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We put forward through both analytical and numerical methods the advantage of using non—slowly-varying
envelope-approximation model equations for describing the propagation of few-optical-cycle pulses in trans-
parent media. It is proven that the dynamical model based on the generic modified Korteweg—de Vries sine-
Gordon equation retrieves the results reported so far in the literature, and so demonstrating its remarkable
mathematical capabilities in describing the physics of few-cycle-pulse optical solitons.
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I. INTRODUCTION

In past years, intense ultrashort light pulses comprising
merely a few-optical cycles became routinely available; for a
review of the various techniques of their production and
measurement as well as relevant theoretical methods used to
model their unique features, see Ref. [1]. These intense ul-
trashort optical pulses have various applications in the field
of light-matter interactions, high-order harmonic generation,
extreme nonlinear optics [2], and attosecond physics [3].

Several theoretical approaches have been considered thus
far to describe the physics of few-cycle-pulse (FCP) optical
solitons; chiefly we have three classes of governing models:
(i) the full quantum approach [4-7], (ii) the refinements of
envelope equations of nonlinear Schridinger (NLS) type, in
the framework of the slowly-varying envelope approxima-
tion (SVEA) [8-10], and (iii) the non—SVEA models. In the
present work we will concentrate on non—SVEA model equa-
tions for describing the propagation of FCP optical solitons
in transparent nonlinear media.

The propagation of FCPs in Kerr media can be described
beyond the SVEA by using the modified Korteweg—de Vries
(mKdV) [11], sine-Gordon (sG) [12,13], or mKdV-sG equa-
tions [14,15]. The mKdV and sG equations are completely
integrable by means of the inverse scattering transform (IST)
method [16,17], whereas the mKdV-sG equation is com-
pletely integrable only if some condition between its coeffi-
cients is satisfied [18]. All these equations admit breather
solutions, which can realistically describe the few-optical-
cycle solitons. In (2+1) dimensions, the mKdV model is
replaced by the (nonintegrable) generalized Kadomtsev-
Petviashvili equation, which accounts for two-dimensional
FCP soliton propagation [19,20].

Other non-SVEA models [21-23], especially the so-
called short-pulse equation (SPE) [24], have been proposed.
The aim of this paper is to show that the mKdV-sG model is
the most general of all approximate non—-SVEA models for
FCPs, and in fact contains all of them. Here we restrict our-
selves to the one-dimensional scalar situation; however, the
results of the present paper can be easily generalized to
higher dimensions.
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The generic mKdV-sG model and the physical hypotheses
it involves are described in Sec. II. We show in Sec. III that
both the SPE, and another model put forward in Refs.
[21-23,25] can be considered as approximate versions of
mKdV-sG equation (6). However, the FCP solitons obtained
in [25] differ from the already published breathers of
mKdV-sG equation [14]. Indeed, in the work [14] it was
assumed as a self-focusing-type mKdV equation, whereas in
Ref. [25], it was assumed as a self-defocusing one. The self-
defocusing-type mKdV equation cannot support any breather
solitons (see Sec. IV A) but we show by approximate analyt-
ics and by numerical computation that the mKdV-sG equa-
tion containing a self-defocusing mKdV term is, within some
approximation, equivalent to a pure sG equation, and there-
fore supports breather-type solitons very close to the sG
ones. First, the case when the mKdV-type dispersion term is
negligible is investigated in Sec. IV B. Then in Sec. IV C we
get within the SVEA the linear dispersion relation k=k(w),
the group-velocity dispersion (GVD), and a rough approxi-
mation of the pulse shape for which self-focusing occurs.
Numerical computations confirm the qualitative conclusions,
and also that the FCP propagation strongly differs from that
one predicted by the SVEA. We then show that both the FCP
solitons given in Ref. [25] as well as other soliton solutions
can be described by generic mKdV-sG equation (6). The pa-
per is concluded in Sec. V.

II. MKDYV, SG, AND MKDV-SG MODELS

As is well known, a soliton is a pulse that propagates in a
dispersive medium in such a way that a nonlinear effect com-
pensates dispersion, and the pulse remains unchanged during
propagation. This implies two essential features: (i) the me-
dium is lossless, and (ii) the order of magnitude of propaga-
tion distance, wave amplitude, wavelength, dispersion, and
nonlinear characteristics of the medium are such that neither
the dispersion nor the nonlinearity is negligible, and that
both have effects comparable in magnitude. We insist on the
fact that such assumptions are unavoidable as soon as any
kind of soliton is considered (except obviously the so-called
”dissipative solitons” but the latter requires gain and loss).

