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We report the observation of bound states of 350 pulses in a ring fiber laser mode locked by nonlinear rota-
tion of the polarization. The phenomenon is described theoretically using a multiscale approach to the gain
dynamics; the fast evolution of a small excess of gain is responsible for the stabilization of a periodic pattern,
while the slow evolution of the mean value of gain explains the finite length of the quasiperiodic soliton
train. © 2008 Optical Society of America

OCIS codes: 140.3510, 190.5530.
Bound states of two nonconservative solitons have
been predicted theoretically in the frame of the com-
plex Ginzburg–Landau (CGL) equation a long time
ago [1,2] and were observed in both anomalous [3]
and normal [4] dispersion regimes. Three and four
pulse solitons have also been predicted [2,5] and ob-
served [6,7]. However, both theoretical predictions
and experimental observations are also limited to a
few pulses.

On the other hand, indefinitely long periodic (con-
servative) soliton trains in one dimensional Kerr me-
dia have been described theoretically and experimen-
tally. These trains are formed due to the
modulational instability of a continuous wave (cw)
signal. These are not stable states, since the cw sig-
nal is expected to be restored by the so-called Fermi–
Pasta–Ulam (FPU) recurrence [8]. An analytical so-
lution of the nonlinear Schrödinger (NLS) equation,
which accounts for this phenomenon, has been found
[9]. Experiments have been performed for both spa-
tial [10] and temporal [11] solitons. An attempt to
stabilize the array leads to the suppression of inter-
actions between solitons [12]. In passive optical reso-
nators, the stabilization of a periodic soliton train has
been achieved, yielding a “soliton crystal” [13,14].

In this Letter we report observation of a very long
soliton train in a fiber laser, which is stable and
phase locked as a bound soliton and periodic as a soli-
ton crystal. However, the soliton train has a finite
length, very large with respect to the soliton size, but
small with respect to the cavity length (21 m or
105 ns). This arrangement is similar to a long chain
of atoms and can be viewed as a soliton macromol-
ecule.

The setup is presented in Fig. 1. It consists of a
unidirectional ring cavity in which the mode locking
is achieved thanks to the combined effects of nonlin-
ear polarization rotation and an intracavity polarizer
[15]. The total dispersion of the cavity is managed
with the use of several fibers with opposite disper-
sion. The laser operates in the anomalous dispersion
regime. We used a double-clad doped fiber with an
available output power up to 1 W when used as a su-
perfluorescent source.

As usual, the orientation of the phase plates allows
adjusting the operating regime of the laser. For cer-

tain pumping rates and specific orientation of the
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phase plates, we observe pulse trains of several hun-
dreds of pulses with energy �15–18 pJ each (Fig. 2).
The resolution of the fast detector and of the oscillo-
scope are not sufficient to observe the detailed struc-
ture of the train. Consequently, we observed a peri-
odic square signal without an internal structure; the
period is equal to the round-trip time of the cavity.
The few oscillations that can be observed at the be-
ginning of the square are not always present and are
likely not significant. On the other hand the autocor-
relation trace shows a local structure of short pulses
repeating periodically (Fig. 3) but cannot show the
whole train. In fact, for a set of 100 pulses, the auto-
correlation trace has a triangle envelope, but the cen-
ter undergoes tiny variations, which cannot be de-
tected experimentally because of the noise. The
sharpness of peaks in the autocorrelation trace is evi-
dence of the regularity of the periodic pattern. The
optical spectrum (Fig. 4) shows a fast modulation,
which accounts for the periodic structure of the train
and proves the mutual coherence between pulses;
they interact and are locked in phase. Recall that for
a bunch state, where the pulses are not phase locked,
the experimental optical spectrum is not modulated
because it results from an averaging over thousands
of round trips. The spectrum also presents a global
envelope that describes the sech structure of the in-
dividual pulse.

Fig. 1. (Color online) Experimental setup. PBS, polariza-
tion beam splitter; DSF, dispersion-shifted fiber (2.15 m,
�2= +0.14 ps2/m); SMF28, standard single-mode fiber
(9.6 m, �2=−0.0217 ps2/m); PC, polarization controller;
VSP, V-groove side-pumping; Er/Yb DCF, Er/Yb doped

2
double-clad fiber (9 m, �2=−0.015 ps /m).
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The separation between pulses is given by both the
modulation of the spectrum and the autocorrelation
trace as ��=23 ps. From the oscilloscope we get a to-
tal length of 8.2 ns, which corresponds to �N=350
pulses in the train. Using the ansatz

f = �
j=1

N

Eei���t−j���+j���
e−iC��t − j���2�/2�2

cosh� t − j��

�
� , �1�

including a linear chirp with parameter C and a con-
stant dephasing �� between two neighbor pulses, we
reconstruct the autocorrelation trace with the above
separation and a pulse length �	900 fs. �� cannot be
accessed experimentally and is set to zero. The opti-
cal frequency is 193 THz. The simulation is restricted
to a 100 pulse train due to limited computer memory.
Adjusting the chirp parameter to C=1.2 allows to re-
produce the experimental width of the spectrum. The
agreement in the spectrum (Fig. 4) and the autocor-
relation trace (not shown) demonstrates the validity
of the above ansatz and estimated parameters.

