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Abstract

Local  ischemic  postconditioning  (IPost)  and  remote  ischemic  perconditioning  (RIPer)  are 

promising methods to decrease ischemia-reperfusion (I/R) injury. We tested whether the use 

of the two procedures in combination led to an improvement in cardioprotection through a 

higher activation of survival signaling pathways. 

Methods: Rats exposed to myocardial I/R were allocated to one of the following four groups: 

Control,  no intervention  at  myocardial  reperfusion; IPost,  three cycles  of 10-sec coronary 

artery  occlusion  followed  by  10-sec  reperfusion  applied  at  the  onset  of  myocardial 

reperfusion; RIPer,  10-min limb ischemia followed by 10-min reperfusion initiated 20 min 

after coronary artery occlusion; IPost+RIPer, IPost and RIPer in combination. 

Results:  Infarct size was significantly reduced in both IPost and RIPer (34.25±3.36% and 

24.69±6.02%,  respectively)  groups  compared  to  Control  (54.93±6.46%,  both  p<0.05). 

IPost+RIPer (infarct size=18.04±4.86%) was significantly more cardioprotective than IPost 

alone (p<0.05). RISK pathway (Akt, ERK1/2, and GSK-3β) activation was enhanced in IPost, 

RIPer,  and IPost+RIPer  groups  compared  to  Control.  IPost+RIPer  did not  enhance  RISK 

pathway activation as compared to IPost alone, but instead increased phospho-STAT-3 levels, 

highlighting the crucial role of the SAFE pathway. In IPost+RIPer, a SAFE inhibitor (AG490) 

abolished  cardioprotection  and  blocked  both  Akt  and  GSK-3β phosphorylations,  whereas 

RISK inhibitors (wortmannin  or  U0126) abolished  cardioprotection  and  blocked  STAT-3 

phosphorylation.

Conclusion:  In  our  experimental  model,  the  combination  of  IPost  and  RIPer  improved 

cardioprotection through the recruitment of the SAFE pathway. Our findings also indicate that 

cross talk exists between the RISK and SAFE pathways.
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Introduction

Acute  myocardial  infarction  (AMI)  is  a  leading  cause  of  morbidity  and mortality 

worldwide [41]. Although highly beneficial, prompt myocardial reperfusion is paradoxically 

associated with cellular injury including cardiomyocyte death [46]. Therefore, novel treatment 

strategies are required to protect the heart during myocardial reperfusion [15]. Local ischemic 

postconditioning (IPost), during which repeated brief episodes of ischemia/reperfusion (I/R) 

are applied at the onset of reperfusion, has emerged as a promising cardioprotective therapy 

against lethal reperfusion injury [61]. IPost has been shown to exert its cardioprotective effect 

by activating  intrinsic  pro-survival  signaling  cascades  such  as  reperfusion  injury  salvage 

kinase (RISK) pathway and the recently-described survivor  activating  factor  enhancement 

(SAFE)  pathway  [3-5,  16,  23,  35,  56].  However,  in  the  setting  of  an  AMI,  the  clinical 

application of IPost is limited to patients  undergoing coronary angioplasty.  In this regard, 

remote  ischemic  pre-,  per-,  and  postconditioning  are  attractive  new strategies  to  prevent 

myocardial injury. In each case, cardioprotection can be achieved by transient episodes of I/R 

applied to an organ or to tissue remote from the heart before, during, or immediately after 

myocardial ischemia [19, 25, 31, 48]. These new strategies have been shown to be effective in 

reducing myocardial reperfusion injuries in both experimental and clinical settings [2, 7, 13, 

30, 38, 40], although their mechanisms are largely unknown. The aims of the present study 

were  threefold:  1)  to  examine  whether  remote  ischemic  perconditioning  (RIPer)  was  as 

effective  as  IPost  in  the  same  experimental  model  of  AMI;  2)  to  determine  whether  the 

combination  of  IPost  and  RIPer  allowed  for  additional  cardioprotection  compared  to  the 

administering  of  either  treatment  alone;  3)  to  clarify  the  intracellular  signaling  pathways 

involved in these cardioprotective strategies.

Methods
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All experiments were performed in accordance with the Guide for the Care and Use of  

Laboratory Animals published by the US National Institutes of Health (NIH Publication No 

85 (23), revised 1996). Our regional Animal Care and Use Committee approved the protocol. 

