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We analyze complex spatiotemporal semidiscrete solitons in a model of a set of nonlinear optical fibers
which form a square lattice in the cross section. The medium was recently realized as a set of parallel
waveguides written in fused silica. The model also applies to a self-attracting Bose-Einstein condensate trapped
in a very strong quasi-two-dimensional optical lattice. By means of the variational approximation (VA) and

using numerical methods, we construct several species of the semidiscrete solitons, including vortices of
rhombus (alias cross) and square types, with vorticity S=1 and 2, and quadrupoles. The VA is developed for
narrow cross vortices with S=1 and quadrupoles, which turn out to be the most stable species. Two finite
stability intervals are also found for the square-shaped vortices with S=1, while all the vortices with §=2 are
unstable. For the unstable solitons, several scenarios of the instability development are identified, such as

fusion of the entire complex into a single fundamental soliton, or splitting into coherent soliton pairs.

DOI: 10.1103/PhysRevA.77.063804

I. INTRODUCTION

Experimental and theoretical studies of spatial solitons in
discrete and quasidiscrete media represent an essential part
of the current developments in nonlinear optics. A paradig-
matic model of such media is provided by the discrete non-
linear Schrodinger (DNLS) equation [1]. A realization of the
one-dimensional (1D) DNLS model with the cubic (Kerr)
onsite nonlinearity in arrays of optical waveguides was pre-
dicted in Ref. [2]. This prediction was implemented in an
array of parallel semiconductor waveguides built on a com-
mon substrate, and in arrays of optical fibers [3]. In addition
to the permanent structures, quasidiscrete multicore
waveguiding systems can be also be created in a virtual
form, as photonic lattices in photorefractive crystals [4] (in
that case, the nonlinearity is saturable, rather than cubic).
The latter technique made it possible to create two-
dimensional (2D) discrete solitons [5], vortex solitons in the
same setting [6] (localized lattice states with vorticity, alias
“spin,” S=1 were predicted in Ref. [7], and higher-order vor-
tices, with §> 1, and multipole solitons were studied in Ref.
[8]), lattice solitons in the second band gap [9], stable neck-
lace patterns [10], and other structures. Recently, the creation
of 2D spatial solitons was reported [11] in a bundle of fiber-
like waveguides (of transverse size 5 X 5), permanently writ-
ten in bulk silica by means of a technique using femtosecond
laser pulses shone onto the bulk sample in the perpendicular
direction [12]. Another medium which may serve as a carrier
for quasidiscrete 2D solitons are photonic-crystal fibers; in
particular, spatial vortex solitons were predicted in them
[13].

Also investigated, theoretically and experimentally, were
various nonstationary effects (chiefly, in 1D arrays), such as
the mobility [14,15] and collisions of discrete solitons
[15,16], and onset of the spatiotemporal collapse in an array
of self-focusing waveguides [17]. In addition to the optical
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settings, it has also been demonstrated that the DNLS equa-
tion with the cubic nonlinearity is an adequate model for the
Bose-Einstein condensate (BEC) trapped in a deep optical
lattice, which effectively splits the condensate into a set of
“droplets” captured in local potential wells and coupled lin-
early by tunneling of atoms [18]. Still another physical real-
ization of this model is offered by crystals built of micro-
scopic cavities trapping photons or polaritons [19].

A majority of the above-mentioned works were dealing
with the spatial-domain dynamics in 1D or 2D arrays. In-
deed, photonic lattices in photorefractive crystals do not al-
low one to study the temporal dynamics along the direction
of the propagation of the probe beam, as the response time of
the medium is very large. On the other hand, a system built
as a planar (1D) set of parallel optical fibers with the intrinsic
Kerr nonlinearity suggests a possibility to consider an inter-
play of the continuous temporal dynamics along the fibers’
axes and discrete evolution in the transverse direction. In that
context, spatiotemporal semidiscrete solitons (“light bullets™)
[20], self-compression of pulses under the action of the qua-
sicollapse [21], steering of the pulses [22], and various as-
pects of the modulational instability [23] were analyzed
theoretically. Spatiotemporal optical solitons [24] in models
of waveguiding arrays with the quadratic (rather than Kerr)
nonlinearity were studied too [25]. Recently, semidiscrete
spatiotemporal solitons were considered in models of wave-
guide arrays with an edge (surface) [26], and with an inter-
face between two different arrays [27]. In the latter case,
solitons of a combined staggered-unstaggered type have been
found (in Ref. [28], evidence was given for the existence of
such hybrid modes, in the form of discrete spatial solitons).
Spatiotemporal  light localization in truncated two-
dimensional photonic lattices was considered also [29].

The availability of bundled (two-dimensional) arrays of
long fiberlike waveguides written in fused silica [11,12] sug-
gests a possibility to consider 3D spatiotemporal solitons,
continuous along the axis of the bundle, and discrete in the
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two transverse directions. The same solutions should apply
to the description of matter-wave solitons in a self-attractive
BEC trapped in a quasi-2D optical lattice [30], in the limit
case of a very strong lattice. The objective of the present
work is to study solitons of this type with intrinsic vorticity,
and also solitons of the quadrupole type, which are more
interesting than plain fundamental solitons. It is relevant to
mention that vortex solitons in a continuum counterpart of
this model, based on the three-dimensional (3D) NLS equa-
tion with a 2D periodic potential, were recently investigated
in Ref. [31], where families of stable localized states with
vorticity S=1 and 2 were found, by means of the variational
approximation (VA) and numerical methods. As concerns the
full DNLS equation in three dimensions, various families of
vortex-soliton states in it were reported in Ref. [32].

