Noisy fluctuation of heart rate indicates cardiovascular system instability.
Résumé
Heart rate spontaneously fluctuates despite homeostatic regulatory mechanisms to stabilize it. Harmonic and fractal fluctuations have been described. Non-harmonic non-fractal fluctuation has not been studied because it is usually thought that it is caused by apparatus noise. We hypothesized that this fluctuation looking like apparatus noise (that we call “noisy fluctuation”) is linked to challenged blood pressure stabilization and not to apparatus noise. We assessed noisy fluctuation by quantifying the small and fastest beat-to-beat fluctuation of RR-interval by means of spectral analysis (Nyquist power of heart rate variability: nyHRV) after filtering out its fractal component. We observed nyHRV in healthy supine subjects and in patients with vasovagal symptoms. We challenged stabilization of blood pressure by upright posture (by means of a head-up tilt table test). Head-up position on the tilt table dramatically decreased nyHRV (0.128 ± 0.063 vs. 0.004 ± 0.002,p < 0.01) in healthy subjects (n = 12). Head-up position also decreased nyHRV in patients without vasovagal symptoms (n = 24; 0.220 ± 0.058 vs. 0.034 ± 0.015, p < 0.05), but not in patients with vasovagal symptoms during a head-up tilt table test (age and sex paired, 0.103 ± 0.041 vs. 0.122 ± 0.069, not significant). Heart rate variability includes a physiological non-harmonic non-fractal noisy fluctuation. This noisy fluctuation indicates low engagement of regulatory mechanisms because it disappears when the cardiovascular system is challenged (upright posture). It also indicates cardiovascular instability because it does not disappear in upright patients before vasovagal syncope, a transient failure of cardiovascular regulation.