Surgical preparation

For all experiments, male Wistar rats, 8-10 weeks of age, weighing 250-300g, were 

used. All animals were anesthetized with an intraperitoneal injection of sodium pentobarbital 

(60 mg/kg) and endotrachealy intubated with a 16-gauge tube. Animals were ventilated using 

a small  animal ventilator (SAR-830 A/P, CWE). Body core temperature was continuously 

monitored  throughout  the  surgical  procedure  and  maintained  at  36-38°C  using  a 

homeothermic  blanket  set,  connected to a  temperature control unit  (HB101/2 RS, Bioseb, 

France). The chest was opened via a median sternotomy. The pericardium was removed, the 

heart was exposed, and a 7-0 monofilament suture (Premio 7.0, Peters Surgical) was placed 

around the proximal portion of the left anterior descending coronary artery (LAD) and passed 

through  a  short  piece  of  tubing  (PE50)  in  order  to  create  a  reversible  snare.  Following 

stabilization of the heart,  coronary occlusion was initiated by clamping the snare onto the 

epicardial surface directly above the coronary artery. Ischemia was confirmed by epicardial 

cyanosis below the suture and dyskinesis of the ischemic region. After 40 min of occlusion, 

reperfusion  was  achieved  by  loosening  the  snare  and  confirmed  by  a  marked  hyperemic 

response at reperfusion. 

Study groups and experimental protocol

For myocardial infarct size and apoptosis analysis, rats underwent 40 min of LAD occlusion 

followed by 2 hours of reperfusion. Rats were randomly assigned to one of four groups (Fig. 

1): Control (no further intervention, n=6); local ischemic postconditioning (IPost, n=7),  i.e., 
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three  cycles  of  10-sec  ischemia  followed  by  10-sec  reperfusion  initiated  at  the  onset  of 

reperfusion as previously described [32, 33, 54, 60]; remote ischemic perconditioning (RIPer, 

n=6),  i.e., 10-min  limb  ischemia  followed  by  10-min  reperfusion  initiated  20  min  after 

coronary  artery  occlusion  [10,  43];  combination  of  local  ischemic  postconditioning  and 

remote ischemic perconditioning (IPost+RIPer, n=6). RIPer was achieved using a thin elastic 

rubber band placed around the upper third of one hindlimb in order to occlude arterial blood 

flow for 10 min followed by 10-min reperfusion. Limb ischemia was confirmed by a change 

in  the  color  of  the  skin  and  a  decrease  in  under-skin  limb  temperature. Following  limb 

reperfusion, the skin color returned to pink and the under-skin temperature to baseline. 

To determine the involvement of RISK and SAFE pathways in IPost-,  RIPer-, and 

IPost+RIPer-induced cardioprotection,  we administered  several  pharmacological  inhibitors: 

wortmannin  (Wort),  an  inhibitor  of  PI3K/Akt  pathway;  U0126,  an  inhibitor  of  MEK1/2-

ERK1/2 pathway;  AG490, an inhibitor of JAK/STAT pathway.  Thus, eight further groups 

were added to the study (n=6 rats/group): IPost+Wort (15 µg/kg); IPost+U0126 (200µg/kg); 

RIPer+Wort; RIPer+U0126; IPost+RIPer+Wort; IPost+RIPost+U0126; IPost+RIPost+AG490 

(3mg/kg) (Fig. 1). Intravenous bolus injection of pharmacological inhibitors was performed 

25 min prior to myocardial reperfusion [44]. 

Area at risk and infarct size determination

At the end of the 2-hour reperfusion period, infarct size was measured in all groups. 

The heart was removed, and the LAD was reoccluded using the monofilament suture kept in 

place. The heart was then retrogradely perfused with Evans blue (1%) in order to delineate the 

area  at  risk.  Hearts  were  then  cut  into  five  to  six  slices  from apex to  base  followed by 

incubation at 37°C in a 1% solution of phosphate-buffered 2,3,5-triphenyltetrazolium chloride 
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(TTC) so as to delineate infarcted myocardium. Slices were then fixed in formalin 10%, and 

infarct  size  was  quantified  by  computerized  planimetry  using  image  J  software.  Area  of 

necrosis (AN) was expressed as a percentage of the area at risk (AAR) and the area at risk as a 

percentage of the total ventricular area (LV). 

