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By using the exact four-soliton solutions of the modified Korteweg–de Vries–sine Gordon equation describ-
ing the propagation of few-optical-cycle pulses in transparent media with instantaneous cubic nonlinearity, the
interaction of two such initially well-separated pulses is studied. The shapes of soliton envelopes, the shifts in
the location of envelope maxima, and the corresponding phase shifts are explicitly calculated.
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I. INTRODUCTION

In recent years, a considerable effort has been made in the
field of ultrafast optics allowing the generation of ultrain-
tense light pulses comprising merely a few optical cycles �1�.
These ultrashort pulses have numerous applications in the
field of light-matter interactions, high-order harmonic gen-
eration, extreme nonlinear optics �2�, and attosecond physics
�3�.

Theoretical models involving corrections to the paraxial
wave equations for the study of propagation of few-cycle
pulses �FCPs� in nonlinear optical media such as fused silica
�4� and photonic crystal fibers �5� have been developed dur-
ing the past decade. Other theoretical approaches make use
of the so-called “short-pulse equation,” which is an inte-
grable nonlinear partial differential equation describing the
propagation of ultrashort optical pulses in media with cubic
optical nonlinearities �6,7�. An issue of much interest from
the application point of view is the pulse self-compression
down to single cycle duration in transparent media with in-
stantaneous cubic �Kerr� nonlinearity �8�. The propagation of
FCPs in a self-focusing Kerr medium can be described be-
yond the slowly varying envelope approximation �SVEA� by
using the modified Korteweg–de Vries �mKdV� �9�, sine-
Gordon �sG� �10,11�, or mKdV-sG equations �12�. The
mKdV and sG equations are completely integrable by means
of the inverse scattering transform method �13�, whereas the
mKdV-sG equation is completely integrable only if some
condition between its coefficients is satisfied �14�. All these
equations admit breather solutions, which can realistically
describe the few-optical-cycle solitons. In �2+1� dimensions,
the mKdV model is replaced by the �nonintegrable� general-
ized Kadomtsev-Petviashvili equation, which accounts for
two-dimensional FCP soliton propagation �15,16�. Notice
that, in quadratic nonlinear optical media, the FCP propaga-
tion is governed by the Korteweg–de Vries �KdV� equation,
which does not admit breather solitons; in this case, half-
cycle optical solitons in the form of a single hump with no
oscillating tails would form �17�.

It should be noted that the more general mKdV-sG equa-
tion proved to describe fairly well the propagation of ul-
trashort optical pulses in a Kerr medium, thus demonstrating
its remarkable mathematical capabilities in describing the
physics of few-optical-cycle solitons �12�. Further, full nu-
merical resolution of the Maxwell-Bloch equations for a
three-level system �18� shows a good agreement with the
results of the above asymptotic models. Because the
n-soliton solution of the mKdV-sG equation has been ob-
tained before �19�, we may easily get from it the four-soliton
solution and, correspondingly, the two-breather solution,
which can be used as the input in our study of the interaction
between two FCPs. The two-breather solution describes the
interaction in a Kerr medium of two few-optical-cycle soli-
tons initially well separated, in any physical setting where
one of the three integrable models mentioned above is a re-
alistic one. Moreover, thanks to the existence of analytic ex-
pression for the two-breather solution, the location and phase
shifts resulting from the interaction can be computed explic-
itly.

II. FOUR-SOLITON AND TWO-BREATHER SOLUTIONS

We consider the propagation of optical FCPs in a one-
dimensional self-focusing Kerr medium, such as a highly
nonlinear optical fiber. In any physical application, FCPs will
be periodically launched in the medium, in such a way that
they propagate as solitons. Due to the fluctuations of the
intensity of the laser source, the consecutive FCPs may have
different power and energies, and consequently different ve-
locities. Therefore, they are expected to cross each other. Our
goal is to discuss what happens during the interaction.

The evolution of the electric field is governed by the
mKdV-sG equation, which reads in the completely integrable
case as

u�z + a�3

2
u�

2u�� + u����� − b sin u = 0, �1�

where the dimensionless variables u, z, and � are, respec-
tively, proportional to the electric field, the propagation dis-
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tance, and the retarded time, in a frame moving at the linear
light velocity of the medium. Notice that u is not an ampli-
tude, but is proportional to the electric field itself. Both con-
stants a and b are related to the dispersion and nonlinearity
properties of the medium; see �10,12�. The integrable
mKdV-sG Eq. �1� reduces to the mKdV equation for b=0
and to the sG equation for a=0.

