Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature

To cite this version:

HAL Id: hal-03420368

https://univ-angers.hal.science/hal-03420368

Submitted on 9 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui

Citation: Journal of Applied Physics 106, 073510 (2009); doi: 10.1063/1.3238507
View online: http://dx.doi.org/10.1063/1.3238507
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/106/7?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals

Photorefractive effect at 775nm in doped lithium niobate crystals

Polarization reversal induced by heating-cooling cycles in MgO doped lithium niobate crystals

Acousto-optically tunable lithium niobate photonic crystal
Appl. Phys. Lett. 96, 131103 (2010); 10.1063/1.3374886

Dielectric and ac conductivity studies on undoped and MgO-doped near-stoichiometric lithium tantalate crystals
J. Appl. Phys. 103, 074106 (2008); 10.1063/1.2903907
Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature

A. S. Andrushchak,1 B. G. Mytsyk,2 H. P. Laba,1 O. V. Yurkevych,1 I. M. Solskii,3 A. V. Kityk,4,41 and B. Sahraoui5
1Lviv Polytechnic National University, 12 Stepana Bandera Str., 79013 Lviv, Ukraine
2Karpenko Physico-Mechanical Institute, 5 Naukova Str., 79601 Lviv, Ukraine
3Scientific Research Company “Carat”, 202 Stryjska Str., 79031 Lviv, Ukraine
4Department of Electrical Engineering, Institute for Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 17, PL-42200 Czestochowa, Poland
5Laboratoire POMA, FRE CNRS 2988, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex, France

(Received 28 May 2009; accepted 6 September 2009; published online 9 October 2009)

This paper presents the results of ultrasonic measurements of LiNbO3 and LiNbO3:MgO crystals. The tensors of piezoelectric coefficients, elastic stiffness constants, and elastic compliances are determined for both crystals at room temperature. Combining these data with the results of piezo-optical measurements, a complete set of photoelastic tensor coefficients is also calculated. Doping of LiNbO3 crystals by MgO does not lead to a considerable modification of their elastic and photoelastic properties. However, LiNbO3:MgO is characterized by a considerably higher resistance with respect to powerful light radiation, making it promising for future application in acousto-optic devices that deal with superpowerful laser radiation. Presented here are the complete tensor sets of elastic constants and photoelastic coefficients of LiNbO3 and LiNbO3:MgO crystals that may be used for a geometry optimization of acousto-optical interaction providing the best diffraction efficiency of acousto-optical cells made of these materials. © 2009 American Institute of Physics. [doi:10.1063/1.3238507]

I. INTRODUCTION

Photoelasticity has considerable practical importance and is applicable in many solid-state electronic and optoelectronic devices such as acousto-optical modulators or deflectors, photoelastic modulators, and piezo-optic sensors. A growing interest in these studies is due to recent developments in fields of crystal growth and technology,1–3 leading to the appearance of new efficient electro-optic and/or photoelastic materials.4–9 The application of photoelastic crystals, usually as media for acousto-optic modulators or deflectors, requires knowledge regarding the spatial anisotropy of their optical and acoustical properties. The main problems arise here with respect to a geometry optimization of acousto-optic or photoelastic interactions, which makes it only possible to use these materials with maximal diffraction or photoelastic efficiency. Such problems are frequently solved in terms of indicative surfaces, which may be calculated if only a complete set of elastic and photoelastic tensor coefficients is known. The elastic properties of crystal materials are usually studied by ultrasonic methods representing the most reliable and accurate techniques in this respect. The photoelastic coefficients can be determined by acousto-optic methods, such as the Dixon–Cohen technique.10 However, these methods are rather ambiguous in the determination of the sign of photoelastic coefficients, especially in the case of low-symmetry crystals. Alternatively, a complete set of photoelastic coefficients can also be obtained via the piezo-optic measurements representing in this sense the most appropriate technique that is suitable for a precise and unambiguous determination of both their absolute magnitudes and signs.9