©2009 The American Physical Society
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Hence, soliton propagation implies that damping can be
neglected. In dielectric media, this occurs far from any reso-
nance frequency. Let us first consider a two-level model with
characteristic frequency (), and denote by w a frequency
characteristic for the FCP soliton under consideration. The
transparency condition implies that either 0 <<Q) or Q< w.
The former case (w<<()) corresponds to the long-wave ap-
proximation. Assuming further that the wave amplitude is
such that the nonlinear and dispersive effects are comparable
[hypothesis (ii) above], the perturbative reduction method
[26] allows the derivation of the following approximate evo-
lution equation, which is the mKdV one [11,12]:

L&k 5 67
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6do’ X @30,0,- 0)IE =0, (1)

Here n=n(w) is the refractive index, c is the light velocity in
vacuum, and the derivative of the dispersion relation &
=k(w) and the third-order nonlinear susceptibility are for-
mally taken at the limit w— 0, according to the assumption
that w<<().

It is important to notice that, since Eq. (1) is not an enve-
lope equation, the third-order time derivative does not repre-
sent a third-order dispersion. Within the considered deriva-
tion, it is a second-order one: the dispersion coefficient is
(1/6)3/cn” in this limit. However, as shown in Ref. [27], it
may also include in addition a contribution of the third-order
dispersion.

If, on the contrary, the characteristic frequency of the
pulse is well above the resonance line (w>()), the short
wave approximation [26,28] allows the derivation of the ap-
proximate equations [12],

4i7QON
d.E= D, (2)
c
—i
dp= | uPEw, (3)
4
Jdw=—Ep, 4
W 7 4 4)

where w is the population inversion (-1 <w<1), w is the
dipolar momentum matrix element, and N is the density of
atoms.

Equations (2)—(4) coincide with the equations of the self-
induced transparency (SIT) [29] although the physical situa-
tion is quite different since in the case of SIT one assumes
that the wave frequency is close to the resonance, in contrast
with the present assumption. Furthermore, the quantities E
and w describe here the electric field and population inver-
sion themselves, and not amplitudes modulating some car-
rier. Here, they are real quantities, and not complex ones as
in the case of the SIT. Furthermore, p is not the polarization
density but is proportional to its ¢ derivative. Another differ-
ence is the absence of a factor of 1/2 in the right-hand side of
Eq. (2).

It must be noticed that exact solutions of the Maxwell-
Bloch equations (without envelope approximation, nor short-
or long-wave one), have been derived by Bullough et al. as
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early as 1971 [30]. A cnoidal solution accounting for a con-
tinuous wave and a single-oscillation solution, with deter-
mined duration, was also found. These two exact solutions
are similar with our approach in that they are not envelope
solutions; however, they correspond to the SIT situation
where the damping exactly vanishes, close to the resonance,
due to a nonlinear effect. Although mathematical expressions
may show some analogy, this is quite different from the situ-
ation we consider in the present work, in which damping is
small because we are far from the resonance.

However, as they are formally identical to the SIT equa-
tions; Egs. (2)—(4) also reduce to the sG equation, which is
written as [16,17]

du=sinv. (5)

Consider now a two-component medium, in which each
component is described by a two-level model. There are two
resonance frequencies, say (}; <(),. An appreciable change
with respect to the previous situation arises if the transpar-
ency domain lies between (), and (),. In this case we can
assume that ()| <w<(),, and show that the propagation of
FCPs can be described by a mKdV-sG equation, of the form
[14]

t
u,+c sin(f u) + (), + c3u,, = 0. (6)

It must be noticed that, in accordance with Egs. (2)—(4), the
coefficient ¢, of the sG-type term in Eq. (6) is proportional to
the population inversion. Especially, c¢; is usually positive
but becomes negative when a population inversion is real-
ized, and vanishes if the two levels are equally populated.

The approximation used is quite realistic in the general
setting. Indeed, in order to get a soliton, the entire pulse
spectrum must belong to the transparency domain. Hence, all
transitions of the medium separate into two groups: one well
below w, and the other one well above w. If each of these
two sets of resonance frequencies is approximated by a
single transition, we exactly get the assumptions under which
the model has been derived. In the general case, it is reason-
able to consider that the various lines will cumulate together
to reconstruct the same terms with more complicated coeffi-
cients. This has been proven by means of the reductive per-
turbation method in the special case of two independent tran-
sitions in the long-wave approximation. A rigorous proof in
the general case remains to be performed. Notice that the
quite general model equation [Eq. (6)] was also derived and
studied in Refs. [31,32].