Evaluation of apoptosis 

The detection of apoptotic cells in  four to seven hearts from each group was carried 

out  using  the  terminal  deoxynucleotidyl  transferase-mediated  dUTP  nick  end  labeling 

(TUNEL) method. Following infarct size assessment, LV tissues from the ischemic zone and 

from the remote myocardium were fixed in formalin for 24 hours and embedded in paraffin, 

and 5-µm sections were obtained. The sections were then deparaffinized and rehydrated with 

xylene and graded alcohol series. The sections were stained using the  in situ DeadEndTM 

Colorimetric  Apoptosis  Detection  System  (Promega,  Madison,  WI)  according  to  the 

manufacturer’s instructions. In short, tissue sections were washed in PBS and then fixed in 

4% paraformaldehyde  solution  prior  to  incubation  in  20µg/ml  proteinase  K  for  10  min. 

Sections  were  washed  in  PBS  and  incubated  with  terminal  deoxynucleotidyl  transferase 

enzyme in a humidified chamber  at  37°C for 60 min in order to  incorporate  biotinylated 

nucleotides at the 3’-OH DNA ends. The reaction was terminated by transferring the slices to 

2X saline sodium citrate.  Endogenous peroxidase activity  was  quenched by incubation  in 

0.3%  hydrogen  peroxide.  Finally,  streptavidin  horseradish  peroxidase  was  bound  to  the 

biotinylated nucleotides,  and peroxidase activity  in  each section was demonstrated by the 

application of a stable chromogen diaminobenzidine. When using this procedure, apoptotic 

nuclei were stained dark brown. The sections were counterstained with hemotoxylin for total 

nuclei  counting.  Staining was viewed using an Olympus  BX40 microscope and analyzed. 

Two sections  from each myocardial  sample  were  randomly selected,  and  10  microscopic 
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fields per section were evaluated by a blind observer. In each field, the nuclei were counted, 

and the percentage of TUNEL-positive nuclei was calculated.

Immunoblotting of survival kinases

In an additional set of experiments, rat hearts underwent 40-min coronary occlusion and were 

collected at 15-min reperfusion for analysis of protein phosphorylation [35, 59]. Rats were 

randomly assigned to one of four groups: Control (n=6); local ischemic postconditioning 

(IPost, n=5); remote ischemic perconditioning (RIPer, n=7); combination of local ischemic 

postconditioning and remote ischemic perconditioning (IPost+RIPer, n=6). Western blots 

were performed on myocardium from the area at risk. The ventricular tissue at risk was 

excised and freeze-clamped in liquid nitrogen (between stainless steel tongues precooled with 

liquid nitrogen) before being stored at -80°C. Frozen myocardial tissue samples were 

powdered in a mortar and pestle precooled to the temperature of liquid nitrogen. 

Approximately 100mg of powdered ventricular tissue were used for protein extraction. Frozen 

myocardial tissue samples were homogenized on ice in 0.5ml ice-cold lysis buffer containing 

30mM HEPES, 20mM KCl, 2.5mM EGTA, 2.5mM EDTA, 40mM sodium fluoride, 4mM 

sodium pyrophosphate, 1mM sodium orthovanadate, 10% glycerol, 1% Nonidet P-40, a 

phosphatase inhibitor cocktail (Sigma), and a protease inhibitor cocktail (Complete mini, 

Roche Applied Science, Mannheim, Germany). The homogenate was centrifuged at 

13,000rpm at 4°C for 1 hour, and the resulting supernatant was collected. Protein 

concentration was determined using Bio-Rad DC protein assay kit (Bio-Rad, Hercules, CA) 

according to the manufacturer’s instructions. Aliquots of the supernatant containing equal 

amounts of proteins (40µg) were heated to 95°C for 5 min in sample loading buffer. Proteins 

were separated on a 10% SDS-PAGE gel and transferred to a nitrocellulose membrane 

(Amersham Bioscience). After the nonspecific binding sites with 5% nonfat milk were 
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blocked for 1 hour in Tris-buffered saline Tween (TBST) containing 20mM Tris-HCl, 