In this paper, we report a complete set of the piezoelectric coefficients, elastic constants, and photoelastic tensor coefficients of MgO-doped (7% in melt composition) LiNbO3 crystals at room temperature. Our interest in such materials is basically due to their high resistance with respect to powerful laser radiation,11 which appears to be very important for many applications.12 The photoelastic coefficients of MgO-doped LiNbO3 crystals (hereafter also referred to as LiNbO3:MgO) are obtained here using the results of the ultrasonic and piezo-optic measurements. Accordingly, the methodology presented here can be considered as a guide suitable for the determination of the photoelastic parameters in similar crystal materials as well as crystals of any other symmetry. It has also been applied to pure LiNbO3; thus, the photoelastic characteristics determined for these crystals are compared with the ones obtained by other authors. This allows us to verify the experimental and calculation aspects of the methodology developed in actual work.

II. ELASTIC CONSTANTS AND PIEZOELECTRIC COEFFICIENTS OF LINBO3 AND LINBO3: MGO CRYSTALS

The elastic and piezoelectric properties of pure LiNbO3 have been repeatedly studied by many authors (see, e.g.,...
TABLE I. Measured sound velocities in pure LiNbO₃ (smp-1, smp-2, and smp-3 and LiNbO₃:MgO. L, longitudinal mode; T, transverse mode; QL, quasilongitudinal mode; QT, quasitransverse mode; ΔVᵢⱼ, difference between the measured sound velocities in LiNbO₃:MgO and LiNbO₃ (smp-1).

<table>
<thead>
<tr>
<th>Polarization direction</th>
<th>Propagation direction</th>
<th>Acoustic mode</th>
<th>LiNbO₃ smp-1</th>
<th>LiNbO₃ smp-2</th>
<th>LiNbO₃ smp-3</th>
<th>LiNbO₃:MgO</th>
<th>ΔVᵢⱼ</th>
<th>Ref. 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>L</td>
<td>6560</td>
<td>6550</td>
<td>6572</td>
<td>6654</td>
<td>94</td>
<td>⋯</td>
</tr>
<tr>
<td>010</td>
<td>100</td>
<td>T</td>
<td>4040</td>
<td>4029</td>
<td>4038</td>
<td>4069</td>
<td>29</td>
<td>4050</td>
</tr>
<tr>
<td>001</td>
<td>100</td>
<td>T</td>
<td>4758</td>
<td>4735</td>
<td>4752</td>
<td>4846</td>
<td>88</td>
<td>4800</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
<td>L</td>
<td>7351</td>
<td>7329</td>
<td>7365</td>
<td>7399</td>
<td>48</td>
<td>7330</td>
</tr>
<tr>
<td>010</td>
<td>001</td>
<td>T</td>
<td>3598</td>
<td>3595</td>
<td>3601</td>
<td>3627</td>
<td>29</td>
<td>3570</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
<td>QT</td>
<td>6832</td>
<td>6842</td>
<td>6842</td>
<td>6894</td>
<td>62</td>
<td>6880</td>
</tr>
<tr>
<td>001</td>
<td>010</td>
<td>QT</td>
<td>4463</td>
<td>4449</td>
<td>4453</td>
<td>4543</td>
<td>80</td>
<td>4490</td>
</tr>
<tr>
<td>100</td>
<td>011</td>
<td>T</td>
<td>3951</td>
<td>3942</td>
<td>3949</td>
<td>3997</td>
<td>46</td>
<td>3960</td>
</tr>
<tr>
<td>100</td>
<td>011</td>
<td>T</td>
<td>3998</td>
<td>3991</td>
<td>3996</td>
<td>4032</td>
<td>34</td>
<td>3960</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
<td>QT</td>
<td>4003</td>
<td>4001</td>
<td>4009</td>
<td>4039</td>
<td>36</td>
<td>4030</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
<td>QT</td>
<td>7366</td>
<td>7356</td>
<td>7376</td>
<td>7426</td>
<td>60</td>
<td>7380</td>
</tr>
<tr>
<td>100</td>
<td>011</td>
<td>T</td>
<td>3544</td>
<td>3540</td>
<td>3549</td>
<td>3584</td>
<td>40</td>
<td>3570</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
<td>QT</td>
<td>4126</td>
<td>4121</td>
<td>4125</td>
<td>4158</td>
<td>32</td>
<td>4200</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
<td>QT</td>
<td>7086</td>
<td>7076</td>
<td>7096</td>
<td>7146</td>
<td>60</td>
<td>7010</td>
</tr>
</tbody>
</table>