The paper is organized as follows. The model and the VA
for some types of the semidiscrete vortex and quadrupole
solitons supported by the model are formulated in Sec. II. In
Sec. III, numerical results are reported for vortices of the
“rhombus” (alias “cross”) type with S=1 (they contain an
empty site at the center). These solitons are stable if they are
sufficiently narrow, i.e., if the corresponding propagation
constant, u, is large enough; in that case, their shape is ac-
curately predicted by the VA. Numerical results for vortex
solitons of another, “square” type (with the center set be-
tween the sites, hence there is no empty site in the middle)
are presented in Sec. IV. Unlike their cross-shaped counter-
parts, these vortical solitons are stable in two finite intervals
of u. Section V is dealing with vortices of both types
(rhombus- and square-shaped) with =2, which are found to
be always unstable, but, in some cases, the development of
their instability may lead to interesting effects. Finally, in
Sec. VI we consider quadrupole solitons, which carry zero
vorticity, but feature a nontrivial intrinsic structure. Unlike
the unstable vortices with S=2, the quadrupoles are defi-
nitely stable for large w, and even when they are unstable
(typically, merging into a single fundamental soliton, or split-
ting into two pairs of coherently coupled solitons), they fea-
ture very slow development of the instability, i.e., the qua-
drupoles appear to be remarkably robust objects. The paper
is concluded by Sec. VI.

II. FORMULATIONS
A. Model

The system of evolution equations for local amplitudes of
the electromagnetic waves in the bundle of fiber waveguides
with the square-grid cross section, u,,,(7), are obtained as a
straightforward generalization of the respective model for a
planar fiber array [20-23],

u 1 Pu

Y%m.n

0z

m,n

2
213 9P + |umn| Up.n
+ C(um+1,n + Up—1.n + Uy n+1 + Upyn—-1— 4um,n) =0.

(1)

Here (m,n) are discrete coordinates of the core belonging to
the array, C>0 is a real coupling constant, that may be
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scaled to be +1 (in the bundled array of waveguides written
in bulk silica, the corresponding coupling length, ~1/C,
may be on the order of several centimeters [11,12]), continu-
ous variable 7 is the usual reduced time and S the group-
velocity-dispersion (GVD) coefficient [33]. We assume the
anomalous GVD, B<0 (otherwise, solitons cannot exist in
the temporal direction), and normalize it by fixing B=-1.
Thus, the scaled equations become

du 1 (9214,,,’”

Y%m,n

9z +2 (97_2 +|um,n|2um,n

+ (um+1,n + um—l,n + um,n+1 + um,n—l - 4um,n) = 0 (2)

BEC loaded into a very strong quasi-2D optical lattice is
described by a system of linearly coupled Gross-Pitaevskii
equations for the mean-field wave functions of condensates
trapped in individual “potential tubes” induced by the lattice.
As follows from the analysis presented in Ref. [18], in the
simplest approximation (for sufficiently low atomic density)
the coupled system is tantamount, in the normalized form, to
Eq. (2), with z replaced by time, and 7 replaced by the lon-
gitudinal coordinate.

Families of stationary solutions to Eq. (2), parametrized
by propagation constant wu, are looked for as u,,,(z,7)
=e'*U,, (1), with functions U,,, obeying a system of lin-
early coupled ordinary differential equations,

1 dzUm,n 2
Ed—’fz + |Um,n| Um,n + (Um+l,n + Um—l,n + Um,n+l + Um,n—l)
=@+ U, 3)

B. Basic types of vortex solitons

The definition of the vortex requires the phase of complex
field U,,, to change by 27rS, with §=1,2,3,..., as a result of
a round trip around the center of the vortex. In the experi-
ment, the vorticity may be imparted to the optical soliton by
passing a broad (but sufficiently short, in the temporal direc-
tion) laser beam, which is coupled into the fiber bundle,
through a properly designed phase plate [34]. In the applica-
tion to the BEC, the vorticity may be transferred to the con-
densate from a laser beam, as was predicted, in various
forms, theoretically [35] and demonstrated experimentally
[36].

For continuous-wave (cw, i.e., 7-independent) solutions,
Eq. (3) reduce to algebraic equations,

|Um,n|2Um,n + (Um+1,n + Um—l,n + Um,n+1 + Um,n—l)
= (4 + M) Um,n' (4)

Fundamental localized vortex solutions to Eq. (4) (with S
=1) were found in Ref. [7]. It was concluded that there is a
critical value P, of the total power, P=Em,n|Um,n 2, and a
respective critical wave number, . =~ 2.46, such that the cw
vortices with P> P, and > u,, are stable as solutions to
Egs. (1) with =0, and unstable otherwise. Higher-order cw
vortices with S=2 are completely unstable, but ones with S
=3, as well as quadrupoles, have their stability regions [8].

Following the analysis of the localized states in the 2D
lattice [8], and of similar solutions in the continuum coun-
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terpart of the model (the 2D NLS equation with a checker-
board periodic potential) [37], we expect that the semidis-
crete vortex solitons may be of two different types, viz.,
“rhombuses™ (alias “crosses”) and “squares.” The former one
with S=1 is based on the frame (“skeleton”) composed of
four lattice sites, with coordinates

(m’n):(190)9(091)9(_ 1’0)’(0’_ l)s (5)

while the central site, at (m,n)=(0,0), remains empty. The
respective cross-vortex solutions to Eq. (3) can be found
starting, in the anticontinuum limit [which corresponds to
C—0in Eq. (1)], with an initial guess which emulates frame

(5),
(U(l),(()))O == (U(—)i?O)O = Usol(T),
(U)o == (WUE2)o=iUsy(7), (6)
Ul(7) = psech(nr),  77=2(4+ p), (7)
and (U

mn)o=0 at all other sites, including (0,0). The choice
of the 7 dependence in Eq. (7) corresponds to the ordinary
temporal soliton in the single core, with amplitude 7 corre-
sponding to effective propagation constant 4+ u, in the ab-
sence of the linear coupling between adjacent cores.

The difference of the “square”-shaped vortices is that they
do not include an empty site at the center, placing the “vir-
tual” pivot of the vortex between lattice sites. Accordingly,
the frame for the square vortex with S=1 is composed of
four sites with coordinates

(m,n) =(0,0),(1,0),(1,1),(0,1), (8)

cf. Eq. (5). The simplest initial guess for constructing the
respective semidiscrete square-vortex soliton is based on the
following set of nonzero elements:

(U(()ﬁ(?))() == (U(I??))O = Usol(T)s

(Ué??))o == (U(l?g))o = iUsol(T)’ (9)
with the same U, (7) as in Eq. (7).