The n-soliton solution of the above mKdV-sG equation is
given by �19�

u = 2i ln
f*

f
, �2�

where

f = �
�j=0,1

E�, �3�

with �= ��1 , . . . ,�n�,

E� = exp��
j=1

n

� j�� j +
i�

2
� + �

l=1

n

�
j=1

n

� j�lAj,l	 , �4�

and

Aj,l = ln
�kj − kl�2

�kj + kl�2 , �5�

� j = kj� + � jz + �0j , �6�

� j =
b

kj
− akj

3, �7�

j , l=1, . . . ,n and the kj being arbitrary. These solutions are
properly speaking solitons only for real kj, but the solution
holds algebraically for any complex kj.

For n=4, and assuming

k3 = k1
*, k4 = k2

*, �8�

we get the two-breather solution. We set below

k1 = p1 + i�1, k2 = p2 + i�2, �9�

so that �1 and �2 are the characteristic frequencies of the
two FCPs, and 1 / p1 and 1 / p2 are their durations.

III. INPUT AND OUTPUT ENVELOPES

The input and final breathers can be obtained as follows.
Let us write R= f* / f as a function of the phases �1 and �2,
and compute the limits

R1� = lim
�2→��

R , �10�

R2� = lim
�1→��

R , �11�

with the � j defined as above. Then the quantities uj�
=2i ln Rj� �j=1,2� are the input and output isolated breath-
ers.

The corresponding envelopes can be computed by replac-
ing the varying part of the � j �j=1,2� by its real part, as

� j ← �rj = pj� + �rjz + dj + i	 j, j = 1,2, �12�

where

FIG. 1. �Color online� Interaction of two FCPs described by the
two-breather �four-soliton� solution of mKdV-sG. The envelope is
shown. Parameters: p1=2, p2=2.5, and �1=�2=8.
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FIG. 2. �Color online� The FCPs and their initial and final en-
velopes before �a� and after �b� the interaction. Parameters: p1=2,
p2=2.5, and �1=�2=4.
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�rj = Re�� j� , �13�

�0j = dj + i	 j . �14�

For an adequate choice of the constant phase 	 j, the value of
u obtained through this substitution is ue, the envelope of u.
We get in the same way the envelopes uj�e of the input and
output breathers uj�.

Figure 1 shows the general envelope. Figure 2�a� shows
the two FCPs and their input and output envelopes, at z
=−15. Here the output envelopes are defined as the enve-
lopes of the breather, at this propagation stage, which coin-
cide with the output of the interaction as z→ +�, after hav-
ing propagated alone. It is seen that the envelopes uj+e,
corresponding to the largest values of �, do not have the
correct amplitude. The definition of the envelope implies in-
deed that the oscillation carrier is replaced by some constant
	 j adequately chosen. In Fig. 2�a� �and also in Fig. 2�b��, this
constant is taken as zero. It is the adequate value for the
leftmost profiles �uj−e�, not for the rightmost ones �uj+e�, due
to the arising of a phase shift during the interaction. This is
discussed in detail in Sec. V below.

Figure 2�b� presents the same two-breather solution and
input and output envelopes, at z= +15. The coincidence be-
tween the FCPs and envelopes, at least in location, is
checked for the numerical values. The shift in the location of
the breathers appears clearly in the figures.

IV. COMPUTATION OF THE LOCATION SHIFT

Now we determine the location of the maxima of the en-
velopes. Precisely, we solve the equations dR1� /d�1=0 and
get the solutions �m1�. Then the location shift is given by


�1 = �
�m1+ − �m1−

p1
. �15�

The sign depends on the relative velocity of the FCPs. The
group velocity of the FCPs is computed as �12�

wgj = a�pj
2 − 3� j

2� −
b

pj
2 + � j

2 �16�

for j=1,2. In fact,

wgj =
− �rj

pj
�17�

�j=1,2�, i.e., wgj is the velocity of the characteristic variable
�rj. The variable z is expressed in terms of the characteristic
variables �r1, �r2 of the envelopes as

z =
�r1/p1 − �r2/p2

�r1/p1 − �r2/p2
, �18�

hence

z 

− 1/p2

�r1/p1 − �r2/p2
�r2 �19�

as �r2 tends to infinity, and �r2→ �� corresponds to either
z→ +� or z→−� depending on the sign of