It is well known that the mKdV and sG equations are
integrable by means of the IST method [17,33]. Furthermore,
they admit breather solutions, which are known to describe
FCPs [12], and have both spectrum and field profiles analo-
gous to the ones that can be obtained either experimentally
or using other models. Moreover, from the established math-
ematical properties of these completely integrable equations,
any Gaussian input is expected to evolve into a FCP soliton
[34]; hence, breathers can be considered as the fundamental
solutions of the equations as soon as the input is symmetrical
with respect to a change in the sign of the field. mKdV-sG
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equation (6) is also integrable if c;=2c, [18]. For other val-
ues of parameters, it has been shown numerically that FCP
solitons (or breathers) still exist, and their robustness has
been investigated, as well [14].

II1. SPE IS A SPECIAL CASE OF MKDV-SG EQUATION
A. Short-pulse equation

An alternative model equation for FCPs is the so-called
SPE

1
U,=U+ E(U3)zt~ (7)

It was first introduced in [24] to describe FCP propagation in
silica fibers. The derivation was based on a parabolic ap-
proximation of the dispersion relation y=x"(\), valid in
silica glass for 1.6 um=N=3 um, and a purely cubic in-
stantaneous nonlinear polarization. The reduction of the two-
directional Maxwell equations to a one-directional one was
performed by means of a short wave approximation. The
mathematical validity of the SPE as an asymptotics to Max-
well equations has been justified in Ref. [35].

The SPE is integrable by means of the IST method [36],
and soliton solutions have been given in Ref. [37]. Vectorial
versions of the SPE have also been proposed and their soli-
ton solutions have been investigated, as well [38-40].

A third model, which is in fact the SPE with an additional
dispersion term, has been first derived in Ref. [21] long be-
fore the introduction of the SPE model. It was considered a
set of four classical oscillators with frequencies (), (;, ().,
and (),,, governing the contribution to polarization of elec-
tronic (e) and ionic (i) components, and the electronic (el)
and electronic-vibrational (v) nonlinearities. By means of the
approximation ,,Q;, < w<<(),,(},,, it was derived as a non-
linear evolution equation that reads, in its scalar and normal-
ized form, as

U,+U—-pUyy+ (U3)tt =0. (8)

The above assumption is formally identical to the one used
in [14] but has a slightly different physical interpretation.

A multidimensional version of Eq. (8) was given in [22]
and the self-focusing and pulse compression has been dem-
onstrated in Ref. [23]. However, it has been recently consid-
ered again in a vectorial version, which has shown pulse
self-compression and FCP soliton propagation [25].

Concerning the validity of the model, it was shown in
Refs. [23,25] that, from the general Kramers-Kronig or Sell-
meier formula, the general form of the e=¢(w) dependence
can always be approximated, in the transparency domain, by
the relationship

8(w)=80—§+bw2, 9)

with a and b as some constants, from which the short-pulse
equation (8) was straightforwardly deduced, which includes
an additional dispersion term; see the third term in Eq. (8).
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FIG. 1. (Color online) Compression of a Gaussian input pulse to
a FCP soliton, as described by the mKdV-sG equation with param-
eters ¢;=50, ¢,=0.5, and c3=1.

B. Reduction of the mKdV-sG equation to the SPE

Obviously, mKdV-sG model (6) reduces to mKdV one
[Eq. (10)] if ¢;=0 and to the sG equation (5) if ¢c,=c3=0. In
the same way, Eq. (8) reduces to SPE (7) if u=0.

It is easy to derive SPE equation (7) from mKdV-sG one
(6): a small amplitude approximation yields sin(f'u)= ["u,
the mKdV-type dispersion term is neglected (c3=0); then
setting ¢;=—1, ¢,=-1/6, Eq. (6) becomes, after derivation
with respect to ¢, identical to Eq. (7). The same transform but
with ¢;=c,=1 and c3;=—pu gives alternative model equation
(8).

The mKdV-sG model is able to predict pulse compres-
sion, as shown in Fig. 1, which is similar to the result pre-
sented in Ref. [25].

However, the concrete situation considered in Ref. [25]
involves u>0, i.e., c3<0. If we disregard the term u com-
ing from the sG equation or the “resonant” part of the equa-
tion, this corresponds to a defocusing mKdV equation. It is
worthy to mention that, as has been shown in Ref. [14], the
mKdV-sG equation supports FCP solitons but only the case
of focusing mKdV equation was considered in that work.
However, the defocusing mKdV equation does not support
FCP solitons, as is detailed in Sec. IV A below.