C. Variational approximation

To develop the VA for stationary solutions, we note that
Eq. (3) can be derived from the following Lagrangian:

+00 4o
L= 2 j dTEm,n(T)7
mn=—0 J —0

2

1|dU, 1
Emn:__ — +_|Umn|4
’ 2| dt 2 ’
+{Up yUppoy + Uy ) +cc} = (4 + @)U, L)%

(10)

where c.c. and asterisk both stand for the complex conjuga-
tion. For vortex solitons of the cross or thombus (“X”) type,
with S=1, we adopt the following ansatz, suggested by the
general pattern of the VA developed for 1D discrete solitons
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in Ref. [38], and for fundamental (zero-vorticity) 2D solitons
in Ref. [39]:
a(|m|+|n|)

(W™ _ (m+in)e”

m,n/ ansatz —

cosh(pn) ’ (1
cf. Egs. (6) and (7), where A, a, and 7 are real variational
parameters. The substitution of ansatz (11) in Eq. (10) leads
to a very cumbersome expression, in the general case. How-
ever, it becomes tractable in the limit case of a narrow (com-
pact) vortex soliton, with e << 1, which is the case for stable
vortex solitons, see below,

B 1 2 B?
Lgf? ~ 16—e™* —B(—n+ —(4+ M))(l + 672  —,
7 37 7 67

B=4A%"%, (12)

Actually, expression (12) takes into account contributions
from the lattice sites with |m|+|n|=2. Note that terms ~e™
and e™2% in this effective Lagrangian are small corrections to
terms that do not explicitly contain e, but they should be
kept, otherwise the variation of the Lagrangian in a cannot
be performed.

The variational equations following from Egq. (12),
OLg¢/ OB= 0L/ =L es/ He™*)=0, yield the following re-
sults, for the vortex soliton of the cross or thombus type:

=204+ p), Bx=8(4+u), explax)=2(4+u)

(13)

[note the first equality is tantamount to the usual relation
between the amplitude and propagation constant of the
single-core temporal soliton, cf. Eq. (7)]. The last relation in
Eq. (13) implies that the above assumption, ¢™“<< 1, holds for
pu=1 (the actual stability region for the cross-shaped vorti-
ces is =19, as shown below, hence the stable vortex soli-
tons of this type are definitely narrow ones).

In the same approximation, e~*<< 1, the total energy of the
vortex soliton is

%0

400
> d7U,, (7> =~ 8\2(4 + ).

mn=—o0 J —0

E

(14)

Note that expression (14) satisfies the Vakhitov-Kolokolov
stability criterion, dE/du>0 [40]. For soliton solutions of
equations of the NLS type with self-focusing nonlinearity,
this condition is necessary, but not sufficient, for the stability,
as it may guarantee the absence of unstable real eigenvalues
in the spectrum of small perturbations around the soliton, but
it cannot detect complex eigenvalues, that may account for
an oscillatory instability [41]. In particular, vortex solitons
are frequently subject to the instability of the latter type,
which tends to split the vortex into a set of fundamental
(zero-vorticity) pulses [24].

It is relevant to compare the above variational solution to
its cw counterpart for the localized cross-shaped vortex (with
S=1) known in the ordinary 2D-lattice model, without the 7
dependence [1]. To this end, one may take Lagrangian (12)
in the limit of #—0,
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(LS ey = lim (nLSY)
7]—>

Bz
~ 16Be™ = 2B(4 + u)(1 + 6e72%) + rE (15)

The respective variational equations, L/ dB=dLg/ e ™)
=0, yield the following results, to be compared with Eqs.

(13):

BY) =6(4+un), expal)= —(4 + ). (16)

Another relatively simple variational ansatz can be de-
vised for a semidiscrete solution in the form of a quadrupole

soliton, which is a structured localized state with zero vor-
ticity [8],

(m?— nZ)e—a(\ml+\n\)

Q 7
U A . 1
( )ansatz ol ( ) ( )

Note that this expression is real, unlike the complex one for
the vortex, see Eq. (11), and it corresponds to the “frame”
coinciding with the one given by Eq. (5) for the cross-vortex
soliton with S=1. Substituting ansatz (17) in Eq. (10), and
again assuming a compact pattern (e™*<1), i.e., constraining
the summation to |m|+|n| =2, we derive the following effec-
tive Lagrangian, cf. Eq. (12):

B 1 2 B?
LY ~16=¢~ (—n+ 4+ ,u))B(l +16e729) + —,
7 377y 67

(18)

where B is the same as above. The variational equations
which follow from this Lagrangian yield the following re-
sults:

16
— @4+,
3( )

(19)

772Q =2(4+u), By=8(4+pu), explag)=

cf. solution (13) for the cross-shaped vortex soliton. Note
that assumption e “<<1 definitely holds for stable quadru-
poles, whose stability region is u=20, see below. In the
lowest approximation, the total energy of the quadrupole
soliton is given by the same expression, Eq. (14), as above.
To compare these results with those for the quadrupole
soliton in the ordinary (cw) 2D lattice, we note that the cor-
responding effective Lagrangian is [cf. Eq. (15)]

(Leff )cw = hm( nL((e(f)t))
Bz
~ 16Be™ = 2B(4 + w)(1 + 16¢72%) + e
The variational equations following from this Lagrangian
yield
B=6(4+p), expad)=14(4+p), (20

cf. Egs. (16) and (19).
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5
(b) -5 0 n 5

FIG. 1. (Color online) An example of a stable vortex soliton of
the cross (alias rhombus) type, which self-traps from initial configu-
ration (11) with w=20 (stable vortex solitons of this type are gen-
erated with u= u =~ 19). The top panel displays the amplitude pro-
file of the lattice fields in the continuous (temporal) direction at the
lattice sites belonging to “frame” (5) (the profile with the largest
amplitude), and in two surrounding layers: At sites with |m|=2,n
=0 and m=0,|n|=2 (the low profile with a slightly larger ampli-
tude), and at sites with |m|=|n|=1 (the low profile with the smaller
amplitude). The lattice distribution of the single-site energy, defined
as per Eq. (21), is shown on the bottom panel by means of the
hue-scale plot.

