallel to the static field, the
phenomenon is analogous, but more complicated. Indeed, the
other solitary wave propagation mode, the relativistic domain
walls, is also involved [96].

7. An ab initio approach to nonlinear optics

7.1. Introduction

When studying the propagation of electromagnetic solitons
in ferromagnetic media, we have been able to avoid the
use of ‘nonlinear susceptibilities’ and to derive the nonlinear
propagation equations of NLS type directly starting from
the Maxwell–Landau equations. From the theoretical point
of view, the use of nonlinear susceptibilities is not totally
satisfying, since it is the extension of an intrinsically linear
notion to a frame which is not. A priori, such a generalization
may be adequate for particular questions only. The use of these
objects requires many precautions and can in some cases give
erroneous results. Further, in some cases, the direct approach
is much simpler: that is what happened for [77].

What is well defined is the nonlinear response function,
initially introduced by Volterra [97, 98]. But it is a global
description of the nonlinear propagation phenomenon that
expresses what can be observed at the output of the setting
as a function of the input, without any attempt to describe
what happens inside. This notion may coincide with that of
nonlinear susceptibility when the propagation distances are
small. To write a nonlinear propagation equation for large
propagation distances is a local approach, that radically differs
from the global one. A priori, to mix both approaches, local
and global, is likely not the most satisfying. That is why we
propose a method which allows us to derive the macroscopic
nonlinear propagation equation directly from the microscopic
theory of quantum mechanics [99].

7.2. Envelope solitons

We use the density matrix formalism. The dynamics of
each atom is described by a Hamiltonian H0, to which we
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add a coupling term describing the interaction between the
electric field �E and the dipolar electric momentum of the atom,
described by the operator �µ. The Hamiltonian H of the system
decomposes as

H = H0 − �µ · �E, (140)

and the Schrödinger equation is

ih̄∂tρ = [H, ρ] , (141)

where ρ is the density matrix. The electric field satisfies the
Maxwell equations, which reduce to

�∇( �∇ · �E) − � �E = −1

c2
∂2
t ( �E + 4π �P), (142)

in the absence of magnetic effects. c is the light velocity in
vacuum, �∇ is the gradient operator and �P is the polarization
density, which is expressed with the help of the dipolar electric
momentum �µ as

�P = N tr(ρ �µ), (143)

with N being the number of atoms by volume unit. Using these
definitions, the system of equations (141) and (142) is called
Maxwell–Bloch equations, although some authors prefer to
keep this name for a reduction of the same system, cf [100],
section 5.4.

For the sake of simplicity, we assume that H0 is a non-
degenerated two-level Hamiltonian,

H0 = h̄

(
ωa 0
0 ωb

)
, (144)

and that the dipolar momentum of the stationary states is zero,
which yields the following expression for the operator �µ:

µs =
(

0 µs

µ̄s 0

)
(s = x, y, z). (145)

We apply the reductive perturbation method in expanding the
electric field according to

�E =
∑

n�1,p∈Z

εn eipϕ �Ep
n, (146)

where the profiles �Ep
n are functions of the slow variables

τ = ε
(
t − z

V

)
, ζ = ε2z. (147)

This expansion allows us to specify the meaning of the weak
amplitude assumption. Here it is exactly the electrostatic
energy of the atomic dipole in the wave field which is small
with regard to the difference h̄� = h̄(ωb − ωa) between the
energies of the atomic levels (we assume that ωb > ωa).
We assume further that all the atoms are initially in the
fundamental state and that few of them will be excited. The
NLS equation is obtained as usual at the order ε3 of the
perturbative scheme; its nonlinear term involves the harmonics
produced at order two. Two details, specific to the two-level
model, must be noted: first, there is no zero harmonic, i.e. no
optical rectification. Second, among the ‘second harmonic’
terms, the electric field �E2

2 and the polarization density are
zero; the diagonal terms ρ2

2,a, ρ
2
2,b of the density matrix only

are nonzero. Thus, physically, there is no second harmonic,

even produced in a non-resonant way. We write the NLS
equation in the following form, usual in nonlinear optics:

i∂ζE − 1
2k2∂

2
τ E + γ E |E|2 = 0, (148)

where E is a component of the electric field amplitude, defined
by �E1

1 = E �u, where �u is a unit vector. The coefficient of the
dispersive term −k2/2 coincides exactly with the commonly
admitted value: k2 is the second derivative d2k/dω2 of the
dispersion relation.

The coefficient of the nonlinear term can be compared to
the results obtained using the nonlinear susceptibility tensor
χ(3) computed for the same two-level model, using, e.g., the
density matrix formalism [100]. Note that our starting model
is not isotropic. Let us first assume that the dipolar momentum
operator �µ = (µ, 0, 0) is parallel to the x-axis, i.e. transverse.
Then the nonlinear coefficient obtained through the multiscale
expansion coincides exactly with that which is deduced from
the nonlinear susceptibility χ(3):

γ = −8πNµ2µ̄2ω�

h̄3c

√
(ω2 − �2)3

(
ω2

2 − ω2
) . (149)

In the case of a dipolar momentum that can be excited by
a circular polarization only, µx = µ,µy = iµ and µz = 0,
the multiscale expansion, adequately modified, shows that the
nonlinear coefficient γ is zero, while the use of nonlinear
susceptibilities χ(3) yields an erroneous result. The error
seems to be due to the fact that, in the latter formalism, the
effect of the circular polarization is obtained by splitting it into
linear polarizations. But such a splitting uses the linearity and
cannot give a correct result for a nonlinear phenomenon.

We can also assume that the charge oscillations can
be excited in a fixed direction only that makes an angle
α with the transverse plane xy, which is accounted for by
�µ = (µ cos α, 0, µ sin α). For this simple model of an
anisotropic situation, the use of the susceptibilities is not fully
consistent and cannot give a correct expression of the nonlinear
coefficient γ , while the above approach solves the problem.

