
HAL Id: hal-03385029
https://univ-angers.hal.science/hal-03385029v1

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abacus: A New Hybrid Encoding for SAT Problems
Claudia Vasconcellos-Gaete, Vincent Barichard, Frédéric Lardeux

To cite this version:
Claudia Vasconcellos-Gaete, Vincent Barichard, Frédéric Lardeux. Abacus: A New Hybrid Encoding
for SAT Problems. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI), Nov 2020, Baltimore, United States. pp.145-152, �10.1109/ICTAI50040.2020.00033�. �hal-
03385029�

https://univ-angers.hal.science/hal-03385029v1
https://hal.archives-ouvertes.fr

Abacus: A New Hybrid Encoding for SAT Problems
Claudia Vasconcellos-Gaete, Vincent Barichard and Frédéric Lardeux

Laboratoire d’Etude et de Recherche en Informatique d’Angers, LERIA,
EA 2645, SFR MathSTIC, UNIV Angers,

Faculté des Sciences, 2 Bd Lavoisier, 49045 Angers, FRANCE
Email: {claudia.vasconcellos, vincent.barichard, frederic.lardeux}@univ-angers.fr

Abstract—Encoding an instance of a Constraint Satisfaction
Problem (CSP) into a Propositional Satisfiability Problem (SAT)
instance is usually a good way to benefit from the highly efficient
SAT solvers. However, an encoding may not be suitable for all the
constraints in the model, because it produces a large instance, the
modeling of a constraint is complicated or, it does not propagate
adequately.

In general, a good encoding should aim to improve resolution
effectiveness (independently of the solver chosen) and produce
an instance of a reasonable size. Standard CSP-to-SAT encodings
usually focus on certain aspects like straightforwardness, com-
pactness, or good performance for specific constraints. Hybrid
encodings combine encodings to obtain the best from each one
of them.

This article presents the Abacus Encoding, a new hybrid
encoding that combines Log and Order encodings and provides
a good trade-off between the instance size and the resolution
effectiveness. Like the Chinese abacus, this encoding represents
integer values as the addition of units and tens. Units are
set with Log encoding and tens with Order encoding. This
approach allows a compact representation of values, and it is
easily adaptable to improve solving efficiency.

I. INTRODUCTION

Modeling a problem as a Constraint Satisfaction Problem
(CSP) is usually quite intuitive but, despite the significant
progress in recent years [?], [?], the resolution of some
constraints is still problematic. Other paradigms, such as the
Propositional Satisfiability (SAT) [?], uses highly efficient
solvers [?], [?] but at expenses of the complexity, which is
often transferred to the modeling. Indeed, writing the SAT
model of a given problem is unnatural and typically a source
of errors.

In order to exploit the simplicity of modeling in CSP and
the solving power of SAT solvers, many authors have proposed
model transformations between CSP and SAT [?], [?], [?]. In
SAT, the efficiency of solvers is well known, but the quality
of models is nevertheless essential. There are several possible
encodings. Some of them, as the Log encoding [?], [?], focus
on compactness, but they tend to inhibit solvers capabilities
as their propagation capacities. Others, like the Order [?], [?]
or the Direct [?] encodings, promote the propagation during
the search but to the detriment of the instance size.

During the last years, the necessity of a hybrid encoding
providing instances of reasonable size and fairly efficient
resolution has emerged. Several hybrid encodings have been
proposed mixing log and support encoding [?], [?], [?], [?] or
Log and Order encoding [?]. Nowadays, these hybrid encod-
ings are either very close to Log encoding or, they propose a

Abacus
encoding

Model
compactness

. Propagation
capacity

Log
encoding

Direct
encoding

Compact-Order
encoding

Order
encoding

Fig. 1. Some encodings perform well on compactness and others on
propagation capacity. The Abacus encoding is a good trade-off between both.

duplication of some parts of the model using two encodings
(one favoring size and the other an efficient resolution).

We propose a new hybrid encoding providing a trade-off
between the size of the instance and the solvers efficiency.
It is a log-order encoding named Abacus Encoding. The
name comes from the Chinese abacus, the ancient calculation
tool in which vertical rods represent digits (units, tens, or
hundreds) and carries and shifting are similar to the decimal
number system. At first glance, the Abacus encoding might
look like the Compact Order encoding [?], which combines
Order encoding and Log encoding, but the Abacus encoding
uses Order encoding in a different way. The Compact Order
encoding produces smaller instances, but it cannot propagate
so effectively.