III. CROSS-VORTEX SOLITONS: NUMERICAL RESULTS

A. Stable vortices

To find numerical solutions corresponding to the semidis-
crete solitons of the cross type, we used ansatz (11) as the
starting point. Coefficients in the ansatz were taken as pre-
dicted by the VA, i.e., as per Egs. (13), the single free pa-
rameter being w. Then, systematic direct simulations of Eqgs.
(2) demonstrate that a stable cross- (rhombus-) shaped (“X”)
vortex soliton self-traps from the initial configuration with
= ,uX)~19 (the numerical analysis was extended up to
u=70), while several distinct modes of instability are ob-
served at u <.

An example of the stable vortex found slightly above the
stability threshold, viz., at u©=20, is displayed in Fig. 1. The
figure includes a set of temporal profiles of the soliton in the
continuum direction, , and a contour plot which

mn
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shows the transverse distribution (on the square grid) of the
single-site energy integrated in the longitudinal direction,

1 (" )
Ena=5 | ltmal @1

—00

Comparison of the VA predictions with the numerical find-
ings demonstrates proximity between them. In particular,
Egs. (11) and (13) with w=20 predict the amplitude of the
main component of the vortex, at sites belonging to “frame”

(5).
AT =V2(4 + ) = 6.93, (22)

and the amplitude in the next layer, at points with |m|=2,n
=0 and |n|=2,m=0, to be

| 2
A = T <02
+

The amplitude predicted by the VA in the layer with |m|
=|n|=11is

(23)

AR =174+ u=1/2\6) = 0.20. (24)

As seen in Fig. 1, these values are indeed very close to their
numerical counterparts, which can be evaluated as A(lxg
~6.89, AS)~0.20, and A{Y~0.28. However, a minor dis-
crepancy is seen in the fact that the numerically found am-
plitudes in the two secondary layers, A%) and A(l)j), are ex-
changed with respect to the VA.

B. Instability scenarios

It is also interesting to consider various modes of the de-
velopment of the instability for the cross vortices at u<<19.
This was done for u=-3.5 [Eqgs. (7) and (13) suggest that
the solutions may exist at w>-4]. First, in interval —3.5
<wp=1.8, the initial pattern suffers straightforward decay
(simultaneous diffraction and dispersion, in the transverse
and longitudinal directions). More interesting dynamics is
observed in the adjacent interval, 1.9=u=4.3, where the
four components forming the initial vortex fuse into a single
stable fundamental soliton, carried, essentially, by the central
core, which was originally empty. A typical example of the
fusion is displayed in Fig. 2 for u=4.3. It is seen that the
fusion is preceded by some spontaneous (instability-induced)
symmetry breaking of the field distribution on the vortex’
frame. The nonconservation of the vorticity, evident in this
case, is quite possible, as the model has no rotational invari-
ance which would be necessary to make the vorticity a dy-
namical invariant.

Another outcome of the instability is observed in interval
5=<u=18 (at larger w, the cross vortex becomes stable, as
said above): The symmetry between the four main original
components of the vortex soliton is broken, and, while a
small amount of energy is still transferred to the central core,
the original pulses do not all vanish; starting from u=5.5,
none of them vanishes. Simultaneously, the pulses separate
in the longitudinal (temporal) direction, and lose mutual
phase coherence, as shown in Figs. 3 and 4 (in fact, two

PHYSICAL REVIEW A 77, 063804 (2008)

(0,1) (1,0)

9 =20
T
FIG. 2. (Color online) Fusion of the original cross-shaped vor-
tex into a nearly single-component fundamental soliton, at u=4.3,
is shown by means of evolution plots for the power, Ltm’,l(7)|2, at
four sites that constitute the initial frame of the vortex, see Eq. (5),
and at the central (originally empty) site.

pulses out of the four do not separate, and change the origi-
nal phase difference between them, /2, to 27). Note that
each pulse staying in the original frame is coupled to its
counterpart in the central core.

IV. SQUARE-SHAPED VORTICES

A. Stable vortices

Vortices based on frame (8) were looked for in the nu-
merical form, starting with the following initial ansatz [cf.
Eq. (11)], which implies that the virtual center of the square-
shaped vortex is set at the point with coordinates (0.5,0.5):

0,1) (1,0)

4

FIG. 3. (Color online) Splitting of an unstable vortex soliton at
=18 into individual pulses, each inducing a component in the
central core.
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15m 4
5
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10 B
ol i -1.0)
<
2
% S5m q
0,-1)
0
©.,1)
sl (1,0) |

FIG. 4. (Color online) Evolution of the phases at the center of
the individual components of the lattice fields shown in Fig. 3.

1y, (7,0) = \2[(m = 0.5) + i(n - 0.5)]

—a(lm— —0.5]— 7
X e a(lm=0.5|+n—-0.5| l)—. 25
cosh(77) @5)

Here we again take 7=v2(4+ ) and a=In[2(4+ w)], cf. Egs.
(13). The simulations were performed in the range of -3
= ©=300. Unlike the cross- (rthombus-) shaped vortex,
which was found to be stable in the semi-infinite region, u
=19, the present species of the vortex soliton features sta-
bility in two disjoint finite intervals, 3=u=<8 and 20=pu
=22 (it is not ruled out that extremely accurate numerical
analysis could reveal additional very narrow stability win-
dows, or subintervals of a very weak instability inside the
stability regions). Examples of stable vortices found in the
two regions are displayed in Figs. 5 and 6.