Although this study is restricted to an academic problem,
that of a non-degenerate two-level atom, it will be possible to
generalize this approach to more realistic situations.

7.3. A mKdV model for few-cycle pulses

The recent progress in the development of solid-state mode-
locked lasers has resulted in the generation of two-cycle
optical pulses [101–103]. The slowly varying envelope
approximation (SVEA), under which the NLS model is
derived, is not valid for few-cycle pulses. Several authors
have attempted to describe the dynamics of such pulses by
means of extensions of the SVEA [104, 105]. We propose
here a radically different approach.

Leaving completely the concept of the slow envelope,
the reductive perturbation method allows us to derive
an approximate model able to describe few-cycle soliton
propagation in a Kerr medium [106]. We consider
the coupling between identical two-level atoms and the
electric field described by the Maxwell–Bloch equations,
i.e. equations (140)–(145) in the previous section. For the sake
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of simplicity, we assume a plane wave propagating along the
z-axis and linearly polarized along the direction of the atomic
dipolar electric momentum �µ, i.e. �µ = µ�ex and �E = E�ex ,
where �ex denotes the unitary vector along the x-axis.

Relaxation can be taken into account phenomenologically
by modifying the Schrödinger equation (141) into

ih̄∂tρ = [H, ρ] + ih̄

(
ρb/τb −ρt/τt

−ρ∗
t /τt −ρb/τb

)
, (150)

where τb and τt are the relaxation times for the population and
for the coherence, respectively.

We consider the situation where the wave duration tw
is long with regard to the period tr = 2π/�, with � =
ωb − ωa , corresponding to the resonance frequency of the
two-level atoms. We assume that tw is about one optical
period, say about 1 fs. Thus, we assume that the resonance
frequency � is large with regard to optical frequencies. In
order to obtain soliton-type propagation, the nonlinearity
must balance dispersion, thus the two effects must arise
simultaneously in the propagation. This involves a small
amplitude approximation. Further, we can speak of a soliton
only if the pulse shape is maintained over a large propagation
distance. Therefore, we use the long-wave approximation
method as defined in section 2.1. The electric field E, the
polarization density P and the density matrix ρ are expanded
as power series of a small parameter ε as

E =
∑
n�1

εnEn, P =
∑
n�1

εnPn, ρ =
∑
n�0

εnρn,

(151)

and we introduce the slow variables

τ = ε
(
t − z

V

)
, ζ = ε3z. (152)

Further, since the physical values of the relaxation times τb

and τt are in the picosecond range, or even slower, i.e. very
large with regard to the pulse duration tw, we write τj = τ̂j /ε

2

for j = b and t. We assume that, in the unperturbed state, all
atoms are in their fundamental state a.

The order-by-order resolution of the perturbative scheme
leads to the following nonlinear evolution equation:

∂ζE1 = 4πN |µ|2
nch̄�3

∂3
τ E1 +

8πN |µ|4
nch̄3�3

∂τ

(
E3

1

)
, (153)

where n = c/V =
√

1 + 8πN |µ|2/(h̄�) . Equation (153)
is the mKdV one, already encountered in section 6.3. It also
appears in various branches of physics such as anharmonic
lattices and Alfvén waves in collisionless plasma. It is
completely integrable by means of the inverse scattering
transform [107]. The N-soliton solution has been given by
Hirota [108].

The solution of equation (153) depends on the relative sign
between the nonlinear and dispersion terms. In the present
case, corresponding to a focusing nonlinearity, the mKdV
equation cannot be reduced to the KdV one in the real
domain [34]. Although the two-soliton solution in the sense
of the IST is very far in shape from a few-cycle pulse, it
can be algebraically prolonged, using complex values of the
soliton parameters, to an explicit solution called a ‘breather’,
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Figure 20. Breather solution of the mKdV equation, using
dimensionless parameters.
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Figure 21. (a) Pulse profile and (b) spectrum of the second-order
soliton solution of the mKdV equation of figure 20. It can model a
few-cycle optical pulse. Dimensionless parameters are used.

which has typically the behaviour shown in figure 20.
The corresponding spectrum and pulse profile are given in
figure 21. They are comparable to the experimental pulses
shown in [103]. It can thus be thought that the two-cycle
pulses produced experimentally could propagate as solitons
in certain media, according to the mKdV model. Note that
the KdV equation, and hence the mKdV one corresponding
to a defocusing cubic nonlinearity, does not admit a breather
solution. Indeed, the same prolongation procedure does not
yield a regular solution.

Both the direct computation and the general theory [32]
have shown that the coefficient of the dispersive term ∂3

τ E1

in equation (153) is (1/6) d3k/dω3. A general expression of
the nonlinear term is derived by considering the long-wave
limit of the NLS equation (148); it is found that the nonlinear
coefficient is (6π/nc)χ(3). Explicit computation shows that
the general expression is valid in the particular case considered.
Thus, equation (153) can be rewritten as

∂ζE1 = 1

6

d3k

dω3

∣∣∣∣
ω=0

∂3
τ E1

− 6π

nc
χ(3)

xxxx(ω, ω, ω,−ω)

∣∣∣∣
ω=0

∂τ

(
E3

1

)
. (154)
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It can be reasonably conjectured that equation (154),
which has also been derived from quasi-adiabatic following
approximation [109], will still hold in the more general case
of an arbitrary number of atomic levels, when the inverse of
the characteristic pulse duration is much smaller than any of
the transition frequencies of the atoms.