The article is organized as follows: Section II summarizes
some of the current SAT encodings, including some Hybrid
encodings as well. Section III presents the definition of the
Abacus Encoding, its parameters, and the relation between
Log, Abacus, and Order encodings. Section IV presents the
rules to encode the addition using the Abacus Encoding
along with a preliminary experiment over equation systems.
Section V reports and compares the results of our encoding
for the Golomb Rulers and Magic Square problems. Finally,
in Section VI, we present the main conclusions and propose
some future work.

II. SAT ENCODINGS

Encoding a CSP model into SAT involves modeling each
integer variable and constraints using the created Boolean
variables created without losing the meaning of the CSP
constraint itself. In this section, we summarize some of the
well known SAT encodings, and we take a glance at hybrid
encodings, describing their main characteristics.

1) Direct encoding: Proposed by De Kleer [?], this is
a straightforward SAT encoding. For each integer variable
X with Dom(X) = {d0 . . . dn} it creates n propositional
variables xi representing an assignment X = di. To ensure
that exactly one value is chosen for each integer variable rep-
resented, the encoding adds at-least-one clauses (

∨n
0 xi) and

at-most-one clauses (
∧

i<j(¬xi ∨¬xj)). In case of prohibited
values (X 6= di), unary clauses of type ¬xi are posted. For
two conflicting variables (X 6= Y), clauses of type (¬xi∨¬yi)
are introduced.

2) Support Encoding: The Support Encoding encodes vari-
ables just like in the Direct encoding but for constraints, except
for at-least-one and at-most-one constraints, it encodes the
support of the values (instead of the conflicts). Assigning a
value to a variable in a constraint does not prohibit certain
values for the other variables in the constraint (like in Direct
encoding), but, on the contrary, it only allows certain values.
For two conflicting variables (X 6= Y), clauses of type
(¬xi ∨ (

∨
j 6=i yj)) are introduced.

3) Log encoding: Based on the machine representation,
this is a compact encoding that uses log2(n) propositional
variables to represent an integer variable as a combination of
power of 2 values. In this encoding, each Boolean variable xk

is true if the k-th bit of X is true. For negative values, the
complement-2 representation is used. For prohibited values, it
adds clauses of type ¬(x0 ∧ x1 . . . ∧ xb).

4) Order encoding: Proposed to model scheduling prob-
lems [?], this is an efficient encoding for handling linear
constraints [?], [?], [?]. Unlike the Direct and Log encodings
(where variables represent an assignment), variables in Order
encoding represent a relation X ≤ di. For each integer
variable, the encoding uses n − 1 propositional variables xi

where the order relation between variables is given by a set
of clauses xi−1 → xi . For the treatment of prohibited values
X 6= di, the encoding uses the same type of clauses as in the
Log encoding.

5) Hybrid Encodings: The basic principle of hybrid encod-
ings is to combine two (or more) encodings in such a way that
single features can be increased; there is not a single way to
combine these encodings because it depends on each particular
case. Some of these encodings are:

a) Direct-Support: As the Direct and Support Encod-
ings represent integer variables in the same way, this hybrid
encoding focuses on constraints, applying the encoding that
provides the smaller possible output [?]. In general terms, it
uses Direct encoding to encode conflicts (like in X 6= Y) and
Support Encoding to encode supports (such as in X = Y). For
inequalities like X < Y , the encoding considers the number
of variables affected to determine the best encoding to use,
always aiming to minimize the size of the output produced.

b) Direct-Order: This encoding [?] applies the Direct
and Order encoding over the alldifferent() global constraint,
considering its proven efficiency for certain problems. When
an alldifferent() constraint is found, all the related variables
are encoded in the Direct and Order encodings and then linked

with translation clauses xo
i ↔ (¬xd

i−1 ∧ xd
i) . For the other

constraints, specialized encodings are used.
c) Log-Support encoding: Proposed by Gavanelli in [?],

it uses a logarithmic number of variables, like the Log encod-
ing. Propagation is improved by replacing conflict clauses of
size 2dlog2 ne by support clauses of size dlog2 ne+ 1.

d) Compact Order encoding: It belongs to the log-order
encoding family [?]. Using a base B ≥ 2, an integer variable
X is represented by

∑dlogB de
i=0 Bix(i) where d is the maximum

value in the Dom(X) and 0 ≤ x(i) ≤ B. Each x(i) is then
encoded in the Order encoding. This encoding reduces the
size of the generated instances and propagates on the most
significant digits.