On the other hand, the pure sG equation admits breather
solutions that allow the describing of the FCP solitons [12].
It is worthy to notice that the soliton put forward in Ref. [25]
is nothing else than a soliton of the mKdV-sG equation by
using the dispersion term of the sG equation and the nonlin-
earity term of the mKdV equation, whose relative signs cor-
respond to the self-focusing case. This statement will be
proven by the analysis below.

IV. SOLITON PROPAGATION IN THE CASE OF A
DEFOCUSING KERR TERM

A. Defocusing mKdV equation

For the two-level model, as considered in [12], the group-
velocity dispersion is normal (n”>0) and the third-order
nonlinear susceptibility x* is negative; hence, mKdV equa-
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FIG. 2. (Color online) Top: the intensity |u|> of the input FCP
[light blue (gray) curve] and its evolution at z=0.2 according to the
focusing mKdV equation [dark blue (black) curve] for c,=+1/3.
Bottom: the linear dispersion (for ¢,=0) of the same input at the
same propagation distance [light blue (gray)], and its nonlinear dis-
persion according to the defocusing mKdV equation [dark blue
(black) curve] for c,=—1/3. The input is a breather of the focusing
mKdV equation, with angular frequency of four and inverse pulse
duration of two.

tion (1) is of self-focusing type, and can be written as
A+ ulu, + uy, =0, (10)

where uo E, in normalized form.

However, we can consider a general situation of a defo-
cusing optical nonlinearity, with either a normal dispersion
(n">0) and a positive x'* nonlinearity, or with an anoma-
lous dispersion (n”<0) and a negative x'* nonlinearity.
Therefore, the obtained mKdV equation is of defocusing
type and can be written in normalized units as

&gu—u2u§+u§§§=0. (11)

It is well known that Eq. (11) does not admit any soliton
solution [17]. An incident wave packet is spread out by dis-
persion and nonlinearity, as shown by numerical computation
using the so-called “exponential time differencing method”
[41] along with absorbing boundary conditions introduced to
avoid numerical instability of the background, see Fig. 2.
The results displayed in this figure clearly demonstrate that
the nonlinear dispersion is stronger than the linear one.

B. Defocusing nonresonant interaction and focusing
resonant one

We start from the mKdV-sG Eq. (6) and by setting ['u
=v, we get the equation

U +cpsinu+ cz(v?), + c30 4, =0. (12)

For low amplitudes, the sG term in the above equation can
be expanded in a power series of v to yield
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3
U
UZ,+CI(U _E> +02(Uz3)z+0301m=0~ (13)

Due to the peculiar form of the third term in Eq. (13) con-
taining the partial derivative (vf),, the two nonlinear terms in
Eq. (13) differ and cannot be straightforwardly compared.
However, let us perform a slowly-varying envelope approxi-
mation, according to v=A(t)e +c.c.. (where “c.c.” holds
for “complex conjugate”), with w> 1. It yields

(v)), = 30*A3 " — 30*A|Ae + c.c. (14)
On the other hand
v = A3 1 3A|APe + c.c. (15)

For large values of w, the third harmonic terms do not couple
appreciably with the fundamental one; hence they can be
neglected and

), =- o™’ (16)

Let us now compare Eq. (12) with Eq. (8). Setting v,
=pU in Eq. (13) we get

t 3
¢
sz+C1U+P202(U3);,—P2€<f U) +¢3U,=0.
t

(17)
Using Eq. (16) this yields

c
Uzt+ClU+p2<C2+6_01)4)(U3)tz+C3Utm:0- (18)
Equations (8) and (18) coincide if ¢;=1, c3=—pu, and

2 €
p <02+6w4>—1. (19)

Especially, if ¢,=c3=0, Eq. (12) is exactly the sG equa-
tion. If we assume c;=1, the approximate transformation
above holds in this case if p=w>\6. Hence, if u, is some
breather solution of mKdV-sG equation (6) (which is a sG
equation in this case), with a large enough carrier frequency
w, the field Uy=u,/(w>\6) satisfies approximately Eq. (8)
with ©=0. In short, the term sin u=u—u>/6 contains contri-
butions from both dispersion and nonlinearity. Therefore,
within the slowly-varying envelope approximation, both cu-
bic nonlinearities, involving time derivatives or not, are
equivalent.