7.4. Short-wave approximation

We consider again the two-level model described in section 7.3,
but assuming now that the resonance frequency � of the atoms
is below the optical frequencies [106]. Thus the characteristic
pulse duration tw is very small with regard to tr = 2π/�, and
we use a short-wave approximation. We now introduce a small
perturbative parameter ε, such that the resonance period is
tr = t̂r /ε, where t̂r has the same order of magnitude as the pulse
duration tw. The perturbative parameter ε is thus about tw/tr .
Consequently, the Hamiltonian H0 of the atom is replaced
in the Schrödinger equation (150) by εĤ0. We introduce a
retarded time τ = t − z/V and a slow propagation variable
ζ = εz. The electric field E is expanded as E = ∑

n�0 εnEn

and so on. The pulse duration tw is still assumed to be about
1 fs, corresponding to an optical pulse of a few cycles, and the
relaxation times τb and τt are very long with regard to tw. Since
the above scaling uses tw as zero-order reference time, it can
be expressed by setting τj = τ̂j /ε for j = b and t. Although
formally different, the weak damping assumption is physically
the same as in the previous section. The scaling is equivalent to
the standard short-wave approximation formalism developed,
e.g., in [110–112].

The population inversion is w = ρ0b −ρ0a . It is shown by
solving the perturbative scheme that w and the leading term E0

in the expansion of the electric field satisfy the set of equations

∂ζE0 = 4iπ�N

c
p, ∂τp = −i|µ|2

h̄
E0w,

∂τw = −4i

h̄
E0p,

(155)

where

p = −i|µ|2
h̄

∫ τ

E0w. (156)

Equations (155) coincide with the equations for self-induced
transparency, although the physical situation is quite different:
the characteristic frequency 1/tw of the pulse is far above the
resonance frequency �, while the self-induced transparency
occurs when the optical field oscillates at the frequency
�. The quantities E and w here describe the electric field
and the population inversion themselves, and not amplitudes
modulating a carrier with frequency �. Note that E and w

here are also real quantities, and not complex ones as in the
case of the self-induced transparency. Further, p is not the
polarization density, but is proportional to its τ -derivative.
Another difference is the absence of a factor 1/2 on the right-
hand side of equation (155).

System (155) can be reduced to

∂Z∂T u = sin u, (157)
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Figure 22. (a) Pulse profile, (b) population inversion and
(c) spectrum of the breather solution of the sine-Gordon equation. It
can model a few-cycle optical pulse. Dimensionless parameters are
used.

in which

Z = z

L̂
, T = 1

tw

(
t − z

c

)
,

E = Er

2

∫ Z

sin u, w = wi cos u.

(158)

The electric field and propagation length scaling parameters
are

Er = h̄

|µ|tw , L̂ = h̄c

�tw4πN |µ|2wi
, (159)

in which the initial population inversion wi and typical pulse
duration tw are given.

The sine-Gordon equation (157) is completely integrable
[7]. An N-soliton solution can be found using either the IST or
the Hirota method. As with the mKdV equation, it admits
a breather solution, and hence is able to describe soliton-
type propagation of a pulse in the two-cycle regime. The
pulse profile, with the corresponding population inversion and
spectrum, is shown in figure 22. They are comparable with
the experimental observation of [103]. The explicit breather
solutions allow us to define envelope and carrier, group and
phase velocities for a few-cycle soliton in an algebraic way,
although these quantities a priori make sense within the SVEA
only [113].

8. Nonlinear optics of quadratic media

8.1. Propagation equations far from the phase matching

Despite the reservations mentioned in the previous section, in
a more general frame, the use of a phenomenological model
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of response functions, which are the nonlinear susceptibilities,
allows us to determine the envelope propagation equations.
Let us consider the evolution of the modulation of a short and
localized optical pulse in a bulk medium, taking into account
anisotropy and polarization [48]. The electric field �E satisfies
the Maxwell equations, which reduce to

�∇ ∧ ( �∇ ∧ �E) = − 1

c2
∂2
t

�D, (160)

where �D is the electric induction, described by the following
standard model [100]. It is written as the sum �D = �Dl + �Pnl

of a linear part �Dl , which satisfies

�Dl = χ(1)∗ �E =
∫ t

−∞
dt1χ

(1)(t − t1) : �E(t1), (161)

and a nonlinear part �Pnl , corresponding to the nonlinear
polarization, defined by

�Pnl = χ(2)∗( �E, �E) + χ(3)∗( �E, �E, �E), (162)

=
∫ t

−∞
dt1

∫ t1

−∞
dt2χ

(2)(t − t1, t − t2) : �E(t1) �E(t2)

+
∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3χ

(3)

× (t − t1, t − t2, t − t3) : �E(t1) �E(t2) �E(t3). (163)

The nonlinear susceptibilities χ(1), χ(2) and χ(3) are tensors of
rank 2, 3 and 4, respectively. We are interested in a situation
where the second-order susceptibility χ(2) is not zero. The
materials satisfying this hypothesis, non-centrosymmetric, are
in most cases isotropic or uniaxial regarding the linear optics
described by χ(1) [114]. We assume that, if the material is
uniaxial, the propagation occurs parallel to its optical axis z,
i.e. that the Fourier transform χ̂ (1) of χ(1) is

χ̂ (1) =
⎛
⎝n2

o 0 0
0 n2

o 0
0 0 n2

e

⎞
⎠ , (164)

where no and ne are, respectively, the ordinary and
extraordinary indices of the medium. We retrieve the isotropic
case by identifying ne = no. We apply the reductive
perturbation method, using the expansion (146) of the electric
field �E and the slow variables defined by (65) in section 4.1,
for a ‘spherical’ pulse. This leads to an asymptotic model of
the DS type. The exact structure of this system depends on the
symmetry properties of the nonlinear susceptibility tensors
χ(2) and χ(3) and thus of the symmetry of the considered
crystal. For the symmetry class 4̄2 m, which contains many
materials commonly used for their second-order nonlinear
optical properties, in particular KH2PO4 (KDP), we obtain
the system[

2ik∂ζ + β∂2
ξ + ∂2

η − kk′′∂2
τ

]
U + (β − 1)∂ξ ∂ηV

= D1U |U |2 + D2U |V |2 + D3 (V )2 U ∗ + F�V, (165)[
2ik∂ζ + ∂2

ξ + β∂2
η − kk′′∂2

τ

]
V + (β − 1)∂ξ ∂ηU

= D1V |V |2 + D2V |U |2 + D3 (U)2 V ∗ + F�U, (166)[
α

(
∂2
ξ + ∂2

η

)
+ ρ∂2

τ

]
� = Q

(
∂2
ξ + ∂2

η

)
(UV ∗ + U ∗V ), (167)

where U = E
1,x
1 and V = E

1,y

1 are the amplitudes of the two
linear wave polarizations parallel to the crystallographic axes.
The function � is a linear combination of the components E