B. Instability

In cases when the square-shaped vortex solitons are un-
stable, their instability may feature development scenarios
different from those presented above for the vortices of the
cross or thombus type. In particular, at w=-3, the original
vortex quickly transforms itself, via an intermediate neck-
lacelike pattern with four peaks, into a stable structure with
two peaks, as shown in Fig. 7. In this case, an instability of
the phase distribution starts to develop first in the initial vor-
tex. The particular pair of surviving peaks may be selected
by random noise which initiates the onset of the instability.

In interval —1 = u =<2, the square vortices are subject to
straightforward decay. The character of the instability
changes in region 9 < u =< 19: In this case, we chiefly observe
splitting of the peaks in the longitudinal direction, roughly
similar to what was observed above in Fig. 3. In addition,
one of the peaks is often absorbed by the others, therefore in
most cases the final state contains three far separated funda-
mental solitons, each carried, approximately, by a single
core. After passing the second stability island, 20<= u <22, a
similar splitting instability sets in again, and persists up to
very large values of . In this case, the spontaneous symme-
try breaking causes, chiefly, the emergence of four far sepa-
rated fundamental solitons with different amplitudes. How-
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5
(b) -5 0 n 5

FIG. 5. (Color online) An example of a stable vortex soliton of
the square type, which self-traps from initial configuration (25) with
p=>5 (stable vortex solitons of this type are generated in the region
of 3=<u=<8). The panels have the same meaning as in Fig. 1 [the
top panel displays the field profiles at the lattice sites belonging to
“frame” (8), and at the two next layers, corresponding to squared
distances 1.52+0.5?=2.5 and 1.5°+1.52=4.5 from the center of
the vortex].

ever, a single soliton survives at some values of wu (in
particular, at ©=24 and x=300), and in some other cases the
eventual configuration may contain two (at w=23) or three
peaks (the latter happens, for instance, at =25 and u=30).

V. VORTICES WITH CHARGE S=2
A. Rhombuses

The next natural step is to consider solitons with the
double vorticity, S=2. In the case of the rhombus-shaped
pattern (the name of “cross” is not appropriate in this case),
a natural extension of initial ansatz (11) that features the
necessary topological charge is

(m + in)Ze—aHmMn\—Z\ 7

cosh(7t)’

y(1,0) = (26)

m* +n?
once again with 7=12(4+u) and a=In[2(4+u)], as sug-
gested by the exact soliton solution for the single core. This
ansatz features eight distinct peaks.
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FIG. 6. (Color online) The same as in Fig. 5, but for u=20
(stable vortex solitons of this type are found in interval 20<pu
=22).

e

Numerical results for this species of the vortex solitons
were collected in the range of -3 = =200. In compliance
with the known results for higher-order discrete vortices

7 =04
4n n
2 4 6

2 4 6 8 10
z—138

2 4 6

FIG. 7. (Color online) Evolution of the unstable vortex of the
square type with u=-3, presented by means of the plots that show
the distribution of the integrated single-site energy [see Eq. (21)]
across the lattice, cf. bottom panels of Figs. 1, 5, and 6. The discrete
coordinates are shifted here with respect to the notation adopted in

Eq. (8).

z =32

2 4 6 8 10

z—ll

z =162
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FIG. 8. (Color online) Splitting of the unstable rhombus-shaped
vortex with §=2, via an intermediate stage of two quadrupoles, into
a set of four solitons pairs, at u=7.

without the temporal dimension [8], the semidiscrete spa-
tiotemporal vortices with S=2 are never stable. In particular,
they directly decay in the simulations starting with u=<1. At
M=3, two successive instabilities are observed. First, the
eight-peak vortex transforms itself into a pair of copropagat-
ing quadrupoles, which are not phase correlated with each
other (at u =25, the transition to the quadrupoles is smooth,
while at larger u it becomes sharp). However, the emerging
quadrupoles are unstable too. In particular, at =3 and 5,
they further merge into just two fundamental (essentially,
single-core) solitons. At u=7, another outcome is observed:
The quadrupole pair splits into a set of four soliton pairs.
While the pairs separate, each of them keeps zero temporal
distance and zero phase shift between the constituent soli-
tons, see Fig. 8. Further, in the interval of 11=u=?20, the
pattern splits into eight uncorrelated slowly separating fun-
damental solitons.

A surprising outcome of the evolution of the vortex of the
rhombus type with S=2 is observed at u=25: The phase
coherence between the eight constituent solitons is com-
pletely washed out, but their temporal (longitudinal) posi-
tions remain locked, as shown in Fig. 9 (as long as the simu-
lations were run—at least, up to the propagation distance
corresponding to z=29, in the present notation). A possible
explanation to this phenomenon is that, for sufficiently large
M, the constituent solitons become too heavy [their effective
mass is 27=2+2(4+u)], hence the relatively weak linear
interaction between them cannot generate sufficient momen-
tum to initiate the separation between these solitons.

B. Squares

We also considered vortex solitons of the square type with
S=2, which too are built of eight peaks. It has been con-
cluded that this species of the vortex cannot be stable either.
Similar to what was presented in some detail above for the
rhombus-shaped vortices with §=2, their counterparts of the
square type tend, at first, to split into two quadrupoles, which
too turn out to be unstable. Unless the pattern completely
decays (which happens at = 1), the quadrupoles eventually
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FIG. 9. (Color online) Transformation of the unstable rhombus-
shaped vortex with §=2 and u=30 into a set of eight mutually
incoherent solitons, which, however, keep their positions locked
together. The sudden disruption in the initial evolution at z=1.6
signalizes the transformation of the vortex into two quadrupoles,
which is gradually followed by the loss of the coherence between
the individual solitons. A qualitatively similar outcome of the evo-
lution of the unstable vortices of the rhombus type with S=2 is
observed for all u=25.

split into several mutually incoherent separating fundamental
solitons. The final number of the “splinters” varies from 1 to
8. They may have different amplitudes and velocities, and
their trajectories in the (z,7) plane may be different from
straight lines. In particular, at =3 all peaks, except for the
ones located at sites (1,0) and (0,1), are absorbed into these
two peaks, which is followed by their fusion into a single
fundamental soliton at the central site. Further, the number of
the surviving disconnected fundamental solitons is, typically,
two to four for 5= u =11, and six or seven for 15= u=<30,
increasing to the maximum, eight, for 50=< u=<200. How-
ever, only three splinters survive at ©=300. Depending on u,
the peaks may separate (and lose their phase correlations)
slower or faster (for instance, the separation is delayed at
©u=5,7,and 11).