where Cᵢⱼkm are the elastic stiffness constants presented in the matrix form \(C_{ij} = C_{ijkm} \), \(il \rightarrow \lambda = 1, \ldots , 6 \), \(km \rightarrow \mu = 1, \ldots , 6 \) (Ref. 18), \(e_{imi} \) and \(e_{pqk} \) are the piezoelectric tensor coefficients presented in the matrix form \(e_{ilm} = e_{imi}, \) \(mi \rightarrow \lambda = 1, \ldots , 6 \) (Ref. 18), and \(e_{rs} \) are the dielectric tensor constants. We report first a complete determination of the elastic constant matrix via the measurements of the ultrasonic phase velocities along different crystallographic directions. Direct and simple relations between measured velocities and elastic constants are possible only for the four stiffness constants, namely, \(C_{11}, C_{12}, C_{44}, \) and \(C_{66}. \) The remaining two constants \(C_{33} \) and \(C_{13} \) occur, coupled together with piezoelectric coefficients in more complicated relationships. The determination of all six elastic stiffness constants of the trigonal system is therefore demanding, both experimentally and computationally, and requires measurements of the velocities of the longitudinal (L), quasilongitudinal (QL), transverse (T), or quasitransverse (QT) ultrasonic waves in at least six different directions: [100], [010], [001], [110], [101], and [011]. Table I gives the details regarding the propagation direction and polarization of ultrasonic waves used in the study. For the piezoelectric crystals, the relationships between measured

Ref. 13–17; however, the magnitudes of the same elastic constants or piezoelectric coefficients obtained in these works in many cases considerably deviate each other. Such discrepancies in principle may have a number of reasons, one of which could be the different or sometimes even uncontrolled crystal quality of materials used in these studies. This fact has stimulated us to perform again the elastic measurements of pure LiNbO₃ on the samples supplied by three different companies, namely, Scientific Research Co. (SRC) “Carat” (Lviv, Ukraine), Bogorodeck Chemical Co. (Bogorodeck, Russia), and Yamatsu Corporation (Japan) called hereafter as smp-1, smp-2, and smp-3, respectively. LiNbO₃:MgO crystals (7% of MgO in melt composition) has been synthesized by SRC “Carat.” Importantly, a required set of acoustic, piezo-optic, dielectric, and other measurements has been performed in each case on the same samples that have been previously very carefully selected by means of polarization microscope in order to choose the ones of best quality being free from growth strains, microcracks, or other defects.

The crystals LiNbO₃:MgO, like pure LiNbO₃, are characterized by the point group symmetry \(3m \). The tensor constants of physical properties are usually referred to an orthorhombic system, \(X = 1, Y = 2, \) and \(Z = 3, \) which in the case of the trigonal structure \(3m \) possess a standard orientation where its \(Z \)-axis is chosen parallel to the optical axis and coincides with a threefold axis. Accordingly, in the principal crystallographic coordinate system, LiNbO₃ and LiNbO₃:MgO crystals are characterized by six independent elastic stiffness constants, four independent piezoelectric coefficients, and two independent dielectric constants, as shown below,\(^{16}\)

\[
C_{11} C_{12} C_{13} C_{14} 0 0 0 -e_{22} e_{31} \\
C_{12} C_{11} C_{13} -C_{14} 0 0 0 e_{22} e_{31} \\
C_{13} C_{11} C_{33} 0 0 0 0 e_{33} \\
C_{14} -C_{14} 0 C_{44} 0 0 0 e_{15} 0 \\
0 0 0 0 C_{44} C_{14} e_{15} 0 0 , \\
0 0 0 0 C_{14} C_{66} -e_{22} 0 0 \\
0 0 0 0 e_{15} -e_{22} e_{11} 0 0 \\
-e_{22} e_{22} 0 e_{15} 0 0 0 e_{11} 0 \\
e_{31} e_{31} e_{33} 0 0 0 0 e_{33}
\]