These analytical estimates were checked numerically, as
shown in Fig. 3: it is clearly seen in Fig. 3 that an initial
adequately rescaled sG breather propagates almost without
deformation according to the mKdV-sG equation (6) with
c¢;=cy=1, c3=0, which is the case considered in Ref. [25];
see also the short-pulse equation (4) and Eq. (5) (c; is set to
a small nonzero value because our numerical code does not
allow ¢;3=0 exactly. The exact value of cj is thus of no sig-
nificance).

C. Pulse compression with a defocusing dispersion term

We intend now to show that mKdV-sG model (6) with a
true defocusing mKdV part, that is, when ¢3<<0, also pos-
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FIG. 3. (Color online) Propagation of a FCP soliton in the frame
of the mKdV-sG model (arbitrary units, ¢;=c,=1, ¢3=0.0001). The
input is an adequately rescaled sG breather.

sesses FCP soliton solutions and accounts for pulse self-
compression. The “focusing” or “defocusing” character of
the equation can be determined in the SVEA limit. In fact,
one can doubt that this concept makes sense out of the
SVEA. The SVEA limit can be derived by means of the
reductive perturbation method [26]. Thus in order to treat all
equations at the same time, we consider a more general equa-
tion
!

cy N
Ut cv— gv3+c2(v,),+ C3Vu =0, (20)

which becomes mKdV-sG equation (9) if ¢;=c,, and reduces
to Eq. (8) if ¢;=0. We expand the field v as

v=e(Ae®+cc)+ >, el (21)
n,p=0

in which the fundamental phase ¢=wf—kz, and the profiles A
and v? depend on the slow variables 7=g(—z/V) and ¢ =gt
If series expansion (21) is inserted into Eq. (20), in the lead-
ing order in g, we get the linear dispersion relation

e — 30, (22)
1)

k=

Then in the order &> for the fundamental frequency we get
the velocity V, which satisfies V=dw/dk as expected. In the
order & and for p=1, we obtain the form of the governing
nonlinear evolution equation, which is, as expected, the NLS
one, written as

A§+%ATT+ YA|A? = 0. (23)
One additional important result of this reductive perturbation
approach is the o dependence of the coefficients of NLS
equation (23), and the corresponding relationships between
the coefficients ¢, c¢,, and c3 of the original mKdV-sG
equation and of those of the NLS equation:

_d_zk_ (=2¢)

n = dw2 = w3 - 6C3(1), (24)
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(_ZZ)‘) —3c,00. (25)

’y:

It is well known that NLS equation (23) is of focusing
type and admits soliton solutions if the product (3,7) is posi-
tive (the Lighthill criterion). In the following we analyze the
implications of the above results, which were obtained by
using the reductive perturbation method, on the characteristic
features of the five main equations describing the dynamics
of FCP solitons [see Egs. (1)—(8)].

1. sG equation

The general Eq. (20) becomes a sG equation (in the low-
amplitude limit involved by the SVEA) if ¢;=c3=0 and c|
=c,. Then B,=-2¢,/®*, y=—c,/(2w), and hence B,y is al-
ways positive. Hence the sG equation is of focusing type,
regardless of the frequency.

2. mKdV equation

The general equation (20) becomes a mKdV equation if
cj=c;=0. Then B,=—6c;0, y=—3c,»?, and hence B,7y has
the same sign as c,c3. Therefore the sign of the product c,c3,
as it is already known, makes the distinction between a
focusing-type and a defocusing-type mKdV equation. As in
the case of the sG equation, the Lighthill criterion holds re-
gardless of the frequency.

3. Short-pulse equation.

If ¢j=c3=0 then Eq. (20) becomes the SPE, and has nor-
malized form (7) if, additionally, ¢;=—1 and ¢,=-1/6. We
get B,=—2c,/ w*, y==3c,w?, and hence the product 3,7 has
the same sign as the product c;c,. Thus we get both a
focusing-type and a defocusing-type SPE, normalized form
(7) being a focusing-type SPE. Here again, the Lighthill cri-
terion holds regardless of frequency.

4. Evolution equation (8)

If we put ¢;=0, ¢;=c,=1, and c3=—p in Eq. (20) we get
normalized version (8). The nonlinear coefficient y has the
same expression as for the SPE but 3, is general.

Here the Lighthill criterion 8,y>0 writes

( 4+ ) >0 5 (26)
el e+ — , or —

2\ 3 K 3

in its normalized form.