0,x
2

and E
0,y

2 of the rectified field. The interaction constants can
be expressed in terms of the components of the nonlinear
susceptibility tensors χ̂ (2) and χ̂ (3). It is seen from the
expressions that the coupling constant Q accounts for optical
rectification (ω − ω −→ 0) and F for the electro-optic effect
(ω + 0 −→ ω). D2 and D3 contain the combined effect of
these two terms. D2 also contains a term which accounts for
the well known cascading effect [39, 115, 116]: the generation
of second harmonic (ω + ω −→ 2ω), and back-conversion to
the fundamental (2ω − ω −→ ω). Finally, the three constants
D1,D2 and D3 obviously also contain components of the third-
order nonlinear susceptibility χ̂ (3) (ω + ω − ω −→ ω).

If the considered material belongs to the 3m symmetry
class, as does lithium niobate LiNbO3, the asymptotic model is
even more complicated: both transverse components E

0,x
2 and

E
0,y

2 of the rectified field intervene, and not only a single linear
combination of these two quantities, which would correspond
to a single polarization of the long wave. Further, the evolution
equations of the two polarizations of the fundamental contain
integro-differential nonlinear interaction terms [48].

8.2. Interaction between polarizations

The interaction of two polarizations in a one-dimensional
medium has been studied by various authors [117, 118]. The
system (165)–(167) describes the mutual interaction of two
polarizations and their interaction with the rectified field, in
(3+1) dimensions. It can be reduced to (1+1) dimensions,
by assuming that the amplitudes U,V and � depend on a
single variable X only, equal either to τ (temporal case) or
to (ξ cos θ + η sin θ) (spatial case). Equation (167) for the
rectified field � is straightforwardly solved, and the system
reduces to two coupled NLS equations:

2ik∂ζU + B1∂
2
XU + C∂2

XV

= D1U |U |2 + D′
2U |V |2 + D′

3V
2U ∗, (168)

2ik∂ζV + B2∂
2
XV + C∂2

XU

= D1V |V |2 + D′
2V |U |2 + D′

3U
2V ∗. (169)

In the temporal case X = τ , i.e. for a short pulse, whose
section is large enough for the diffraction to be negligible,
the coefficients are B1 = B2 = −kk′′, C = 0,D′

j = Dj .
In the spatial case, i.e. for a beam section which has an
elongated shape, making an angle θ with the crystallographic
axes (the beam can also be confined in a guide), the dispersion
coefficients are more complicated:

B1 = β cos2 θ + sin2 θ, B2 = cos2 θ + β sin2 θ,

C = (β − 1) sin θ cos θ.
(170)

We define constants α and B, accounting for the anisotropy at
the frequencies zero and ω respectively, as

α = n2
o(0)

n2
e(0)

, β = n2
o

n2
e

. (171)
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The nonlinear coefficients are written as

D′
j = Dj +

QF

α
, (172)

where Q and F are the same as above, involving χ̂ (2)

components. The term involving ∂2
XV in the evolution

equation for U (168) and the term involving ∂2
XU in that for V

vanish (i) in the temporal case, (ii) in the spatial case, when the
medium is linearly isotropic (β = 1), and (iii) in the spatial
case, if the angle θ between the direction of the modulation
and the crystallographic axes is either 0, π/4, π/2 or 3π/4,
eventually making use of an adequate change of variables.

There exist two completely integrable systems analogous
to the system (168) and (169). Neither presents the terms
involving V 2U ∗ and U 2V ∗ called ‘four wave mixing’. The
integrability of the system (168) and (169) requires thus at least
that D′

3 = 0. This condition can be satisfied if the interaction
is not coherent. Otherwise, it is written, in the temporal case,
as

3χ̂ (3)
xyyx(ω, ω,−ω) = 4

n2
e(0)

χ̂ (2)
xzy(0, ω)χ̂ (2)

zxy(ω,−ω). (173)

One of these integrable systems, solved by Manakov [119],
requires further that B1 = B2 and D1 = D′

2. The first of these
conditions is satisfied in the isotropic spatial case and in the
temporal case. The second one is written, in the temporal case,
as

3
(
χ̂ (3)

xxyy(ω, ω,−ω) + χ̂ (3)
xyxy(ω, ω,−ω) − χ̂ (3)

xxxx(ω, ω,−ω)
)

= 4

(
1

n2
e(2ω)

χ̂(2)
xzy(2ω,−ω)χ̂(2)

zxy(ω, ω)

+
1

n2
e(0)

χ̂ (2)
xzy(0, ω)χ̂ (2)

zxy(ω,−ω)

)
. (174)

Both integrability conditions (173) and (174) represent
an equilibrium between components of the third-order
susceptibility χ(3) and contributions to the cascading χ(2) :
χ(2). However it is rather unlikely that these conditions
are satisfied by some real material. In the spatial case, the
integrability conditions are analogous, but more complicated.
The other integrability case, that of Zakharov and Schulman
[120], requires in addition to other conditions that B1 = −B2,
which could be eventually realized for a spatio-temporal
reduction, but not in the situations considered above.

8.3. The Davey–Stewartson model

The model (165)–(167), which describes the evolution of a
tridimensional light pulse in a crystal with a nonzero quadratic
nonlinear susceptibility χ(2), is a generalization to (3+1)
dimensions and two polarizations of the DS system. We are
looking for the possibility of a single polarization to propagate
in (2+1) dimensions. In the spatial bidimensional case, i.e.
if there is no dependency with respect to the τ variable,
equation (167) is solved straightforwardly and the two
equations (165) and (166) reduce to two coupled two-
dimensional nonlinear Schrödinger-type equations, i.e. to a
generalization of the 2D NLS equation (67), which takes into
account two polarization components.