III. ABACUS ENCODING

We propose a new encoding based on the abacus, the famous
eponymous Chinese computation tool whose principle is to
decompose a value into units and tens.

A. Definition

For an integer variable, the Abacus encoding decomposes
its value in two parts that we call units and tens; the choice
of names permits to be consistent with decimal system vocab-
ulary. For the units, we apply the Log encoding, and for the
tens, we use the Order encoding.

The choice of the combination of encodings (units Log-
encoded and tens Order-encoded) intends to favor the trade-
off between propagation and encoding size. The cases with
units Order-encoded (“Order/Order” or “Order/Log”), produce
less compact representations due to the number of variables
required for units. The case “Log/Log”, is compact but
propagation would be affected similarly to the standard Log
encoding.

To determine which part corresponds to units or tens, we
add a parameter B called encoding base. Considering the use
of the Log encoding, this base should be a value in the power
of two B ∈ {1, 2, 4, 8, 16 . . .}.

Tens Units
xb+ . . . xb−

︸ ︷︷ ︸
order enc.

xlog2(B)−1 . . . x1x0︸ ︷︷ ︸
log enc.

1) Encoding: For an integer variable X with a domain
Dom(X) = [lb..ub], the Abacus encoding (in base B) is:

xb+ .. xb− xu−1 .. x0 (1)

b+ =

⌊
ub

B

⌋
, b− =

⌈
lb

B

⌉
, u = log2 B

In this form, the encoding over-represents the domain of a
variable as it considers all values between B × (b− − 1) and
B × (b+ + 1) − 1. To represent the domain exactly as it is,
we introduce an offset parameter (Section III-A2) along with
additional clauses to avoid forbidden values (Section III-A4).
Note that for negative values, negative tens are generated.

2) Offset: The use of offsets limits the number of Boolean
variables required to encode a variable, avoiding the over-
representation of domains. Each variable can have its own
offset according to its domain. The value of the offset must
be a multiple of the encoding base B to ensure no gaps in the
domain represented.

For a variable X with Dom(X) = [lb..ub] and encoded in
base B, we define the offset as:

oX = lb− lb mod B (2)

We can notice that only the offset has to be taken into
account when there are no tens. The use of offsets thus allows
one to save one variable (tens of index 0) and imposes that
the tens start at index 1 whatever the domain. There will be
b# = bub−oXB c Boolean variables for the tens.

Example 1. Let B = 8 be the base, and variable X be a
variable in the domain [−20 . . . 33]. The encoding with offset
is as follows:

tens units

x7 x6 x5 x4 x3 x2 x1 x2 x1 x0

value 56 48 40 32 24 16 8 4 2 1 offset

−20 0 0 0 0 0 0 0 1 0 0 -24
33 1 1 1 1 1 1 1 0 0 1 -24

3) Identifying the Value of the Tens: A consequence of
using offsets is that variables do not always start at the same
tens. To overcome this, we defined the functions val(X, i) to
get the tens value associated to an index and, ind(X, v) to
return the index where a certain ten is located.

val(X, i) = i×B + oX (3)

ind(X, v) =

⌈
(v − oX)

B

⌉
(4)

4) Forbidden Values: To avoid forbidden values because of
over-representation of domains, we introduce clauses of type
¬(x#∧. . .∧x1∧xlog2(B)−1∧. . .∧x0) based on the maximum
domain that can be represented. For instance, in Example 1
the domain is [−20..33] but it is possible to encode a domain
up to [−24..39] as well.

For a variable X with domain [lb..ub], encoded in base B,
we denote the maximum domain that can be represented as
MaxDom(X) = [L..U], where:

L = oX (5)
U = (b# + 1)×B + oX − 1 (6)

Therefore, it is necessary to forbid all values in [L..lb− 1]
and [ub + 1..U]. Using an appropriate offset, the number of
forbidden values should be less than 2B − 1.

5) Ensuring consistency: We recall that Order encoding
requires only one pair of consecutive bits with two different
values. This means that for all Boolean variables encoding the
same integer variable, we impose clauses to ensure that higher
tens are always bigger or equal than the preceding tens.

b#x∧

i=2

(xi → xi−1) (7)

∀i>b#x
xi = ⊥ ∀i≤0 xi = > (8)

where b#x is the maximum tens for the variable X, ⊥ is the
logical false value and > to the logical true value.