VI. QUADRUPOLES

Although the quadrupole solitons carry no vorticity, they
are akin to the vortices with §=2 [8]. As suggested by varia-
tional ansatz (17) and Egs. (19), we used the following initial
configuration, to explore the dynamics of the quadrupoles:

(mZ _ n2)e—a(\m|+|n\—1)

U,n(1,0) = 7 cosh 7t s (27)

with 7=\2(4+u) and a=In[2(4+ u)], as before. Note that,
being built around frame (5), the quadrupole includes four
main peaks (unlike the S=2 vortices which feature eight
peaks). Numerical data for the quadrupole solitons were col-
lected in the range of -3 <= u=<70.

The most important finding is that, similar to the situation
of the lattice solitons without the longitudinal direction, the
quadrupoles may be stable, while all vortices with §=2, of
either type (thombuses or squares), are completely unstable.
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FIG. 10. (Color online) An example of a stable quadrupole soli-
ton, which self-traps form initial configuration (27) with u=25 (the
quadrupoles are stable for u=20). The panels have the same mean-
ing as in Fig. 1 [the top panel displays the field profiles at the lattice
sites belonging to “frame” (5), and in the next layer, formed by the
sites with |m|=2,n=0 and m=0, |n|=2].

The stability region for the quadrupoles is ,U,Z,ué?)%m
(note that it is quite close to the stability threshold ,ug()
=19 for the cross-shaped vortices with S=1, see above). A
typical example of a stable stationary quadrupole is dis-
played in Fig. 10.

Note that the VA, i.e., Egs. (17) and (19), predict the
following amplitudes of the quadrupole’s component at sites

belonging to the frame and to the next layer, for u=25,

3
AP =\204+p) =762, ASf= ———=~020,
’ TO2N2(4+ )

(28)

cf. Egs. (22) and (23). Values (28) are in a quite reasonable
agreement with the numerical results presented in Fig. 10:
A% ~7.77 and A{Y~0.17.

The dynamics of unstable quadrupole solitons with u
<20 was investigated too. It has been found that the soliton
completely decays at w<<1, while at values of wu close to 1
the quadrupole merges into a single fundamental soliton,
transferring almost all the energy into the central point, see
Fig. 11. Qualitatively, the merger is similar to what was seen
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(0,1) (1,0)

FIG. 11. (Color online) Fusion of the unstable quadrupole into a
single-component fundamental soliton, at u=1, cf. Fig. 2 for the
fusion of the unstable cross-shaped vortex with S=1.

above in Fig. 2 for the unstable cross-shaped vortex, but an
essential difference is that, in the present case, the instability
develops much slower, demonstrating the trend of the quad-
rupole to be a robust object [in fact, the decay of the quad-
rupole at w<<1 (not shown here) is also much slower than
the decay of unstable vortices].

At larger values of w, up to the stability threshold at u
~ 20, the generic instability scenario amounts to splitting of
the quadrupole into two stable or quasistable (see below)
pairs of in-phase fundamental solitons, which maintain zero
separation (in the longitudinal direction) in each pair. An
example of the splitting is displayed in Fig. 12, for u=5. It
may be concluded that the effect is similar to that shown
above in Fig. 3 for the unstable cross or rhombus vortex, but,
as well as in the case of the fusion, the instability develop-

0,1) (1,0)

i

FIG. 12. (Color online) Splitting of the unstable quadrupole into
two stable in-phase soliton pairs, at =5 [cf. the splitting of the
unstable cross- (rthombus-) shaped vortex into pairs, shown in
Fig. 3].
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ment is much slower in the case of the quadrupole. A modi-
fication of this scenario, observed in interval 12=<=u=<19, is
that one of the emerging pairs may eventually split into in-
dividual solitons, after passing quite a long distance (roughly,
2 times that which was necessary for the primary splitting of
the quadrupole into two soliton pairs).

VII. CONCLUSION

The aim of this work is to introduce several species of
complex spatiotemporal solitons in the model describing a
bundled set of nonlinear optical fibers; the medium is actu-
ally available to the experiment, in the form of a set of par-
allel waveguides written in bulk silica [11,12]. The creation
of spatiotemporal solitons in this setting may be possible
under experimental conditions similar to those that allow the
formation of 2D discrete solitons [11], if a pulsed laser beam
is used as a source, with the pulse duration in the femtosec-
ond range. The same model applies to a BEC trapped in a
very strong quasi-2D optical lattice, in the 3D space.

The solitons that were considered in this work are con-
tinuous in the longitudinal (temporal) direction, and repre-
sent discrete structures in the transverse plane. By means of
the VA (variational approximation) and direct numerical
methods, we have studied several families of semidiscrete
solitons, including two species of vortices (crosses or rhom-
buses and squares) with topological charge S=1 and 2, and
quadrupoles. The VA was developed for the cross-shaped
vortices (“X”) with S=1, and for the quadrupoles (“Q”).
These are two soliton species with the biggest stability
regions—they are stable if propagation constant u exceeds a
critical value, which is nearly the same for both species,
Mﬁ‘) ~19 and /.ng) =~ 20, respectively. Generally, the quadru-
pole solitons tend to be very robust objects; in particular,
when they are unstable, the instability develops very slowly.
For the square-shaped vortices with S=1, two finite stability
intervals were found, 3= u =8 and 20= u =22, whereas all
vortices with S=2 are unstable, as in the ordinary DNLS
equation in two dimensions [8]. Note, however, that spa-
tiotemporal vortex solitons with S=2 may be stable in the
continuous counterpart of the present model, i.e., the 3D con-
tinuous NLS equation with the self-focusing nonlinearity and
quasi-2D periodic potential [31] (see also Ref. [42]).