137mM NaCl (pH 7.6), and 0.1% Tween-20, the membranes were incubated overnight at 4°C 

with rabbit antibodies against 473Ser-phospho-Akt, total Akt, phospho-ERK1/2, total ERK1/2, 

9Ser-phospho-GSK-3β, total GSK-3β, 705Tyr-phospho-STAT-3, and total STAT-3 (all from 

Cell Signaling Technology). Beta-actin (Sigma Aldrich) was used as a loading control. After 

being washed in TBST, the membranes were incubated for 1 hour at room temperature with 

horseradish peroxidase conjugated anti-rabbit IgG secondary antibody (1/2000, Santa Cruz 

Biotechnologies), and the bound antibody was detected using an enhanced 

chemiluminescence Western blotting kit (Santa Cruz Biotechnologies). The densities of the 

bands with appropriated molecular mass (60kDa for Akt, 42/44kDa for ERK1/2, 46kDa for 

GSK-3β, and 80kDa for STAT-3) were determined semi-quantitatively using a lumino-image 

analyzer, LAS-3000 mini (Fujifilm, Tokyo, Japan).

Chemicals

Pentobarbital was obtained from Céva Santé Animal. Wortmannin and U0126 were 

purchased from Sigma-Aldrich and AG490 from Tocris. Wortmannin, U0126, and AG490 

were dissolved in DMSO and diluted into saline in order for the vehicle to constitute less than 

1% of the total volume injected.

Statistics

All values were expressed as mean±SEM. Statistical analyses were performed using 

StatView 5.0 software. Differences between groups were evaluated using one-way ANOVA, 

followed  by  post  hoc Fisher’s  least  significant  difference  (LSD)-corrected  multiple 

comparison test. P values <0.05 were considered statistically significant.
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Results

RIPer combined with IPost shown to be more protective than IPost alone

The area at  risk/LV ratio (AAR/LV)  did not differ  among the groups (Fig. 2).  As 

compared with Control, both IPost and RIPer treatments significantly decreased infarct size 

(AN/AAR=54.93±6.46% in Control, 34.25±3.36% in IPost, and 24.69±6.02% in RIPer, both 

p<0.05 vs. Control; Fig. 2). Similarly, both IPost and RIPer treatments significantly reduced 

the number of TUNEL-positive cells observed after 2 hours of reperfusion in the area at risk 

(20.59±5.9% and 17.8±2.91%, respectively) as compared with Control (37.23±5.89%, both 

p<0.05; Fig. 3). On the contrary, neither treatment affected the level of apoptotic nuclei in the 

remote myocardium (Fig. 3). Interestingly, the combination of treatments, IPost+RIPer, was 

significantly  more  effective  in  reducing  infarct  size  as  compared  with  IPost  alone 

(18.04±4.86% vs. 34.25±3.36%, p<0.05). 
RIPer combined with IPost involved RISK and SAFE pathways

There was no significant difference in total Akt, ERK1/2, GSK-3β and STAT-3 

protein levels in all study groups. Therefore, phospho-Akt, phospho-ERK1/2, phospho-GSK-

3β and phospho-STAT-3 levels were expressed as densitometric levels normalized by their 

total protein levels [11, 54].

As illustrated in Fig. 4a, phospho-Akt levels at 15 min of reperfusion were 

significantly enhanced in IPost compared with Control (p<0.05). Furthermore, there was a 

trend towards increased levels of phospho-ERK1/2 compared with Control (p=0.11; Fig. 4b). 

Logically, GSK-3β phosphorylation as a downstream target of Akt and ERK1/2 was 

significantly increased in IPost as compared with Control (p<0.05; Fig. 4c). 

Akt, ERK1/2, and GSK-3β phosphorylations were significantly increased in RIPer as 

compared with Control (all p<0.05; Fig. 4a, b, and c).
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The IPost+RIPer  treatment  significantly  increased  Akt,  ERK1/2,  and  GSK-3β  as 

compared with Control (all p<0.05; Fig. 4a, b, and c). While the IPost+RIPer treatment was 

more effective in decreasing infarct size than IPost alone, none of the tested proteins from the 

RISK  pathway  (Akt,  ERK1/2,  and  GSK-3β)  were  significantly  more  phosphorylated  in 

IPost+RIPer than in IPost alone (Fig. 4), suggesting that another signaling pathway might 

play a role in the enhanced cardioprotection afforded by this combination. When testing the 

SAFE pathway, phospho-STAT-3 levels were not significantly increased following IPost or 

RIPer  administered  alone.  Interestingly,  the  IPost+RIPer  combination  highly  increased 

phospho-STAT-3 levels as compared with the Control, IPost, and RIPer groups (all  p<0.05) 

(Fig. 5). 