6) Encode and decode an Abacus representation: To en-
code an integer value X ∈ [lb..ub] with Abacus encoding in
base B, we decompose the value into offset (oX), units (xi)
and tens (xi).

offset: oX=lb− lb mod B

units: xi =
X

2i
%B with i ∈ [0.. log2 B − 1]

tens: xi =i×B + oX with i ∈ [1..b#]

To decode an integer value represented by the Abacus
encoding, the computation is as follows1:

X = maxi∈[1..b#](x
i × i×B)

+ox +
∑

i∈[0.. log2 B−1]
(xi × 2i) (9)

7) Link between Log, Order and Abacus encodings: Note
that with a base B = 1, the Abacus encoding is similar to
the Order encoding with offset. Furthermore, if the base is
greater than the maximum value to represent, then the Abacus
encoding corresponds to the Log encoding with offset.

IV. ENCODING ADDITION

Using classical encodings for the addition requires choosing
between to generate a small instance where very few prop-
agations are possible, or to generate an instance for which
propagation is efficient at the expense of a size that is often
prohibitive for solvers. As the Abacus encoding provides
a good trade-off between these two options it is therefore
perfectly appropriate to this constraint.

A. Addition of Units

As unit variables are Log-encoded, this addition is handled
by a series of full adders (Figure 2). Each full-adder takes a
pair of bits (xi,yi) and the incoming carry ci (the first carry
is always false c0 = ⊥). The CNF clauses were obtained
applying Boolean algebra and Tseitin transformations to the
logical gates and, or and xor present in the full-adder. For
the log2 B variables corresponding to the part of units, the
addition constraint is encoded with the following clauses:

The Abacus encoding does not use a sign bit (like in the
classical full-adder), because the unit part is always positive.
In case of overflow (when the sum of the units is greater than
or equal to B), we store it in a variable c = clog2(B) that will
be used in the addition of tens.

1maxi∈I(f(i)) returns f(i) such that ∀(i, i′) ∈ I2, f(i) > f(i′)

Xi

Yi

Ci

Zi+1

Ci+1

Fig. 2. Two-bit full adder schema

∧
i∈[0..(log2 B)−1]

(
(ci ∨ ¬zi ∨ ¬ci+1) ∧
(¬ci ∨ ¬xi ∨ ¬yi ∨ zi) ∧
(¬xi ∨ ¬yi ∨ ci+1) ∧
(xi ∨ yi ∨ ¬ci+1) ∧
(xi ∨ ¬zi ∨ ¬ci+1) ∧
(¬ci ∨ zi ∨ ci+1) ∧
(¬ci ∨ ¬xi ∨ ci+1) ∧
(ci ∨ xi ∨ ¬ci+1) ∧
(yi ∨ ¬zi ∨ ¬ci+1) ∧
(¬xi ∨ zi ∨ ci+1) ∧
(¬ci ∨ ¬yi ∨ ci+1) ∧
(ci ∨ yi ∨ ¬ci+1) ∧
(ci ∨ xi ∨ yi ∨ ¬zi) ∧
(¬yi ∨ zi ∨ ci+1)

)

Fig. 3. CNF clauses for the 2-bit full adder

B. Addition of Tens

To define the encoding rules for the addition of the tens,
we take as example the addition X + Y = Z where X , Y ,
and Z are three integer variables encoded with the Abacus
encoding in base B and offsets oX , oY and oZ . For the sake
of simplicity, we define k as the index in Z of the partial
addition computed by the indices i and j (related to X and Y,
respectively).

k = ind(Z, val(X, i) + val(Y, j))

imin = min(0, (ind(Z, oZ)− ind(Y, oY)))

imax = max (b#X + 1, ind(val(Z, b#Z)− val(Y, b#Y)))

jmin = min(0, (ind(Z, oZ)− ind(X, oX)))

jmax = max (b#Y + 1, ind(val(Z, b#Z)− val(X, b#X)))

We recall that some variables corresponding to tens out of
the domain are replaced by > or ⊥ as indicated in the encoding
consistency part of Section III-A5.

The encoding of the tens is entirely defined by the following

four rules 2:

∀ i ∈ [imin..imax], j ∈ [jmin..jmax]

(xi ∧ yj)→ zk (10)
(xi ∧ yj ∧ c)→ zk+1 (11)
(¬xi ∧ ¬yj)→ ¬zk (12)
(¬xi ∧ ¬yj ∧ ¬c)→ ¬zk−1 (13)

• Rule 10: If a ten of X and a ten of Y are true, then the
ten of Z corresponding to the sum of the two true tens
must be true.