For the unstable soliton species, various scenarios of the
instability development were identified, that include straight-
forward decay, merger of the complex semidiscrete localized
pattern into a single fundamental soliton, or splitting into
several mutually incoherent fundamental solitons, each car-
ried, essentially, by a single core. In some cases, the eventual
state may include stable coherent pairs of in-phase solitons.
In particular, the latter outcome is characteristic to the insta-
bility of quadrupoles.

The model analyzed in the paper can be developed in
various directions. First, one may try to construct spatiotem-
poral semidiscrete vortex solitons with =3, which probably
may be stable. A straightforward extension would be to con-
sider collisions between the spatiotemporal solitons moving
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in the longitudinal direction. It could also be interesting to
consider spatiotemporal solitons, including vortices, in a
model of a twisted fiber bundle. Very recently, discrete 2D
fundamental and vortical solitons were studied in a 2D lattice
model including the twist [43].

PHYSICAL REVIEW A 77, 063804 (2008)
ACKNOWLEDGMENT

One of the authors (B.A.M.) appreciates the hospitality
of Laboratoire POMA at Université d’Angers (Angers,
France).

[1] P. G. Kevrekidis, K. @. Rasmussen, and A. R. Bishop, Int. J.
Mod. Phys. B 15, 2833 (2001).

[2] D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794
(1988).

[3] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and
J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998); D. N.
Christodoulides, F. Lederer, and Y. Silberberg, Nature (Lon-
don) 424, 817 (2003); T. Pertsch, U. Peschel, J. Kobelke, K.
Schuster, H. Bartelt, S. Nolte, A. Tiinnermann, and F. Lederer,
ibid. 93, 053901 (2004).

[4] N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleis-
cher, and M. Segev, Phys. Rev. E 66, 046602 (2002); N. K.
Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer,
O. Cohen, and M. Segev, Phys. Rev. Lett. 91, 213906 (2003);
J. W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela,
B. Freedman, M. Segev, H. Buljan, and N. K. Efremidis, Opt.
Express 13, 1780 (2005).

[5]J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N.
Christodoulides, Nature (London) 422, 147 (2003); J. W.
Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hu-
dock, and D. N. Christodoulides, Phys. Rev. Lett. 92, 123904
(2004).

[6] D. Neshev, T. Alexander, E. Ostrovskaya, Y. S. Kivshar, H.
Martin, I. Makasyuk, and Z. Chen, Phys. Rev. Lett. 92,
123903 (2004); J. W. Fleischer, G. Bartal, O. Cohen, O.
Manela, M. Segev, J. Hudock, and D. N. Christodoulides, ibid.
92, 123904 (2004).

[7] B. A. Malomed and P. G. Kevrekidis, Phys. Rev. E 64, 026601
(2001).

[8] P. G. Kevrekidis, B. A. Malomed, Z. Chen, and D. J. Frantz-
eskakis, Phys. Rev. E 70, 056612 (2004).

[9] O. Manela, O. Cohen, G. Bartal, J. W. Fleischer, and M. Se-
gev, Opt. Lett. 29, 2049 (2004).

[10]J. Yang, I. Makasyuk, P. G. Kevrekidis, H. Martin, B. A. Mal-
omed, D. J. Frantzeskakis, and Z. Chen, Phys. Rev. Lett. 94,
113902 (2005).

[11] A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tiinnermann,
and F. Lederer, Opt. Express 14, 6055 (2006); A. Szameit, T.
Pertsch, F. Dreisow, S. Nolte, A. Tiinnermann, U. Peschel, and
F. Lederer, Phys. Rev. A 75, 053814 (2007).

[12] T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S.
Nolte, and A. Tiinnermann, Opt. Lett. 29, 468 (2004); A.
Szameit, D. Blomer, J. Burghoff, T. Schreiber, T. Pertsch, S.
Nolte, A. Tinnermann, and F. Lederer, Opt. Express 13,
10552 (2005).

[13] P. Xie, Z.-Q. Zhang, and X. Zhang, Phys. Rev. E 67, 026607
(2003); A. Ferrando, M. Zacarés, P. F. de Cordoba, D. Binosi,
and J. A. Monsoriu, Opt. Express 11, 452 (2003); A. Ferrando,
M. Zacarés, P. F. de Cordoba, D. Binosi, and J. A. Monsoriu,
ibid. 12, 817 (2004); A. Ferrando, M. Zacarés, and M. A.

Garcia-March, Phys. Rev. Lett. 95, 043901 (2005).

[14] M. J. Ablowitz, Z. H. Musslimani, and G. Biondini, Phys. Rev.
E 65, 026602 (2002).

[15] L. E. Papacharalampous, P. G. Kevrekidis, B. A. Malomed, and
D. J. Frantzeskakis, Phys. Rev. E 68, 046604 (2003).

[16] J. Meier, G. I. Stegeman, Y. Silberberg, R. Morandotti, and J.
S. Aitchison, Phys. Rev. Lett. 93, 093903 (2004); J. Meier, G.
I. Stegeman, D. N. Christodoulides, R. Morandotti, M. Sorel,
H. Yang, G. Salamo, J. S. Aitchison, and Y. Silberberg, Opt.
Express 13, 1797 (2005); Y. Linzon, Y. Sivan, B. Malomed,
M. Zaezjev, R. Morandotti, and S. Bar-Ad, Phys. Rev. Lett.
97, 193901 (2006).

[17] D. Cheskis, S. Bar-Ad, R. Morandotti, J. S. Aitchison, H. S.
Eisenberg, Y. Silberberg, and D. Ross, Phys. Rev. Lett. 91,
223901 (2003).

[18] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353
(2001); G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and
M. Salerno, Phys. Rev. E 66, 046608 (2002); R. Carretero-
Gonzélez and K. Promislow, Phys. Rev. A 66, 033610 (2002);
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,
A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843
(2001); M. Greiner, O. Mandel, T. Esslinger, T. W. Hénsch,
and I. Bloch, Nature (London) 415, 39 (2002); N. K. Efremi-
dis and D. N. Christodoulides, Phys. Rev. A 67, 063608
(2003); M. A. Porter, R. Carretero-Gonzalez, P. G. Kevrekidis,
and B. A. Malomed, Chaos 15, 015115 (2005).