where \(e_{ijkm} \) are the dielectric tensor constants.
velocities, \(V \), the elastic stiffness constants, \(C_{ijklmn} \) and piezoelectric coefficients, \(e_{lm} \) and \(e_{pqk} \), follow from the Christoffel equation:
\[
\rho V^2 \delta_{ik} - C_{ijklmn} \mu_{im} - \left(\frac{e_{lm} \mu_{im} (e_{pqk} \mu_{kp})}{\varepsilon_0 \varepsilon_r \mu_{ir}} \right) = 0,
\]
where \(\rho \) is the crystal density, \(n_i, n_m, n_p, n_q, n_r, \) and \(n_s \) are the components of the unit vector \(n \) coinciding with the direction of sound propagation, \(\delta_{ik} \) is the Kronecker delta function, and \(\varepsilon_0 \varepsilon_r \mu_{ir} \) is the vacuum permittivity. In the case of point group 3m, Eq. (1) is translated to the following relations:
\[
C_{11} = \rho V_{1,1}^2,
\]
\[
C_{44} = \rho V_{1,3}^2,
\]
\[
C_{66} = \rho V_{1,2}^2,
\]
\[
C_{33} = \rho V_{3,3}^2 - \frac{e_{33}^2}{\varepsilon_0 \varepsilon_{33}},
\]
\[
e_{33} = \frac{e_{15} e_{33}}{e_{22}} = \sqrt{\frac{e_{15}^2}{e_{22}} \left(\frac{1 + e_{33}^2}{e_{22}^2} \right) - \frac{e_0^2 (\rho V_{4,4}^2 + V_{4,4}^2) - 2 \alpha \rho V_{3,3}^2 - C_{44}}{e_{22} + e_{33}}}.
\]
where \(\alpha = \frac{1}{2} (C_{11} - 2C_{14} + C_{44}) + (e_{22} + e_{15} + e_{31})^2 / 2e_0(e_{22} + e_{33}). \)

Here, \(V_{ij} \) are the sound velocities where the indices \(i \) and \(j \) = 1, 2, 3, 4 or 4 denote the wave polarization and propagation directions, respectively, the index with value 4 defines the diagonal, i.e., 45° direction between the positive directions (according to Institute of Radio and Engineering (IRE) standards) of the axes \(X_2 \) and \(X_3 \), whereas the index with value 4 defines the direction perpendicular to the direction 4. Further determination of elastic and piezoelectric constants is based on measured sound velocities. A set of ultrasonic geometries required for a complete determination of the elastic and piezoelectric tensors is given in Table I. The sequence of the calculations is the following. One should determine first the elastic constants \(C_{11}, C_{14}, C_{44}, \) and \(C_{66} \) by means of Eqs. (2) and (3); then, the piezoelectric constants \(e_{15}, e_{22}, e_{31}, \) and \(e_{33} \) are calculated using Eqs. (7)–(10), and finally the elastic stiffness constants \(C_{33} \) and \(C_{13} \) are determined by means of Eqs. (4)–(6).

The velocities of the L, QL, T, and QT ultrasonic waves were measured by the pulse-echo overlap method (Papadakis) with an absolute accuracy of about 0.1%. The longitudinal and transverse acoustic waves in the samples were excited by LiNbO\(_3\) transducers (resonance frequency \(f = 10 \text{ MHz} \), bandwidth \(\Delta f = 0.1 \text{ MHz} \), and acoustic pulse power \(P_a = 1 - 2 \text{ W} \)). The results of acoustic measurements in LiNbO\(_3\) (smp-1, smp-2, and smp-3) and LiNbO\(_3\):MgO crystals are given in Table I. One can realize that the velocity magnitudes determined for different samples of pure LiNbO\(_3\) crystals only insignificantly differ with each other and in most cases remain within the experimental error. Alternatively, small differences in sound velocities can also be attributed to eventually different technologies of crystal growth. By comparing the results for pure and MgO-doped LiNbO\(_3\) crystals, some tendencies must be admitted; in particular, sound velocities are larger for LiNbO\(_3\):MgO crystals. The corresponding difference \(\Delta V_{ij} = V_{ij} (\text{LiNbO}_3; \text{MgO}) - V_{ij} (\text{LiNbO}_3, \text{smp}-1) \) appears in the range of 29–94 m/s, i.e., considerably exceeds the magnitude of an experimental error.