• Rule 11: Same as Rule 10, but considering the overflow
coming from the addition of units.

• Rule 12: If a ten of X and a ten of Y are false, then the
ten of Z corresponding to the sum of the two false tens
must be false.

• Rule 13: The same as Rule 12, but considering the
overflow which is coming from the addition of units.

Note that these rules may generate unit clauses in spe-
cific situations. The generated instance is, therefore, easily
simplified using the unit propagation mechanism (UP). The
unit propagation mechanism assigns the value of a literal l
appearing in a clause having only one literal to make this
clause true. All clauses where l appears are deleted, and those
where ¬l appears are simplified by removing ¬l from its
literals. In the following, we will present the raw instances
but also their simplification by unit propagation in order to
indicate the number of variables and clauses that require some
work from the solvers.

C. Structural Analysis

To analyze the impact of the Abacus encoding on adder
constraints, we performed a statistical study on 1000 equation
systems of the form:

{
X + Y = Z

X + Y = W

where each domain is randomly chosen in [0..100]. Of course,
it may happen that some systems thus generated do not have
any solution. Each equation system is generated with four
different bases. Base 1 to simulate the Order encoding (all
values are represented using the tens). Bases 4 and 8 to exploit
different units and tens balance of the Abacus encoding.
Finally, a base that we note max, which is the base simulating
the Log encoding (all values are represented using units). This
max bound can be different from one system to another,
depending on the domains.

Table I summarizes the results we obtained. These instances
were directly generated and then solved by a SAT solver.
Results are presented in terms of their base B, their CNF
structure and the propagation power. The CNF structure is
expressed in number of variables (var) and clauses (clauses),
before and after Unit Propagation (noted as Raw and UP

2Here, min and max correspond to the classical functions returning
respectively the minimum and the maximum of the parameters.

respectively). For the Propagation Power, we use the prop/dec
ratio which corresponds to the number of propagations over
the number of decisions made by the solver. The columns
SAT and UNSAT are the percentage of instances trivially (i.e.,
without decision) proved.

Results in Table I shows that the higher the base B is,
the more the number of variables and clauses decreases.
Contrarily, when the base simulates a Log encoding (B =
max), many variables are not necessary (units of high degrees
and carries for additions), and their number increases. This
is also the case for clauses when more values have to be
forbidden. Concerning the propagation power (prop/dec), we
observe that the lower the base is, the higher the number of
propagations per decision is. This propagation power allows
the encoding in base B = 1 to trivially solve 57.9% of the
equation systems. On the contrary, when base B = max, no
equation system is trivially solved. This result is consistent
with the fact that the Log encoding can only propagate the
upper bounds of the domains, whereas the Direct encoding can
propagate both the lower and upper bounds of the domains.

We rediscover the well-known properties of the Order and
Log encodings: propagation power versus instance size. We
see here that Abacus encoding using bases between 1 and
max provides a trade-off between these two properties.

Variables and clauses removed by unit propagation increase
as the base decreases. For example, for base B=1, the number
of variables is divided by 2 and the number of clauses by 4,
whereas for high bases, these numbers only slightly decrease.
Nevertheless, the ranking observed on the raw instances re-
mains the same on the instances reduced by unit propagation.
The simplified version by unit propagation corresponds to the
real encoded instance where unit clauses have been removed.
Moreover, this simplification phase is automatically done by
all SAT solvers.

D. Complete Propagation

One of the criteria to evaluate encodings is the power of
unit propagation. This metric corresponds to the quantity of
information propagated, i.e., the number of decision variables
affected as a result of the application of unit propagation.

Based on the algorithm of Brain et al. [?] to generate
automatically propagation complete encodings (PCE), we de-
veloped a simplified version of it (see Algorithm 1). We show
that our Abacus encoding is PCE in the sense that it infers
the maximum possible amount of information by using unit
propagation.

Our algorithm browses through all partial assignments,
applies unit propagation, and checks that no new information
can be inferred, stopping as soon as a counter-example is
found. As inputs, it takes an encoding E (the CNF formula
with the Abacus encoding of a given problem) and a set of
Boolean variables Σ (the set of Boolean variables from E). It
returns true if the encoding is PCE and false otherwise.

For each partial assignment, we examine the variables v
that cannot be inferred by unit propagation. We test if v or ¬v
can be added to the partial assignment using an oracle (the

SAT solver) that tells us whether or not the problem is still
satisfiable.