SAFE and RISK pathway interactions

In order to further explore the respective role of RISK and SAFE pathways in the 

cardioprotection induced by IPost, RIPer, and IPost+RIPer, pharmacological inhibitors were 

administered. As shown in Fig. 4d, the protective effect of IPost was completely abolished by 

the treatment with wortmannin, an inhibitor of PI3K/Akt signaling pathway, and with U0126, 

an inhibitor of MEK1/2. Similarly, wortmannin and U0126 fully prevented RIPer-mediated 

cardioprotection (Fig. 4d). The protective effect of IPost+RIPer was completely abolished by 

the treatment with wortmannin and U0126 (Fig. 4d). Surprisingly, cardioprotection induced 

by the IPost+RIPer combination was also completely abolished by AG490, a pharmacological 

inhibitor of the JAK/STAT pathway (Fig. 6). 

In  order  to  clarify  whether  RISK  and  SAFE  pathways  interact,  we  examined 

phosphorylation  of  survival  kinases  from RISK  (Akt,  ERK1/2,  and  GSK-3β)  and  SAFE 

(STAT-3) pathways following administration of pharmacological inhibitors (wortmannin and 

U0126 as  inhibitors  of  RISK,  and  AG490 as  an  inhibitor  of  SAFE).  In  the  presence  of 
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AG490, IPost+RIPer-induced phosphorylation of ERK1/2 was significantly reduced (p<0.05; 

Fig.  7b).  Akt  phosphorylation  was  also  reduced,  although  the  difference  did  not  reach 

statistical significance (p=0.10; Fig 7a). Phosphorylation of the downstream GSK-3β induced 

by the IPost+RIPer combination was abolished in the presence of AG490 (p<0.05; Fig 7c). 

Conversely, IPost+RIPer-induced STAT-3 phosphorylation was completely abolished in the 

presence of wortmannin or U0126 (both p<0.05 vs. IPost+RIPer; Fig. 7d). 

Discussion

The present study shows that RIPer was as effective as IPost in decreasing myocardial 

reperfusion  injury  in  a  rat  model  of  I/R.  Additionally,  the  IPost+RIPer  combination was 

superior to IPost alone through recruitment of the SAFE pathway. Our present findings also 

indicate that cross talk exists between the RISK and SAFE signaling pathways in this model.

The cardioprotective effect of RIPer was first reported by Kerendi et al. in 2005 [30]. 

In a rat model of myocardial I/R, a single 5-min episode of renal artery occlusion followed by 

renal reperfusion 1 min prior to myocardial reperfusion reduced myocardial infarct size by 

nearly  50%.  Later  protocols  using  limb  ischemia  as  a  stimulus  of  RIPer  reported 

cardioprotective effect in various animal models including rats [59], rabbits [38], and pigs [2]. 

Furthermore,  remote  pre-  and  perconditioning  have  been  shown  to  be  applicable  to  the 

clinical  setting  [1,  7,  17,  26,  40,  47,  49,  55].  Remote  conditioning  stimuli,  consisting  of 

transient limb ischemia applied before or during a prolonged ischemic insult, reduced vascular 

I/R injury in humans [40]. More recently, Botker et al. tested the effect of RIPer in patients 

with AMI [7]. Interestingly, intermittent arm ischemia with four cycles of 5-min inflation and 

5-min  deflation of a  blood-pressure cuff  taking place in  the ambulance  during transfer to 

primary  PCI was  shown  to  significantly  increase  myocardial  salvage  [7].  While  the 
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mechanisms  of  local  IPost  have  been  extensively  studied,  the  protective  mechanisms 

underlying  remote  ischemic  conditioning  are  still  poorly  understood.  It  is  assumed  that 

soluble mediators transported through the circulation play a critical role [9], although they 

remain to be identified [19, 39]. 