[19] J. E. Heebner and R. W. Boyd, J. Mod. Opt. 49, 2629 (2002);
P. Chak, J. E. Sipe, and S. Pereira, Opt. Lett. 28, 1966 (2003);
J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. 1. Tartak-
ovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts,
Phys. Rev. B 62, R16247 (2000); P. G. Savvidis and P. G.
Lagoudakis, Semicond. Sci. Technol. 18, S311 (2003).

[20] A. B. Aceves, C. De Angelis, A. M. Rubenchik, and S. K.
Turitsyn, Opt. Lett. 19, 329 (1994); A. V. Buryak and N. N.
Akhmediev, IEEE J. Quantum Electron. 31, 682 (1995).

[21] A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik,
and S. K. Turitsyn, Phys. Rev. Lett. 75, 73 (1995).

[22] A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Le-
derer, S. Trillo, and S. Wabnitz, Phys. Rev. E 53, 1172 (1996);
A. B. Aceves and M. Santagiustina, ibid. 56, 1113 (1997).

[23] A. B. Aceves, C. De Angelis, G. G. Luther, and A. M.
Rubenchik, Opt. Lett. 19, 1186 (1994); E. W. Laedke, K. H.
Spatschek, S. K. Turitsyn, and V. K. Mezentsev, Phys. Rev. E
52,5549 (1995); S. Darmanyan, I. Relke, and F. Lederer, ibid.
55, 7662 (1997); A. B. Aceves, M. Santagiustina, and C. De
Angelis, J. Opt. Soc. Am. B 14, 1807 (1997); 1. Relke, Phys.
Rev. E 57, 6105 (1998); M. Stepi¢, L. HadZievski, and M. M.
Skori¢, ibid. 65, 026604 (2002); A. V. Yulin, D. V. Skryabin,
and A. G. Vladimirov, Opt. Express 14, 12347 (2006).

[24] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, J. Opt.

063804-10



SPATIOTEMPORAL VORTICES IN OPTICAL FIBER BUNDLES

B: Quantum Semiclassical Opt. 7, R53 (2005).

[25] Z. Y. Xu, Y. V. Kartashov, L. C. Crasovan, D. Mihalache, and
L. Torner, Phys. Rev. E 70, 066618 (2004); N. C. Panoiu, R.
M. Osgood, and B. A. Malomed, Opt. Lett. 31, 1097 (2006).

[26] D. Mihalache, D. Mazilu, F. Lederer, and Y. S. Kivshar, Opt.
Express 15, 589 (2007); D. Mihalache, D. Mazilu, Y. S.
Kivshar, and F. Lederer, ibid. 15, 10718 (2007).

[27] D. Mihalache, D. Mazilu, F. Lederer, and Y. S. Kivshar, Opt.
Lett. 32, 2091 (2007).

[28] M. I. Molina and Y. S. Kivshar, Phys. Lett. A 362, 280 (2007).

[29] D. Mihalache, D. Mazilu, F. Lederer, and Y. S. Kivshar, Opt.
Lett. 32, 3173 (2007).

[30] B. B. Baizakov, B. A. Malomed, and M. Salerno, Phys. Rev. A
70, 053613 (2004); D. Mihalache, D. Mazilu, F. Lederer, Y. V.
Kartashov, L.-C. Crasovan, and L. Torner, Phys. Rev. E 70,
055603(R) (2004).

[31] H. Leblond, B. A. Malomed, and D. Mihalache, Phys. Rev. E
76, 026604 (2007).

[32] P. G. Kevrekidis, B. A. Malomed, D. J. Frantzeskakis, and R.
Carretero-Gonzalez, Phys. Rev. Lett. 93, 080403 (2004); R.
Carretero-Gonzalez, P. G. Kevrekidis, B. A. Malomed, and D.
J. Frantzeskakis, ibid. 94, 203901 (2005).

[33] G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego,
1995).

[34] D. V. Petrov, F. Canal, and L. Torner, Opt. Commun. 143, 265
(1997); D. V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P.

PHYSICAL REVIEW A 77, 063804 (2008)

Torres, and C. Cojocaru, Opt. Lett. 23, 1444 (1998).

[35] K. P. Marzlin, W. P. Zhang, and E. M. Wright, Phys. Rev. Lett.
79, 4728 (1997); R. Dum, J. 1. Cirac, M. Lewenstein, and P.
Zoller, ibid. 80, 2972 (1998); L. Dobrek, M. Gajda, M. Le-
wenstein, K. Sengstock, G. Birkl, and W. Ertmer, Phys. Rev. A
60, R3381 (1999).

[36] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Phys. Rev. Lett. 84, 806 (2000); S. Inouye, S. Gupta, T.
Rosenband, A. P. Chikkatur, A. Gorlitz, T. L. Gustavson, A. E.
Leanhardt, D. E. Pritchard, and W. Ketterle, ibid. 87, 080402
(2001); C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and
W. Ketterle, ibid. 87, 210402 (2001).

[37] R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, Phys.
Rev. E 76, 066604 (2007).

[38] B. A. Malomed and M. I. Weinstein, Phys. Lett. A 220, 91
(1996); R. Carretero-Gonzélez, J. D. Talley, C. Chong, and B.
A. Malomed, Physica D 216, 77 (2006).

[39] M. 1. Weinstein, Nonlinearity 12, 673 (1999).

[40] N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn.
Zaved., Radiofiz. 16, 1020 (1973) [Radiophys. Quantum Elec-
tron. 16, 783 (1973)].

[41] L. Bergé, Phys. Rep. 303, 259 (1998).

[42] H. Sakaguchi and B. A. Malomed, Europhys. Lett. 72, 698
(2005).

[43] J. Cuevas, B. A. Malomed, and P. G. Kevrekidis, Phys. Rev. E
76, 046608 (2007).

063804-11