Algorithm 1 Testing a Propagation Complete Encoding
Input: Σ, E
Output: true/false
{pa: partial assignment}
for all pa ∈ Σ do
{pa’ is empty iff UP(E)(pa) = UNSAT}
pa ′ ← UP(E)(pa)
if pa′ 6= ∅ then

for all v ∈ {x|x ∈ Σ and x 6∈ pa′} do
for all l ∈ {v,¬v} do

pa” ← pa’ u assign(l)
if SATSolver(E,pa’) = UNSAT then

return FALSE
end if

end for
end for

end if
end for
return TRUE

We tested x+y = z, where x, y and z are integer variables
encoded with the Abacus encoding. Algorithm 1 only proves
the propagation completeness of encoding for a given number
of bits. To cover the majority of the basic cases, we vary on
the number of bits, offsets and bases. To build a test case, we
fix the number of bits, a base (the same for all variables), and
an offset for each variable. Then, we post the Abacus addition
constraint x + y = z. Table II summarizes the basic cases
tested here.

Algorithm 1 proves the completeness of each tested case. It
is possible to do the calculation for a different number of bits
and different base and offset values, but the runtime quickly
becomes prohibitive.

V. EXPERIMENTAL RESULTS

To verify our assumptions, we tested the Abacus encoding
on two problems, the Magic Square and the Golomb Rulers;
for each of them, we provide a results table and a discussion
on the experiments.

For solving the SAT instances, we use bc_minisat_all
1.1.2 [?], a blocking AllSAT solver based on Minisat [?].
The solver was compiled with the continuous macro option
in order to force it to search from the point where the last
solution was found. This makes the study of the proposed
encoding less dependent on the heuristics of the solver.

All the experiments were carried out on a computing cluster
with Intel-E5-2695 CPUs and 128 GB of memory. Each run
had a dedicated processor, and the execution time was limited
to 2 hours.

A. Magic Square problem

The Magic Square (MS) is a mathematical puzzle that aims
to find an assignment of different natural values x ∈ [1 . . . N2]

TABLE I
ADDITION RESULTS

CNF Structure Propagation Power

B Raw UP
var clauses var clauses prop/dec SAT(%) UNSAT(%)

1 102.5 6400.5 57.5 1457.8 28.9 1.7 56.2
4 39.1 538.7 27.5 236.0 13.6 0.0 51.0
8 32.5 275.9 26.4 177.2 9.8 0.0 44.2

max 42.4 614.5 38.8 589.6 7.4 0.0 0.0

TABLE II
PROPAGATION COMPLETE ENCODING TEST CASES

Bits Bases Offsets

4 b = {1, 2, 4, 8, 16} ox = {−b, 0, b}
oy = {−b, 0, b}
oz = {−b, 0, b}

5 b = {1, 2, 4, 8, 16, 32} ox = {−b, 0, b}
oy = {−b, 0, b}
oz = {−b, 0, b}

disposed in a N ×N matrix so that the sum across the rows,
columns and diagonals always results in the constant value M
called the magic number (M = N(N2 + 1)/2) [?].

A basic CSP model for the Magic Square is detailed
in Equations 14, 15, 16, and 17. Each xij is an integer
CSP variable (with a domain=[0..N2]) corresponding to the
intersection of row i and column j.

∀ i ∈ [1..N]

N∑

j=1

xij = M (14)

∀ j ∈ [1..N]

N∑

i=1

xij = M (15)

N∑

i=1

xii =

N∑

i=1

xi(N−i+1) = M (16)

∀ i ∈ [1..N2] AllDifferent(xi) (17)

The rotations of the values in the grid produce symmetries.
Our model considers four symmetry breaking constraints to
establish an order relationship between the values at the
corners of the square: x11 < xN1, x11 < x1N , x11 < xNN

and x1N < xN1.

B. Golomb Rulers
The Golomb Rulers problem of order N and length L

consists of finding a sequence of N integer values such that
no two pairs of integers are the same distance apart and the
largest distance between two of its is L.

A basic CSP model for the Golomb Rulers problem is
detailed in Equations 18 and 19. Each xi is an integer CSP
variable with a domain [0..L].

xi ∈ [0..L] i ∈ [1..N]

∀ i, j ∈ [1..N], i < j, xi < xj (18)
∀ i 6= j AllDifferent(xj − xi) (19)

Some couples (N ,L) cannot produce a correct sequence.
On the contrary, when there is a sequence solution, there are
always symmetrical solutions. To avoid these symmetries, the
first value of the sequence is fixed at 0 (x1 = 0), and the
distance between the first two integers of the sequence must
be less than the distance between the last two ones (x1−x0 <
xL − xL−1).