Multiple signaling pathways have been demonstrated to participate in infarct reduction 

by IPost [28]. During early reperfusion, IPost can activate prosurvival kinases, including Akt 

and ERK1/2, which are key components of the RISK pathway. This activation results in the 

inhibition  of  the mitochondrial  permeability  transition pore (mPTP)  mediated  through the 

phosphorylation and subsequent inhibition of GSK-3β [20, 24, 27]. More recently, IPost has 

been shown to activate the signal transducer and activator of transcription-3 (STAT-3) as part 

of  the  SAFE pathway [3,  5,  6,  16,  29,  35-37]. Emerging  evidence  indicates  that  remote 

conditioning may share common mechanistic signaling pathways with IPost [19, 45, 57, 58]. 

Heidbreder et al. [21] suggested that within the remote organ, the activation of the mitogen-

activated protein kinases (MAPKs), namely p38, ERK1/2, and JNK, may contribute to remote 

preconditioning-induced  cardioprotection  [21].  They  demonstrated  that  remote 

preconditioning  induced  by  occlusion  of  the  mesenteric  artery  prior  to  coronary  artery 

occlusion activated MAPKs within the intestinal tissue but not within the myocardium [21]. 

Moreover, pharmacologic inhibition of these kinases abolished cardioprotection [21].  Using 

an  ex vivo rat heart model, the recent work by Breivik  et al. [8] demonstrated that effluent 

collected  during  ischemic  preconditioning,  when  administered  as  a  stimulus  of  remote 

postconditioning, could protect untreated recipient hearts from reperfusion-induced injury via 

a PI3K/Akt-dependent pathway [8].
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Hence, activation of the RISK pathway is a commonly-admitted mechanism involved 

in local ischemic pre- and postconditioning [18, 20]. However, in a porcine model of AMI, 

Schwartz et  al. reported  that  Akt  and  ERK  activation  through  IPost  did  not  have  any 

protective  effects  against  reperfusion injuries  [50].  Conversely,  Skyschally  et  al. revealed 

IPost-induced cardioprotection in pigs in the absence of any significant increase in ERK1/2 

and Akt phosphorylation [51]. In the latter study, the use of RISK pathway inhibitors did not 

abolish IPost-induced cardioprotection [51]. Moreover, isolated perfused mouse hearts with 

non-inhibitable forms of GSK-3 could still  be cardioprotected by IPost [42]. All  together, 

these controversial results have suggested the existence of an alternative signaling pathway 

and given this context,  IPost was proposed to protect  the ischemic heart from myocardial 

reperfusion injury through activation of either the RISK or SAFE pathway [12, 16, 22]. 

In the present study, the IPost+RIPer combination decreased infarct size to a larger 

degree than IPost alone. Similarly, Xin  et al. [59] recently showed that the combination of 

IPost (six cycles of 10-sec coronary reocclusion followed by 10-sec reperfusion) and RIPer 

(four cycles of 5-min limb ischemia followed by 5-min reperfusion) resulted in lower infarct 

size  as compared  with either  procedure alone.  The authors  showed that  Akt  and ERK1/2 

phosphorylations were increased when both strategies were used in combination [59]. The 

SAFE pathway was not explored in this study. In our work, the enhanced cardioprotective 

effect  observed  with  the  IPost+RIPer  combination  was  not  associated  with  enhanced 

activation of the RISK pathway but instead with increased phospho-STAT-3 levels, inferring 

a key role of the SAFE pathway. It must be underlined that the IPost and RIPer protocols used 

in the Xin et al. study notably differed from those used in our study. Interestingly, Boengler et  

al. demonstrated that mitochondrial STAT-3 could potentially contribute to cardioprotection 

by  inhibiting  mPTP  [6]. Combined  strategies  of  myocardial  ischemic  conditioning  may 
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increase tolerance of the myocardium to reperfusion injury by improving the balance between 

death and survival signals. 