− 1/p2

�r1/p1 − �r2/p2
, �20�

i.e., the sign of �p2�wg1−wg2��. Finally,


�1 = sgn�p2�wg2 − wg1��
�m1− − �m1+

p1
. �21�

It yields


�1 = sgn�p2�wg1 − wg2�� �
1

p1
ln� ���1 − �2�2 + �p1 − p2�2����1 + �2�2 + �p1 − p2�2�

���1 − �2�2 + �p1 + p2�2����1 + �2�2 + �p1 + p2�2�	 , �22�

and an analogue expression for 
�2
. Examples of the varia-

tions of 
�1
against the FCP inverse duration p2 and fre-

quency �2 are given in Figs. 3 and 4, respectively. It must be
noticed that the shift 
�1

does not depend on the coefficients
a, b of the mKdV-sG equation, except its sign, via the group
velocities. It becomes zero as soon as one of the pulses
reaches the SVEA limit, which is obtained by setting either

the inverse duration pj to zero or the frequency � j to infinity
�see Figs. 3 and 4�. An important feature is that, in contrast
with the SVEA case, the interaction does not require any
phase matching �nor any group velocity one�. However there
occurs a singularity in the case of two identical pulses. Since
identical pulses have the same speed, they never cross to-
gether if they are well-separated initially. Two FCPs with

� � � � ��

��

��

��

δτ
1

�
�

�

�

�

FIG. 3. �Color online� Variation of the location shift 
�1
against

the inverse duration p2 of one pulse. Parameters: p1=2 and �1

=�2=4.
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frequencies and durations close together will have velocities
close together. If the propagation distance is large enough,
they may interact over a long time. The above-mentioned
singularity can be seen as a strong interaction for two pulses
that are approximately matched in phase and group veloci-
ties.

V. COMPUTATION OF THE PHASE SHIFT

The phase shift 
	1
, e.g., for the FCP 1, is computed by

adjusting the phase 	1 in such a way that the amplitude of
the envelope u1+e is maximal �which yields the correct value
of the amplitude of the envelope�. The maximum is located

at xm1+=�m1+ / p1. The peak value of the envelope is thus

um1+ = �u1+e��r1=�m1+
, �23�

and we only have to determine the value 	m1+ of the phase
	1 which maximizes um1+. In fact, it is easier to find the
value 	01+ of the phase 	1 for which um1+ is zero, then
	m1+=	01+�� /2. The value of the phase that maximizes
u1−e is always 0. The relationship between the limits z
→ �� and �r2→ �� is the same as above, and hence the
phase shift is given by


	1 = sgn�p2�wg1 − wg2��	m1+. �24�

The phase shift is explicitly computed to yield


	1 = sgn�p2�wg1 − wg2�� � 2 arctan� 4�1p2��2
2 − �1

2 + p2
2 − p1

2�
��1

2 − �2
2�2 + �p1

2 − p2
2�2 + 2��1

2 + �2
2��p1

2 + p2
2� − 8�1

2p2
2	 . �25�

The phase shift of the FCP 2 is then obtained from Eq. �25�
by permuting the indices 1 and 2. As in the case of the
location shift 
�1

, the phase shift 
	1
does not depend on the

coefficients a and b of the mKdV-sG equation, except its
sign, via the group velocities. Examples of variation of the
phase shift against the frequency of one of the FCPs are
shown in Figs. 5 and 6. Again, it is seen that no phase match-
ing is required, and the shift vanishes in the SVEA limit.
However, if p1 tends to zero, which corresponds to a pulse 1
in the SVEA limit interacting with FCP 2, the phase shift 
	1
reaches a nonzero limit: the interaction with an FCP may
affect the phase of a pulse that is not extremely short.

VI. CONCLUSION

In conclusion, we have studied the interactions between
few-cycle optical solitons by using the known two-breather
solutions �19� of the mKdV-sG equation. The shapes of both

� � � � ��

ω
2

��

��

��

δτ
1

�

�

�

FIG. 4. �Color online� Variation of the location shift 
�1
against

the frequency �2 of one pulse. Parameters: p1= p2=2 and �1=4.

FIG. 5. �Color online� The phase shift 
	1
of FCP 1 against the

frequency �2 of FCP 2. The discontinuity corresponds to the equal-
ity of the group velocities of the two FCPs. Parameters: a=b=1,
p1= p2=2, and �1=4.

FIG. 6. �Color online� Same as Fig. 5, but for two FCPs with
different durations. Parameters: a=b=1, p1=3, p2=2, and �1=10.
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input and output soliton envelopes as well as the phase and
location shifts have been computed by using the exact ex-
pressions for the four-soliton �two-breather� solutions of the
mKdV-sG equation. The remarkable fact is that, in contrast

with the case of soliton envelopes, no phase matching of any
kind is required for two few-cycle pulses to interact effi-
ciently. Such interactions may be a problem for the realiza-
tion and propagation of a regular train of few-cycle pulses.
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