The elastic stiffness constants and piezoelectric coefficients have been determined by means of Eqs. (2)–(10) using measured magnitudes of sound velocities \(V_{ij} \) (Table I), measured crystal densities \(\rho = 4.628 \times 10^3 \text{ kg/m}^3 \) (LiNbO\(_3\)) and \(\rho = 4.638 \times 10^3 \text{ kg/m}^3 \) (LiNbO\(_3\):MgO), and measured dielectric constants \(e_{11} = e_{33} = 44 \text{ and } e_{33} = 27.9 \), which for both crystals have been found at the same magnitudes within the experimental error. Accordingly, Table II presents complete sets of elastic stiffness constants \(C_{ijkl} \), piezoelectric coefficients \(e_{ij} \), piezoelectric moduli \(d_{ij} = e_{ij} S_{\mu\nu} \), and elastic compliances \(S_{\mu\nu} = C_{ijkl} \). The errors have been
TABLE II. Calculated piezoelectric coefficients e_{ij}, piezoelectric moduli d_{ij}, elastic stiffness constants C_{ij}, and elastic compliances S_{ij} of pure and MgO-doped lithium niobate crystals.

<table>
<thead>
<tr>
<th></th>
<th>LiNbO$_3$ (smp-1)</th>
<th>LiNbO$_3$ (smp-2)</th>
<th>LiNbO$_3$ (smp-3)</th>
<th>LiNbO$_3$:MgO</th>
<th>Ref. 13</th>
<th>Ref. 14</th>
<th>Ref. 15</th>
<th>Ref. 16</th>
<th>Ref. 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piezoelectric constants (C/m2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{15}</td>
<td>3.67±0.03</td>
<td>3.71±0.03</td>
<td>3.63±0.03</td>
<td>3.75±0.03</td>
<td>3.61</td>
<td>3.60</td>
<td>3.7</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>e_{22}</td>
<td>2.38±0.06</td>
<td>2.38±0.06</td>
<td>2.38±0.06</td>
<td>2.32±0.06</td>
<td>2.40</td>
<td>2.52</td>
<td>2.5</td>
<td>2.43</td>
<td>2.5</td>
</tr>
<tr>
<td>e_{31}</td>
<td>0.34±0.14</td>
<td>0.29±0.14</td>
<td>0.37±0.14</td>
<td>0.40±0.15</td>
<td>0.28</td>
<td>0.75</td>
<td>0.2</td>
<td>0.23</td>
<td>⋯</td>
</tr>
<tr>
<td>e_{33}</td>
<td>1.6±0.9</td>
<td>1.6±0.9</td>
<td>1.7±1.1</td>
<td>1.1±0.6</td>
<td>1.59</td>
<td>1.67</td>
<td>1.3</td>
<td>1.33</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Piezoelectric moduli (10$^{-12}$ C/N)									
d_{15}	66.6±0.5	67.9±0.5	65.8±0.5	66.6±0.5	65.36	64.3	68	69.2	78
d_{22}	20.1±1.3	19.8±1.3	20.1±1.3	19.2±1.2	20.29	20.6	21	20.8	19.2
d_{31}	−0.57±1.85	0.44±1.50	−0.57±2.0	0.40±1.34	−1.22	1.15	−1	−0.85	1.3
d_{33}	6.9±4.5	4.2±2.8	7.3±5.3	4.1±2.7	8.27	6.53	6	6.0	18.9