Recent data suggests that the RISK and SAFE pathways likely interact in mediating 

IPost-induced cardioprotection  [12].  In  the  study by Goodman  et  al.,  administration  of  a 

STAT-3 inhibitor prevented the cardioprotective effects of IPost in a mouse model of I/R and 

abolished  IPost-induced  phosphorylation  of  both  Akt  and  STAT-3  [12].  These  findings 

highlight  that  Akt  may  be  a  downstream  target  of  STAT-3.  Using  cardiomyocytes  and 

isolated perfused hearts, Suleman  et al.  [53] previously demonstrated that both prosurvival 

signaling  pathways,  PI3K/Akt  and  JAK/STAT-3,  closely  interacted  during  ischemic 

preconditioning to promote maximal protection. Suleman’s study showed that inhibition of 

STAT-3 activation using AG490 inhibited Akt activation,  whereas inhibition of Akt using 

wortmannin decreased STAT-3 phosphorylation [53]. Both wortmannin and AG490 abolished 

the protection afforded by preconditioning in isolated perfused hearts [53]. In addition, Gross 

et al. reported a possible interaction between PI3K/Akt and SAFE pathways [14]. Using an in  

vivo rat heart model of I/R in conjunction with a H9C2 cell culture model, the authors showed 

that opioid-induced cardioprotection occurred via activation of both JAK/STAT-3 and PI3K/

Akt  pathways  [14].  Opioid-induced  Akt  phosphorylation  could  be  blocked  by  AG490, 

whereas  opioid-induced  STAT-3  phosphorylation  could  be  inhibited  by  wortmannin, 

suggesting an interaction between both pathways [14]. 

In  our work, both RISK and SAFE pathways were activated using the IPost+RIPer 

combination.  A  cross  talk  between  RISK and  SAFE pathways  was  suggested,  since  the 

inhibition of either  of them totally abolished the cardioprotective effect  obtained with the 

combination. We were able to confirm this interaction between RISK and SAFE when an 
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inhibitor  of  SAFE  abolished  Akt  and  GSK-3β  phosphorylation  and  conversely,  when 

inhibitors of RISK abolished STAT-3 phosphorylation. These findings indicate that cross talk 

exists in this model between the RISK and SAFE signaling pathways as summarized in Fig. 8.

Limitations

In the present study, we tested only one IPost protocol using three cycles of 10-sec 

ischemia/10-sec reperfusion applied at the onset of reperfusion, and only one RIPer protocol 

with one cycle of 10-min ischemia/10-min reperfusion initiated 20 min before the end of 

myocardial ischemia. Even if these protocols were previously validated in rat models of AMI 

[10, 32, 33, 43, 54, 60], differing results might have been obtained when using other 

protocols. As controversial results were reported with rat models testing IPost [52], our results 

must be further confirmed in others species. Another limitation of the study lies in the timing 

of the protein phosphorylation assessment. We chose 15-min reperfusion for assessing 

reperfusion salvage kinases, since both RISK and SAFE signaling pathways are activated at 

early reperfusion, and as changes in phosphorylation levels had already been described at 15-

min reperfusion [35, 59]. Also, our study did not explore the role of TNF-α, a critical 

component of the SAFE pathway [34]. Finally, data obtained with pharmacological inhibitors 

must be interpreted with caution, as these inhibitors likely act in a concentration-dependant 

manner. Lastly, it should be noted that AG490 is known to block JAK2, which is upstream of 

STAT-3. 

Conclusion

In our experimental model, RIPer was as effective as IPost in decreasing reperfusion injuries, 

while  the  IPost+RIPer  combination  improved  cardioprotection  through recruitment  of  the 
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SAFE pathway. In addition, our data reinforces the existing body of evidence suggesting a 

possible cross talk between the RISK and SAFE pathways. Further experimental and clinical 

studies  are  required  to  confirm  that  the  combination  of  local  and  remote  conditioning 

strategies is efficacious in further protecting the myocardium from reperfusion injuries.
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Figure captions

Fig. 1 Experimental protocols. All groups were subjected to 40-min coronary artery occlusion 

followed by either 120-min reperfusion for infarct size measurement and apoptosis or 15-min 

reperfusion  for  protein  phosphorylation  analysis.  Ischemic  postconditioning  (IPost)  was 

induced  by  three  cycles  of  10-sec  myocardial  ischemia/10-sec  myocardial  reperfusion. 

Remote ischemic perconditioning (RIPer) was achieved by 10-min limb ischemia followed by 

10-min  reperfusion.  Pharmacological  inhibitors  (wortmannin,  U0126,  and  AG490)  were 

administered as a bolus 25 min prior to myocardial reperfusion

Fig.  2  a Representative  sections  of  triphenyltetrazolium  chloride  (TTC)-stained  heart 

following 40-min ischemia and 120-min reperfusion.  b Tabulated data from TTC staining. 