The spatio-temporal case in (2+1) dimensions corre-
sponds to the propagation of a short pulse in a planar guide.
The model obtained when simply considering one of the two

space variables of the tridimensional model only should give a
correct account of the guided propagation, if the guide thick-
ness is large enough, so that the effect of the guiding on the dis-
persion can be neglected. In this case, the system (165)–(167)
can be reduced to the DS system (68) [121, 122]. However,
the reduction is possible only if the light is polarized linearly,
in a direction fixed with respect to both the direction of the
modulation and the crystallographic axes. In order to specify
this with respect to the 4̄2m symmetry class, let us denote by
� the angle between the direction of the polarization and the
x-axis of the crystal, so that

E
1,x
1 = U = ϕ cos �, E

1,y

1 = V = ϕ sin �, (175)

where ϕ is an amplitude to be determined. The unique
transverse space variable X, which corresponds to the direction
of the modulation, hence to the plane of the guide, must
then be defined either by X = ξ cos � + η sin � or by
X = −ξ sin � + η cos �. The first case corresponds to a
polarization direction parallel to the modulation direction,
thus to the waveguide plane, and the second to a polarization
perpendicular to the modulation. Further, the angle � can
take the values ±π/4 only. When θ = 0 or π/2, the rectified
field � identically vanishes, and the asymptotic model is of
2D NLS-type. Making use of an adequate change of variables,
the obtained system can be put into the reduced form (76), that
I recall here, with a small change in the notations:

ifT + ε1fXX + fYY + ε2f |f |2 + νf ψ = 0, (176)
ψXX + µψYY = |f |2XX . (177)

The variables f,ψ, Y and T are proportional to ϕ,�, τ and ζ ,
respectively.

The DS system (176) and (177) derived this way is
integrable if the conditions (77) are satisfied, i.e. µ = −ε1, ν =
−2ε2. The first of these two conditions writes

αkk′′ =
(

1

v2
− n2

0(0)

c2

)
B. (178)

If we leave aside the factors α and B, which describe a
distortion due to the anisotropy, the condition (178) represents
an equilibrium between the dispersion coefficient kk′′ and
a quantity that measures the difference between the group
velocity v of the wave and that c/no(0) of the solitary wave
emitted through optical rectification. As the coefficient kk′′

does, this quantity measures a dispersion. Equation (178)
represents thus an equilibrium between the dispersion due to
the rectified wave on the one hand and the proper dispersion of
the wave on the other hand. Using the complete symmetry
property of the nonlinear susceptibility tensors [100], and
considering the symmetry classes of crystals 4̄2m and 4̄3m,
the second integrability condition is

3
[
χ̂ (3)

xxxx(ω, ω,−ω) + χ̂ (3)
xxyy(ω, ω,−ω)

+χ̂ (3)
xyxy(ω, ω,−ω) + χ̂ (3)

xyyx(ω, ω,−ω)
]

= 4

n2
e(0)

(
χ̂ (2)

xzy(0, ω)
)2

+
4

n2
e(2ω)

(
χ̂ (2)

xzy(2ω,−ω)
)2

. (179)

It expresses an equilibrium between the third-order Kerr effect
and that induced by the cascaded second-order nonlinearities.
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The existence of localized solutions depends on the sign
conditions. The lump solitons exist when ε1 and ε2 have
opposite signs. Taking the explicit expressions of these
coefficients into account, and using the complete symmetry
property, it is found that −ε1ε2 is a square. The lump solitons
thus exist in all integrable situations. The generalization of
this kind of solution to non-integrable situations remains to
be studied. Localized solitons, exponentially decreasing, exist
for DS I, i.e. if ε1 = +1. This corresponds to the case of an
anomalous dispersion: k′′ < 0. Using the condition (178),
this implies that the group velocity of the pulse must be higher
than the velocity of the solitary long waves,

v >
c

no(0)
. (180)

The system DS I is of elliptic–hyperbolic type. The first
equation is elliptic for an anomalous dispersion. The second
one is hyperbolic when the condition (180) is satisfied. We
can obtain numerical values from published experimental data
[123]. For KDP, the velocities take the values

v � 1.95 × 108 m s−1 and
c

n(0)
� 0.65 × 108 m s−1.

(181)

For lithium niobate, we obtain

v � 1.2 × 108 m s−1 and
c

n(0)
� 0.5 × 108 m s−1.

(182)

For these materials, the second equation of the DS model
is thus hyperbolic. This remains true if the integrability
conditions (178) and (179) are not satisfied. The interaction
between the wave packet and solitary long waves described by
the DS system can be resonant, if an adequate matching of the
wave velocities is satisfied. It then can lead to the splitting up
of the wave packet into two or four parts; it can also transform
a focusing situation into a defocusing one and vice versa
[121, 124].

8.4. Davey–Stewartson model for ferromagnets

The (3+1)-dimensional evolution of an electromagnetic wave
packet in a ferromagnetic medium, taking into account
dispersion, diffraction and nonlinearity, is also described by
a DS-type system. In the general case, two auxiliary fields
describing the two propagation modes of solitary waves must
be taken into account. However, if the propagation direction
is parallel to the static field, the KdV-type waves only are
involved [49]. If, further, the damping is neglected, the solitary
wave field is assumed to vanish at infinity, and the problem is
restricted to two variables; the evolution of the pulse shape is
governed by the DS system (176) and (177) where T ,X, Y ,
are slow variables proportional to t, y and x −vt , respectively,
f is the amplitude of the fast oscillating pulse and ψ that of
the solitary long wave. The properties of the system DS (176)
and (177), the general non-integrable case included, depend
mainly on the sign of ε1 and µ [125]. The following classes

elliptic-hyperbolic
focusing

elliptic-hyperbolic
defocusing

hyperbolic-elliptic

elliptic-elliptic
focusing

PA

N

PO

k /m

ν = ω/m

α

α+1

ν0

0

Figure 23. Plot of the dispersion relation of electromagnetic waves
in ferromagnets, showing on each branch the class of the DS-type
model which governs the transverse evolution of the wave packet.
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Figure 24. Shape of the emitted solitary wave ψ , described by the
elliptic–hyperbolic DS system for waves with negative helicity (N in
figure 23). The pulse is located close to the centre of the figure and
propagates towards the upper right edge.