Elastic constants (GPa)									
C_{11}	199.2±0.4	198.6±0.4	199.9±0.4	205.4±0.4	199	202	203	203.0	199
C_{12}	54.7±0.5	54.7±0.5	55.6±0.5	57.2±0.5	53.8	55.7	53	57.3	⋯
C_{13}	70±19	69±20	70±23	74±11	71.4	69	75	75.2	74.2
C_{14}	7.9±0.1	7.8±0.1	7.8±0.1	7.9±0.1	7.85	7.48	9	8.5	7.7
C_{33}	240±11	238±12	240±14	249±5	237.2	240	245	242.4	238
C_{44}	59.9±0.1	59.8±0.1	60.0±0.1	60.9±0.1	⋯	60.7	60	59.5	⋯
C_{66}	72.2±0.1	71.9±0.1	72.2±0.1	74.1±0.1	⋯	72.9	75	72.8	⋯

Elastic compliances (GPa)$^{-1}$									
S_{11}	5.86±0.38	5.87±0.36	5.84±0.38	5.71±0.35	5.86	5.77	5.78	5.831	5.81
S_{12}	−1.16±0.38	−1.18±0.36	−1.18±0.38	−1.13±0.35	−1.12	−1.77	−1.01	−1.150	⋯
S_{13}	−1.37±0.41	−1.37±0.41	−1.37±0.41	−1.36±0.41	−1.43	−1.32	−1.47	−1.452	1.5
S_{14}	−0.93±0.02	−0.93±0.02	−0.91±0.02	−0.89±0.02	−0.91	−0.85	−1.02	−1.000	0.91
S_{33}	4.97±0.37	5.00±0.74	4.98±0.48	4.82±0.16	5.08	4.92	5.02	5.026	5.12
S_{44}	16.94±0.03	16.96±0.04	16.90±0.03	16.65±0.03	16.88	16.6	17.0	17.10	17.6
S_{66}	14.04±0.02	14.10±0.3	14.13±0.02	13.68±0.02	13.97	13.9	13.6	13.96	14

calculated in each case as mean square values taken over all errors of measured magnitudes that enter into Eqs. (2)–(10). For this reason, the error value is considerably smaller when corresponding magnitudes are calculated directly from the measured sound velocities only, which is the case of, e.g., C_{11}, C_{12}, C_{44}, and C_{66} elastic constants. The worst accuracy takes place when the magnitude of the elastic constant C_{13} is determined since one deals in this case with rather complicated relationships (5) and (6), which couples to the velocities together with a large number of piezoelectric coefficients. The sign of the elastic constant C_{14} has been determined according to the rule19 defining the positive directions for X_{1} and X_{2} axes. Comparing the magnitudes of corresponding tensor constants that have been determined for smp-1, smp-2, and smp-3 of pure LiNbO$_3$, one can find a satisfactory agreement, usually within the experimental errors, which indeed verifies the used experimental technique and the developed methodology.

III. PHOTOElastic TENSOR COEFFICIENTS OF LINOBO$_3$ AND LINBO$_2$:MGO CRYSTALS

Photoelasticity is usually explained in terms of the optical anisotropy induced by a lattice distortion and plays a key role in mechanisms of acousto-optic light diffraction or photoelastic light modulation. In a classical meaning, the photoelastic effect describes the change in the optical polarization tensor constants a_{ij} caused by internal mechanical strains u_{ij}, which in the linear regime is expressed as

$$\Delta a_{ij} = p_{in} u_{ij},$$

(11)

where p_{in} is the tensor of photoelastic coefficients presented in the matrix form $[p_{in} = p_{ijk}, lk \leftrightarrow i=1, \ldots, 6, jr \leftrightarrow n =1, \ldots, 6$ (Ref. 18)]. Following Eq. (11), the photoelastic coefficients p_{in} could be, in principle, directly determined by measuring a strain induced optical refraction or birefringence, which in practice is not so easy or even impossible.
due to a problem related to a precise determination of the internal strain tensor n_i inside the crystal sample. Alternatively, the photoelastic coefficients can be determined by acousto-optical methods; however, such techniques are rather ambiguous in the determination of the sign of photoelastic coefficients. A solution of this problem lies in piezo-optical measurements in which the tensor of piezo-optic coefficients $\pi_{im} = \pi_{ikj} \{k \rightarrow i = 1, \ldots, 6, j \rightarrow m = 1, \ldots, 6 \}$ (Ref. 18) is determined via measuring a strain induced changes in the refractive indices n_i and then calculated as $\pi_{im} = \Delta(n_i^2)/\sigma_m$, where σ_m is the stress applied to the sample. Such measurements may be quite accurate, taking into account a well defined magnitude of applied σ_m and precise interferometric techniques that are usually used to measure n_i and Δn_i. The photoelastic coefficients are expressed then through the tensors of piezo-optic coefficients as