Bar graph showing area of necrosis (AN) expressed as a percentage of area at risk (AAR) and 

AAR as a percentage of total LV area (LV). All data is expressed as mean±SEM. *p<0.05 vs. 

Control group, # p<0.05 vs. IPost group. n=6-7 in each group

Fig.  3 a Representative pictures from TUNEL-stained heart  tissue sections from ischemic 

area. Apoptotic cardiomyocyte nuclei appear brown-stained, whereas TUNEL-negative nuclei 

appear  blue  with  hematoxylin.  Heavy  staining  of  numerous  TUNEL-positive  nuclei  was 

observed  in  control  hearts.  b Bar  graph  showing  TUNEL-positive  nuclei  expressed  as  a 

percent of total nuclei in tissue sections from each group. *p<0.05 vs. Control hearts. n=4-7 

hearts in each group

Fig. 4 a to c Western blot analysis of Akt (a), ERK1/2 (b), and GSK-3β (c) phosphorylation 

in  rat  hearts  subjected  to  ischemia-reperfusion.  Top:  Representative  immunoblots  of 

phosphorylated Akt (p-Akt) and total Akt (a); phosphorylated ERK1/2 (p-ERK1/2) and total 
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ERK1/2 (b); phosphorylated GSK-3β (p-GSK-3β) and total GSK-3β (c) in LV homogenates 

from hearts subjected to ischemia-reperfusion.  Bottom: Bar graphs showing mean±SEM of 

the densitometry of p-Akt-to-Akt ratio (a), p-ERK1/2-to-ERK1/2 ratio (b), and p-GSK-3β-to- 

GSK-3β ratio (c). All data is expressed as mean±SEM. *p<0.05  vs. Control;  n=5-7 in each 

group. d Bar graph showing area of necrosis (AN) expressed as a percentage of area at risk 

(AAR) for each group in the absence or presence of wortmannin (wort) and U0126. All data is 

expressed as mean±SEM. *p<0.05 vs. Control; # p<0.05 vs. IPost; † p<0.05 vs. RIPer and £ 

p<0.05 vs. IPost+RIPer; n=6-7 in each group

Fig. 5 Western blot analysis of STAT-3 phosphorylation. Top: Example of immunoblots of 

phosphorylated STAT-3 (p-STAT-3), total STAT-3 and actin in LV homogenates from hearts 

subjected to ischemia-reperfusion. Bottom: Bar graphs showing means±SEM of the 

densitometry of p-STAT-3-to-STAT-3 ratio.*p<0.05 vs. Control group; # p<0.05 vs. IPost; † 

p<0.05 vs. RIPer; n=5-7 in each group. Note that example of immunoblots does not exactly 

reflect the mean value of all samples.

Fig. 6 Effect of AG490 on infarct size in IPost+RIPer combination. a Representative sections 

of rat hearts stained with triphenyltetrazolium chloride (TTC) after 40-min coronary artery 

occlusion  and  120-min  reperfusion.  b Tabulated  data  from  triphenyltetrazolium  chloride 

staining. Area of necrosis (AN) expressed as a percentage of area at risk (AAR) *p<0.05 vs. 

Control; £ p<0.05 vs. IPost+RIPer; n= 6 in each group

Fig. 7 Western blot analysis of Akt (a), ERK1/2 (b), GSK-3β (c), and STAT-3 (d) 

phosphorylations in the absence or presence of pharmacological inhibitors wortmannin (wort), 
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U0126 and AG490. *p<0.05 vs. Control; £ p<0.05 vs. IPost+RIPer; n= 6 in each group. Note 

that examples of immunoblots do not exactly reflect the mean value of all samples.

Fig.  8  Schematic  representation  illustrating  the  possible  interaction  between  reperfusion 

injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways at 

the early myocardial reperfusion phase in rats using IPost+RIPer combination

GSK-3β: glycogen synthase kinase 3 beta; ERK1/2: extracellular regulated kinase; STAT-3: 

signal transducer and activator of transcription-3; mPTP: mitochondrial permability transition 

pore; Wort: wortmannin
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