are distinguished:

(ε1, sgn(µ)) Type
(1, 1) Elliptic–elliptic

(1,−1) Elliptic–hyperbolic
(−1, 1) Hyperbolic–elliptic

(−1,−1) Hyperbolic–hyperbolic

The physical situations can be classified according to these
criterions; the result is summarized in figure 23. Equation
(177) is elliptic when the velocity of the solitary waves is
greater than the group velocity of the pulse. It is, in the frame
of the approximation of nonlinear geometrical optics type
discussed in section 6.5, the situation where equation (135)
is a Poisson equation. The interaction with the solitary waves
does not modify qualitatively the pulse behaviour, with respect
to a (2+1)-dimensional NLS-type model. If in contrast the fast
oscillating wave travels faster than the solitary waves, equation
(177) is hyperbolic, µ = −s2. Then, there is a solitary
wave emission concentrated in two preferential directions,
as shown in figure 24. This presents a strong analogy with
the results of the long-wave analysis presented in section 6.5.
If there is no incident solitary wave, as in the elliptic case, the
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Figure 25. Elliptic–hyperbolic DS model for the wave with negative
helicity (N in figure 23): splitting of a single pulse into two. Contour
plot of both the high-frequency pulse and the long waves interacting
together. The oblique lines forming a large cross shape represent the
long waves; the pulse is split into two roughly elliptic parts.
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Figure 26. Schema of the interaction between solitary waves and a
fast oscillating wave packet described by the elliptic–hyperbolic DS
model. ψ1 and ψ2 are the incident solitary waves, with velocities �V1

and �V2, and f the wave packet envelope, with the group velocity �V .

pulse behaviour is qualitatively the same as if no interaction
occurs. In contrast, in the presence of adequately matched
incident solitary waves, remarkable effects can be observed:
the pulse can be split into several parts, cf figure 25, the
dispersion and the diffraction can be stopped even if self-
phase modulation was defocusing or, conversely, the pulse
can be stabilized and the collapse avoided, despite the fact that
the self-phase modulation alone would have led necessarily to
it [126, 127] (see the next section). The resonance condition
is described in figure 26. The two incident solitary waves are
line solitons, travelling with velocities �V1 and �V2. The tips of
velocity vectors �V1 and �V2 lie on the circle whose diameter
goes from the origin to the tip of the vector �V , the velocity of
the optical pulse. Therefore, in the frame moving at the group
velocity �V of the optical pulse, the corresponding relative
velocities �V ′

1 and �V ′
2 are perpendicular to �V1 and �V2, and hence

parallel to the corresponding characteristic coordinates X̃ and
Ỹ , so that the plane waves are stationary in this frame [49].

This way, the duration of the interaction is very long, and it
can be efficient even with a weak nonlinear effect. That is why
these solitary waves, whose amplitude remains very small with
regard to that of the pulse since they are terms of order ε2, can
have an important effect on it.

8.5. Spatio-temporal optical pulse control using microwaves

It is well known that optical solitons in Kerr media are unstable
in more than (1+1) dimensions. Saturating Kerr nonlinearities
or cascaded second-order ones have been considered to
stabilize multi-dimensional pulses, an issue which is very
important for applications in optical telecommunications and
integrated optics. Although many advances have been made
(see the review in [128]), the experimental realization of
stable spatio-temporal solitons is still a challenge. The
interaction with microwaves described by the DS model offers
an alternative way of producing such structures and shows
that they are robust enough, so that they are promising for
experiment and applications.

As seen above, dromion formation requires nonzero
boundary values at infinity for the auxiliary field, which
describes the rectified field, and this mathematical feature
can been interpreted as an interaction between the pulse and
solitary waves, whose length is comparable to the size of the
pulse. One condition is that the DS system is of elliptic–
hyperbolic type, i.e. that the solitary waves travel slower than
the pulse. We have seen that this is the case in KDP and
lithium niobate, as typical examples. Thus, pulse control
through the solitary waves should be possible [124]. However,
dromion formation requires a solitary wave with a single
oscillation, which is even not symmetric when the sign of
the electric field is changed. Since it is quite difficult to be
realized in the microwave range, the interaction of a (2+1)-
dimensional optical pulse with plane waves at microwave
frequency has been considered [127]. This situation is related
to the formation of solitons in periodic potentials [129, 130].

An efficient interaction requires a velocity matching, as
shown in figure 26.

We assume that the second equation (177) in the DS
system is hyperbolic, i.e. that the speed of the microwaves
in the medium is smaller than the speed of light and that
the self-phase modulation is focusing both spatially and
temporally. As written above, the interaction can yield a
soliton-type propagation, at input powers below the threshold
for self-focusing. We show below that this stabilization can
be obtained using sinusoidal input microwaves, instead of
one-hump solitary waves, which renders the phenomenon
achievable experimentally.

The DS system (176) and (177) is solved numerically
using the scheme given in [131]. It uses the characteristic
coordinates of the hyperbolic differential operator of equation
(177): X̃ = Y − sX and Ỹ = Y + sX. We consider a given
initial condition ϕ(T = 0, X̃, Ỹ ) = ϕ0(X̃, Ỹ ) and boundary
data

ψ1(X̃, T ) = lim
Ỹ−→−∞

ψ(X̃, Ỹ , T ), (183)

ψ2(Ỹ , T ) = lim
X̃−→−∞

ψ(X̃, Ỹ , T ). (184)
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Figure 27. Stabilization of a short localized pulse due to the
resonant interaction with microwaves: density plot showing the
pulse profile in the direction X̃ = Ỹ , i.e. Y, against the propagation
parameter T. Yellow lines indicate the pulse diffraction-dispersion in
the absence of input microwaves.