5. mKdV-sG equation.

In this case ¢;=c, and the Lighthill criterion for the ex-
istence of NLS solitons becomes (c;+6c,w’)[c3+c,/(3w?*)]
>0. It involves both the sign of coefficients c; and the fre-
quency w. Let us restrict the discussion to those coefficients
for which mKdV-sG equation reduces to Eq. (8), i.e., for ¢y,
¢,>>0. Then the condition for mKdV-sG equation to be of
focusing-type is the same as Lighthill condition (26) for Eq.
(8).

From the single soliton solution of NLS equation, we get
the following approximate solution to mKdV-sG equation:
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FIG. 4.
mKdV-sG equation (12) with defocusing mKdV part. Input is a
pulse with hyperbolic secant envelope solution to the SVEA limit of
mKdV-sG, with pulse length 7,=25 and angular frequency w=0.5.
Parameters are ¢;=c,=1, c3=-0.5.

(Color online) Pulse compression described by

)
1 2pe'r*
V=
V2[4 cosh[pV2/| B, (1 = V)]

G X))

p being an arbitrary real parameter.

Obviously, Eq. (23) coincides with the NLS equation de-
rived in the standard way within the SVEA, and pulse (27) is
not a FCP but is valid only within SVEA (for small values of
the soliton parameter p). However, the existence of a soliton
in the SVEA limit is a good heuristic argument for the exis-
tence of a FCP soliton; therefore, the expression of the NLS
soliton can be taken as initial data for the numerical reso-
Iution of mKdV-sG equation. It is quite difficult to check
numerically with accuracy how the separation line between
focusing and defocusing behaves as the pulse becomes
shorter and the SVEA fails. Indeed, the separatrix corre-
sponds to zero group-velocity dispersion, and the discrimi-
nation between pulse reshaping and mere spreading out re-
quires computation of the evolution on many dispersion
lengths. It would thus require not only lengthy computation
but also compensation of the pulse velocity, which is difficult
to determine for the several splinters that result from the
reshaping of a FCP (see below). Hence this point is left for
further investigation. It is seen that, even for rather long
FCPs, the discrepancy between SVEA approximation (27)
and a FCP soliton solution to mKdV-sG equation can be
appreciable. Especially, pulse compression can be clearly
seen on the example displayed in Fig. 4. In this case, the
pulse length 7y=1/|B,|/2/p is 25 and the angular frequency is
w=0.5. The velocity V), of the pulse is computed from the
numerical data, as V,=0.222. It is close to, but significantly
differs from, the value of group velocity dw/dk==0.229 pre-
dicted by the SVEA according to Eq. (22).
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FIG. 5. (Color online) FCP soliton propagation according to
mKdV-sG equation (12) with defocusing mKdV part. From the
sech-shaped input pulse with length 7y)=8 and angular frequency
w=0.5, two FCP solitons, one larger than the other, plus dispersing
waves, are formed. Parameters are ¢;=c,=1, and ¢3=-0.5.

For shorter pulses the numerical solution to the mKdV-sG
equation goes further away from the SVEA-NLS approxima-
tion [see approximate solution (27) to mKdV-sG equation]
but the FCP soliton propagation still occurs, as can be seen in
Fig. 5; here two FCP solitons, one taking the major part of
the energy, and the other much smaller, are formed while a
non-negligible part of energy is radiated as dispersing waves.
The pulse velocity computed from the numerical data per-
taining to Fig. 5 is V,=0.134, while dw/dk=0.229 as
above. The discrepancy is large, thus confirming the fact
already evidenced in Ref. [14] that the usual expression of
the group velocity is not valid any more for a short FCP
soliton.

V. CONCLUSION

In conclusion, we have revisited five main dynamical
models existing in the literature, which describe the propa-
gation of few-optical-cycle pulses in transparent media. We
have proven that the dynamical model based on the modified
Korteweg—de Vries sine-Gordon partial differential equation
was able to retrieve the results reported so far in the litera-
ture, and so demonstrating its remarkable mathematical ca-
pabilities in describing the physics of few-cycle-pulse optical
solitons. To this aim we have shown that the generic modi-
fied Korteweg—de Vries sine-Gordon equation contains all
non-slowly-varying envelope-approximation model equa-
tions that have been earlier proposed for the description of
(1+1)-dimensional few-cycle-pulse soliton propagation. The
results obtained in this work can be relatively easily gener-
alized to (2+1)-dimensional few-cycle-pulse propagation
models.
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