$$p_{im} = \pi_{im} C_{mn},$$

and can be easily determined if a complete set of the elastic tensor constants C_{mn} is known.

A complete set of piezo-optic tensor coefficients of pure and MgO-doped LiNbO$_3$ crystals has been reported in our recent work. The piezo-optic measurements were performed exactly on the same samples (smp-1, SRC “Carat”), i.e., on those ones for which the elastic constant tensors have been measured later (see Table II). The magnitudes of the piezo-optic coefficients are given in Table III. Table IV presents in the first two columns the photoelastic tensor coefficients of LiNbO$_3$ and LiNbO$_3$:MgO crystals, as calculated by means of Eq. (12), and the data presented in Tables II and III. For comparison, it lists also the magnitudes of photoelastic coefficients of pure LiNbO$_3$ crystals (see columns marked by Refs. 22–30) obtained by other authors, preferably applying the Dixon–Cohen technique. The accuracies accompanying the calculated magnitudes of photoelastic coefficients (see the first two columns of Table IV) represent mean square errors being evaluated as

$$\delta p_{im} = \left(\left(\delta \pi_{im} \right)^2 (C_{mn})^2 + (\pi_{im})^2 (\delta C_{mn})^2 \right)^{1/2},$$

where $\delta \pi_{im}$ and δC_{mn} are the absolute errors taken from Tables II and III, respectively. Most of the photoelastic coefficients of pure LiNbO$_3$, which have been evaluated from measured piezo-optic coefficients and elastic constants, within the experimental error coincide with the results obtained by the Dixon–Cohen method in Refs. 22–30. It is also important that the photoelastic coefficients p_{11}, p_{14}, and p_{44} exhibit negative values consistent with those in Refs. 22 and 30. Such comparison indeed verifies a validity of the techniques offered in the present work. Doping of LiNbO$_3$ crystals by MgO does not lead to a considerable modification of their photoelastic properties. From Table IV, it follows that the magnitudes of corresponding photoelastic coefficients p_{im} of pure and MgO-doped LiNbO$_3$ crystals are close to each other, and their deviations appear in most cases within the experimental error.

IV. CONCLUSIONS

In conclusion, we present here the results of ultrasonic measurements of LiNbO$_3$ and LiNbO$_3$:MgO crystals. The tensors of piezoelectric coefficients, piezoelectric moduli, elastic stiffness constants, and elastic compliances are determined for both crystals at room temperature. Combining these data with the results obtained in previous piezo-optical studies, we have also calculated a complete set of the photoelastic coefficients in these materials. Doping of LiNbO$_3$ crystals by MgO does not lead to a considerable modification of their elastic and photoelastic properties. However, LiNbO$_3$:MgO is characterized by about four times higher resistance with respect to powerful light radiation, making it promising for future application in acousto-optic devices such as modulators and deflectors that deal with superpowerful laser radiation. Presented here are the complete sets of elastic constants and photoelastic tensor coefficients of LiNbO$_3$ and LiNbO$_3$:MgO crystals that may be used for geometry optimization of acousto-optical interaction providing the best diffraction efficiency of acousto-optical cells made of these materials. A spatial related analysis of the acousto-optic diffraction efficiency [figure of merit $M_2(\theta, \varphi)$] for both crystals will be published elsewhere soon.

ACKNOWLEDGMENTS

This work has been supported by Science and Technology Center in Ukraine (STCU) Project No. 4584.