ψ1 and ψ2 can give account of the two incident plane
waves, propagating in such a direction that the interaction is
‘resonant’. We consider sinusoidal waves with amplitudes
A1, A2, wave numbers kX̃, kỸ and velocities VX̃, VỸ ,
respectively. The initial input for the light pulse is a
Gaussian. For certain values of the parameters, we observe
the stabilization, as shown in figure 27.

The question of the robustness of the obtained ‘driven
soliton’ when the input parameters are changed is discussed by
evaluating the pulse radius after a given propagation distance
T, when the parameters are varied.

The evolution depends on the phase of the microwave:
stabilization occurs when the pulse is located at the zeros of
the microwaves, while defocusing occurs when it is located at
the maxima of amplitude. But the range in which stabilization
occurs is very wide, more than a half period. A rather large
velocity mismatch, up to VX̃, VỸ � 4 in normalized units, does
not prevent stabilization. The pulse is driven at the velocity
of the microwave pattern, as shown in figure 28. The range
of the wave numbers kX̃, kỸ of the microwaves, of the initial
pulse width and length rX̃ and rỸ , of the initial pulse amplitude
Aϕ , of the parameters µ and ν which control dispersion and
nonlinearities, for which the stability is obtained, is large
enough to ensure the robustness of the pulse [127]. This
will render possible its experimental realization, and opens
the door to applications.

9. Other applications

Applications of the reductive perturbation method are
numerous, and we do not pretend to give here an exhaustive
list. However, we can mention a few important issues.

9.1. Water waves

The water wave theory has played an essential role in the
development of both the soliton theory and the reductive
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Figure 28. Evolution of the spatial profile of the pulse during the
propagation, for a velocity mismatch VX̃ = 4, VỸ = 0. The white
lines show the displacement of the input microwaves. Other
parameters are as in figure 27.

perturbation method. Water waves have been already cited
in many places throughout this tutorial.

First of all, the KdV soliton, with the pioneer works of
Russell [1], Boussinesq [3], Korteweg and de Vries [4], is
a water wave. More precisely, it is a short solitary wave in
shallow water. As is known, KdV is integrable by means
of the IST: the non-conservation of the Fourier modes and the
conservation of the IST ones have been verified experimentally
[132]. Envelope solitons are also concerned: the modulation
instability, which corresponds to the evolution of a slowly
modulated continuous wave into a train of solitons, was first
found in the frame of water waves [79]; the DS system was
originally derived by Davey and Stewartson in the same frame
[46]. A review of integrable models in water waves can be
found in [133].

Alternative models for water waves have been given,
among which is the so-called BBM (Benjamin, Bona,
Mahony) equation [134]. It is a kind of KdV, in which one of
the space derivatives in the dispersion term has been replaced
by a time derivative. The derivation is perturbative but does
not follow exactly the multiple scale scheme [135]. It has been
shown that both models are equivalent at large times [136].

Waves at the interface separating two streams of
immiscible inviscid fluids in relative motion (Kelvin–
Helmholtz instability) have been described by means of a sine-
Gordon equation [137]. (2+1) dimensional KdV and Burgers
equations describing wave propagation in a fluid heated from
below have been derived [139]. The surface tension can be
taken into account, yielding the so-called Bénard–Marangoni
system: asymptotic models of the same long-wave type have
been derived [138]. Through the derivation of an envelope
equation for the oscillating solutions to KdV, it has been shown
that no Benjamin–Feir instability occurs in this system, except
at small Bond numbers [140].

The short-wave asymptotic dynamics has also been
studied in water waves [112]. This approach has been applied
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to the Bénard system [141]; it has allowed surface wind to be
taken into account [142] and to describe the wave profile in
deep water [143].

9.2. Dark solitons

Dark solitons are dips in the envelope of a continuous
monochromatic wave, which are stable due to the joint effect of
dispersion and nonlinearity. An explicit dark-soliton solution
to the NLS equation has been given [144], and the phenomenon
has been observed in various domains of physics.

An alternative way of describing dark solitons is obtained
by means of the reductive perturbation method. The wave
behaviour is described by some envelope equation, typically
of NLS type, and the continuous wave is some solution of
constant amplitude to this equation. One seeks a solitary wave
perturbation of this constant envelope, which leads to some
KdV-type model. Then, the soliton of KdV describes a dip in
the envelope, which is the dark soliton. This approach allows
us to account for dark solitons in non-integrable NLS-type
equations. The third-order dispersion has been included, in
(1+1) [145] and (2+1) dimensions [146]; in the latter case a
KP model is derived. Nonlinearities other than the cubic Kerr
one have been investigated [147, 148]. By means of a KdV
Burgers’ asymptotic model, it has been shown that the effect
of Raman scattering results in a decay of the dark soliton [149,
150]. Introducing a cylindrical symmetry, ring dark solitons
have been predicted [151]; they were experimentally obtained
thereafter [152].

If the sign of the KdV soliton is inverted, it represents
some short pulse propagating on the top of the continuous
wave, which is called an anti-dark soliton [146]. Interactions
between dark and anti-dark solitons have been studied
[153, 154].

9.3. Bose–Einstein condensates

Bose–Einstein condensates (BECs) also obey a NLS equation,
often referred to as the Gross–Pitaevskii equation. The NLS
equation does not arise in this context as the result of the slowly
varying envelope approximation (which is fundamentally the
perturbative reduction method, even if it is not explicit), as
in nonlinear optics or water waves. It is the Schrödinger
equation of quantum mechanics, with an extra cubic term,
which accounts for the interaction between two atoms [155].

The derivation of dark soliton can be performed in such
a system as described in the previous section [156]. Their
interactions have been studied [157]. In two dimensions, dark
lumps have been predicted by means of a KP equation [158].
A modulated continuous wave may also propagate on the BEC.
A DS model has been derived in this case, showing dromion
propagation on the condensate [159].