The observations can be accounted for by using a
multiple scale approach [16]. We give herein an out-
line of the reasoning, to be published in detail else-
where.

The gain dynamics, in a standard four level model,
assuming that the upper and lower nonradiating
transitions are very fast, is given by

�g

�t
= −

g

�g
− ag
E
2 + �, �2�

where g is the gain parameter, E the amplitude of the
electric field, �g=10 ms is the relaxation time, � is
the pumping parameter, and a is proportional to the
cross section.

Fig. 2. (Color online) Oscilloscope trace, the repetition of
the pulse train at the fundamental frequency of the cavity.
The inset presents the global shape of a train.

Fig. 3. (Color online) Autocorrelation trace showing the

periodic local pattern.
Since �g is very large with respect to the duration
of the pulse train, and even to the cavity round trip,
the relaxation of the gain is slow. However the term
proportional to 
E
2 in Eq. (2) induces fast variations
of the gain, at the time scale of the pulse itself. These
variations must obviously remain small. Hence the
gain suffers small variations approximately a value
g0, which is constant on a few pulse durations, and
evolves slowly according to

�g0

��
= �−

1

�g
− a�
E
2��g0 + �. �3�

The fast variations of the gain can be incorporated
into the equation evolution for the electric field E.
The latter, derived as in [17], reads as

i
�E

��
= ig1E + ��2

2
+ i	� �2E

�T2 + �Dr + iDi�E
E
2

− iGE
−


T

�
E
2�T�� − �
E
2��dT�, �4�

where g1 is some excess of gain,

G = g0a
exp�2g0L� − 1

2g0L
, �5�

L being the cavity length. The explicit expression of
coefficients Dr and Di is given in [17]. �2
=−0.002 ps2/m is the group velocity dispersion and
	=g0 /�g

2, where �g /2�=2.5 ps−1 is the spectral gain
bandwidth. An equation close to Eq. (4) has been
used to describe harmonic mode locking [18].

The formation of a periodic pattern is due to the
fast evolution of gain, accounted for by Eq. (4). In-
deed, the numerical solution of Eq. (4) shows the ex-
istence of a stable steady state that is periodic in
time and arises spontaneously, as shown in Fig. 5.

Fig. 4. (Color online) Optical spectrum of the pulse train.
Left, experimental; right, reconstructed.

Fig. 5. (Color online) Evolution of the electric field in the
laser cavity, starting from a single pulse, spontaneous aris-

ing of a periodic regime.
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The pulses are locked in phase, and their separation
and intensity are well defined; starting from any ini-
tial data in a wide range, the same values of the
pulse separation and intensity are obtained when the
steady state is reached.

The finite length of the periodic train is not related
to the fast evolution of the gain but to the slow one.
Each pulse depletes the gain for a certain value �G,
then the initial gain is recovered due to the relax-
ation and pumping, according to Eq. (3), along the re-
maining parts of the cavity (Fig. 6).

The depletion �G for one pulse can be estimated
from the analytical single-pulse solution of Eq. (4)
[18] as

�G = G
E0
2�, �6�

where � is the pulse duration and E0 its peak ampli-
tude. � and E0 explicitly express in terms of the
physical parameters of the laser, the orientation
angles of the phase plates especially. Values consis-
tent with the experimental results are obtained for
some particular orientation of the latter, which yields
�G=22�10−6 m−1.

The gain recovered due to pumping and relaxation
during the time interval �T between two passes of
the soliton train, according to Eq. (3), is

�g = gf − gi = ���g − gi��1 − exp�− �T/�g��, �7�

gi being the gain immediately after the train and gf
being the gain immediately before it at the next
round trip. According to the experimental values,
�T��g and �g	��T. The number of pulses is hence
N=�g /�G	350, in accordance with experimental re-
sults.

Fig. 6. (Color online) Schema showing the evolution of
gain in the cavity, each of the N pulses takes off an amount
�G of gain, and after the train relaxation restores the

amount �g.
The finiteness of the wave train is thus explained
through a conservation law; the number of pulses in
the steady state is such that the decrease of gain due
to the amplification of each pulse can be compensated
by the pumping.

We observed two time scales in the experiment,
corresponding on one hand to the formation of a pe-
riodic pattern, which locally compares to a soliton
crystal, and on the other hand to the delimitation of a
pulse train of definite length. In the same way as an
experiment requires different measurement proce-
dures at different scales, the multiscale analysis is
allowed to separate them theoretically. Then both
small- and large-scale phenomena are accounted for
by the theoretical analysis.
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