C. Results

Tables III and IV summarize the results obtained after
applying the Abacus encoding to several instances of the
Magic Square and Golomb Rulers. Instances are named msX
and gX respectively; in both cases, the “X” denotes the order
of the instance.

For each instance, we test the Log, Order and Abacus
encodings. For the Abacus, we use different encoding bases
(noted as AbacusX , with “X” indicating the base). From a
structural point of view, the number of variables (var) and
the number of clauses (clauses) is provided. From a resolution
point of view (running bc_minisat_all), the number of
solutions found during the run (sol), the propagation power
(prop/dec) as well as the execution time in seconds (time) are
provided; a “-” means that resolution was not completed after
the 2 hours authorized time. These results are proposed for raw
instances (Raw) but also for simplified instances (application
of unit propagation until a fixed point is reached) noted UP .
Best results in terms of the number of solutions (sol) and
then execution times (time) are highlighted in bold for Raw
and UP instances. Note that for the Golomb Rulers results
(Table IV), bracketed bases indicate bases larger than the one
corresponding to the Order encoding.

We observe in Tables III and IV that the instance sizes, as
well as the propagation power, differ a lot from one base to
another. These results are in line with those obtained in Section
IV-C, despite the presence of other constraints different from
the adder constraint.

The Log encoding always provides the smallest instances,
but it obtains poor results in terms of propagation power. On
the contrary, the Order encoding provides large instances, but
the propagation power is hight.

Best results correspond to encodings providing the highest
number of solutions within the given time limit and then, when
all solutions are found, to those with the shortest running time.
They are mainly obtained for bases that do not correspond
to the Log encoding or the Order encoding. Note that on

TABLE III
MAGIC SQUARE RESULTS

CNF Structure Propagation Power

Inst. Encoding Raw UP
var clauses var clauses sol prop/dec time

ms4

Order 8 322 135 725 6 680 73 550 880 606 12,14
Abacus4 2 670 16 315 2 300 13 984 880 246 19,23
Abacus8 1 986 9 681 1 670 8 138 880 167 17,25
Log 1 838 8 688 1 470 6 966 880 142 13,47

ms5

Order 31 599 730 328 26 936 425 620 18 704 1 139 -
Abacus4 9 182 72 762 8 203 65 291 29 164 429 -
Abacus8 5 877 32 786 5 137 28 949 19 780 298 -
Log 4 153 19 008 3 465 16 079 29 872 212 -

ms6

Order 98 984 2972 594 87 730 1806 558 4 972 2 196 -
Abacus4 26 636 257 130 24 402 231 472 20 811 725 -
Abacus8 15 214 95 642 13 640 85 580 11 220 513 -
Log 7 538 33 258 6 322 28 618 20 249 339 -

ms7

Order 267 309 9866 264 243 308 6152 704 2 630 3 012 -
Abacus4 70 031 806 688 65 444 741 341 3 851 1 148 -
Abacus8 38 228 277 388 35 186 254 501 11 187 761 -
Log 14 404 62 148 12 401 55 379 7 645 452 -

ms8

Order 642 534 28078 259 596 000 17806 396 1 830 4 562 -
Abacus4 167 620 2255 276 158 808 2141 176 8 959 1 495 -
Abacus8 88 962 736 901 83 350 697 130 7 476 796 -
Log 25 706 108 990 22 508 99 772 2 570 604 -

small instances (ms4 and g7), the propagation power widely
counterbalances the number of variables and clauses for small
bases. When the instances become larger (ms7, ms8, and g10),
the high bases limit the explosion of the number of variables
and clauses.

We can observe that an encoding base bigger than this
corresponding to the Log encoding (instance g7 in Table IV
with Abacus128) increases the number of forbidden values and
then the number of variables and clauses.

Overall, the results show a direct relationship between the
instance size and the encoding base. We notice that an interme-
diate base between 1 (Order encoding) and this corresponding
to the Log encoding is a trade-off between instance size and
propagation power and provides the best results.