Under certain conditions, corresponding in particular to
low density, the inter-atomic coupling may be stronger. The
cubic nonlinear term is then replaced by a quintic one in the
model equation [160]. Dark solitons have also been obtained
in this case by means of the reductive perturbation method
[161, 162].

9.4. Wave stability

In some situations, the stability of a wave train or pulse can be
investigated by means of the reductive perturbation method.
The aim of Kadomtsev and Petviashvili when deriving their
equation was to study the stability of the KdV soliton against
transverse perturbations [56]. The result was that stability
depends on the sign of the coefficients of the KP equation. The
stability analysis itself involves the introduction of further slow
variables [7, 163]. It has been generalized to other situations,
e.g. to the transverse stability of long [85] and short [164]
electromagnetic solitons in ferromagnetic media.

A second example of application of the method to the
study of instabilities is the case of the so-called modulational
or Benjamin–Feir instability. It was first evidenced in water
waves [79]; thereafter it was shown that it occurs in the general
NLS model [165]. Hence, the modulational instability for a
continuous wave may be investigated through the derivation
of a NLS equation by means of the reductive perturbation
method. The knowledge of the coefficients of the equation
allows a straightforward conclusion. This approach has been
applied to waves in ferromagnetic media [77], the Bénard–
Marangoni problem [140] and short water waves [167]. This
instability analysis has been generalized to non-conservative
systems and is widely used in this frame. However this falls
outside the scope of this tutorial.

10. Conclusion

The above paragraphs would have convinced the reader that
reductive perturbation is a very powerful and efficient method
of deriving relevant models in the study of nonlinear wave
propagation, whatever the particular physical situation. The
method can be further developed to account for different types
of problems, mainly in three directions. The first is the
inclusion of additional assumptions on the magnitude of some
coefficients. A very simple example is given by the weak
damping approximation seen in sections 6.2 and 7.3. The
second is the short-wave approximation, an example of which
has been seen in section 7.4. It is a growing field, which would
deserve a long discussion by itself. The third is the accounting
for waveguide conditions in the perturbative scheme. The
first attempt in this direction concerned magnetostatic waves
in ferromagnetic films [166]. The rigorous and accurate
computation of the coefficients of a NLS equation for spatial
solitons in a planar optical waveguide has allowed us to explain
a polarization switching which was observed experimentally
[168]. Recently, solitons in cylindrical magnetic nanowires
have been described [169]. These development are very
promising for both fundamental and applicative points of view.
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J. de Mathématiques Pures et Appliquées Sr. II
17 55–108

[4] Korteweg D J and de Vries G 1895 On the change of form of
long waves advancing in a rectangular canal and on a new
type of long stationary waves Phil. Mag. 5th series 39
422–43

[5] Gardner CS, Greene J M, Kruskal M D and Miura R M 1967
Method for solving the Korteweg–de Vries equation Phys.
Rev. Lett. 19 1095–7

[6] Dodd R K, Eilbeck J C, Gibbon J D and Morris H C 1982
Solitons and Nonlinear Wave Equations (London:
Academic)

[7] Ablowitz M J and Segur H 1981 Solitons and the Inverse
Scattering Transform (Philadelphia, PA: SIAM)

[8] Lax P D 1968 Integrals of nonlinear equations of evolution
and solitary waves Commun. Pure Appl. Math.
21 467–90

[9] Zakharov V E and Shabat A B 1972 Exact theory of
two-dimensional self-focusing and one-dimensional
self-modulation of waves in nonlinear media Sov.
Phys.—JETP 34 62–9

[10] Mollenauer L F, Stolen R H and Gordon J P 1980
Experimental observation of picosecond pulse narrowing
and solitons in optical fibers Phys. Rev. Lett. 45 1095–8

[11] Barthelemy A, Maneuf S and Froehly C 1985 Soliton
propagation and self-confinement of laser-beams by Kerr
optical non-linearity Opt. Commun. 55 201–6

[12] Zakharov V E and Kuznetsov E A 1986 Multi-scale
expansions in the theory of systems integrable by the
inverse scattering transform Physica D 18 455–63

[13] Gardner C S and Morikawa G K 1960 Similarity in the
asymptotic behaviour of collision free hydromagnetic
wave and water waves, New York University Report
NYU-9082 Courant Institute of Mathematical Sciences
(unpublished)

[14] Washimi H and Taniuti T 1966 Propagation of ion acoustic
solitary waves of small amplitude Phys. Rev. Lett.
17 996–8

[15] Taniuti T and Wei C-C 1968 Reductive perturbation method
in nonlinear wave propagation I J. Phys. Soc. Japan
24 941–6

[16] Su C H and Gardner C S 1969 Korteweg–de Vries equation
and generalizations: III. Derivation of the Korteweg–
de Vries equation and Burgers equation J. Math. Phys.
10 536–9

[17] Taniuti T and Washimi H 1968 Self-trapping and instability
of hydromagnetic waves along the magnetic field in a cold
plasma Phys. Rev. Lett. 21 209–12

[18] Nakata I 1991 Weak nonlinear electromagnetic waves in a
ferromagnet propagating parallel to an external field
J. Phys. Soc. Japan 60 3976–7

[19] Taniuti T and Yajima N 1969 Perturbation method for a
nonlinear wave modulation I J. Math. Phys. 10 1369–72

[20] Taniuti T and Yajima N 1973 Perturbation method for a
nonlinear wave modulation III J. Math. Phys. 14 1389–97

[21] Hunter J K and Keller J B 1983 Weakly nonlinear high
frequency waves Commun. Pure Appl. Math. 36 547–69

[22] Joly J L, Métivier G and Rauch J 1993 Resonant one
dimensional nonlinear geometric optics J. Funct. Anal.
114 106–231

[23] Donnat P 1994 Quelques contributions mathématiques en
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