VI. CONCLUSION AND FUTURE WORK

In this article, we presented the Abacus encoding, a new
hybrid encoding to model a CSP into a SAT problem. It
combines the Log and Order encodings and decomposes CSP
variables into units and tens; units are Log-encoded and tens
are Order-encoded. An in-depth study has been carried out
on the adder constraint for this new encoding. Extensive
experiments shows that this encoding is a good trade-off
between the propagation power and the instance size.

The critical point in the Abacus encoding is the choice
of the base, as it allows to favor either the instance size
or the propagation power. Our experiments show that using
an intermediate base (between the one simulating the Log
encoding and the one simulating the Order encoding) allows
obtaining good results. Currently, we propose to use a common
base for all the variables. This is relevant in our experiments

because all treated problems have CSP variables with quite
similar domains. In our future work, we intend to study the
possibility of using and mixing different bases depending on
the CSP variables and constraints. This can be suitable for
problems where variable domains are quite different. In this
article, we focused on the adder constraint, but we need more
constraints in order to model more varied CSP problems. Our
ongoing work is about the proposal of new Abacus encoded
CSP constraints. We aim to gather a set of core constraints
that will be sufficient to model more CSP problems.

TABLE IV
GOLOMB RULERS RESULTS

CNF Structure Propagation Power

Inst. Encoding Raw UP
var clauses var clauses sol prop/dec time

g7

Order 15 343 215 715 14 476 142 605 5 439,42 1,31
Abacus2 8 140 70 247 7 555 60 288 5 463,14 0,74
Abacus4 4 549 26 437 4 108 23 097 5 428,53 0,58
Abacus8 3 065 14 197 2 678 12 450 5 256,27 0,39
Abacus16 2 484 10 519 2 115 9 165 5 159,74 0,22
Abacus32 2 204 9 191 1 841 7 926 5 244,76 0,30
Log 2 225 9 464 1 821 7 975 5 221,00 0,33
Abacus128 2 547 10 946 2 119 9 280 5 192,54 0,20

g8

Order 33 525 517 594 32 194 346 618 1 1075,46 22,50
Abacus2 17 515 164 484 16 606 144 602 1 851,41 7,97
Abacus4 9 767 61 920 9 059 55 439 1 748,26 6,28
Abacus8 5 907 28 372 5 303 25 645 1 542,14 4,06
Abacus16 4 477 19 122 3 905 17 225 1 379,57 2,82
Abacus32 4 019 16 668 3 453 14 927 1 389,49 2,28
Abacus64 4 047 16 856 3 467 15 039 1 397,91 3,23
Log 4 075 17 220 3 444 15 118 1 370,83 3,22

g9

Order 67 274 1098 209 65 330 743 497 1 1827,05 262,03
Abacus2 34 802 344 275 33 452 308 014 1 1396,04 202,00
Abacus4 18 962 125 887 17 898 114 721 1 991,63 59,95
Abacus8 11 438 57 660 10 506 53 131 1 788,06 82,73
Abacus16 7 694 33 064 6 832 30 454 1 572,00 28,66
Abacus32 6 218 25 445 5 384 23 272 1 570,78 36,96
Abacus64 6 254 25 688 5 404 23 428 1 565,54 37,47
Log 6 290 26 156 5 378 23 543 1 571,65 41,83

g10

Order 125 974 2127 198 123 238 1453 386 1 3421,94 1820,52
Abacus2 64 729 661 511 62 794 599 790 1 2331,40 2245,02
Abacus4 34 129 231 625 32 599 213 915 1 1516,38 1314,80
Abacus8 19 419 98 651 18 084 92 262 1 1176,07 785,63
Abacus16 12 654 54 598 11 409 51 123 1 874,27 559,01
Abacus32 10 429 42 727 9 205 39 819 1 780,44 481,65
Abacus64 9 339 37 889 8 121 35 103 1 754,94 601,44
Log 9 384 38 474 8 092 35 260 1 771,08 596,04

g11

Order 239 238 4363 707 235 338 2985 094 0 5402,87 7150,44
Abacus2 122 143 1335 505 119 369 1221 555 0 3410,03 7138,35
Abacus4 64 448 466 619 62 224 434 210 1 2488,76 7162,35
Abacus8 36 453 196 251 34 491 185 047 2 1701,71 7156,77
Abacus16 23 308 104 857 21 464 99 270 1 1273,60 7162,90
Abacus32 16 763 68 917 14 983 64 969 0 1067,04 7153,32
Abacus64 15 168 61 285 13 394 57 550 2 1056,70 7156,99
Log 15 223 61 659 13 429 57 815 1 994,12 7160,94

