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Abstract: The ExoMars Trace Gas Orbiter (TGO)’s Colour and Stereo Surface Imaging System (CaSSIS)
provides multi-spectral optical imagery at 4–5 m/pixel spatial resolution. Improving the spatial
resolution of CaSSIS images would allow greater amounts of scientific information to be extracted. In
this work, we propose a novel Multi-scale Adaptive weighted Residual Super-resolution Generative
Adversarial Network (MARSGAN) for single-image super-resolution restoration of TGO CaSSIS
images, and demonstrate how this provides an effective resolution enhancement factor of about
3 times. We demonstrate with qualitative and quantitative assessments of CaSSIS SRR results over the
Mars2020 Perseverance rover’s landing site. We also show examples of similar SRR performance over
8 science test sites mainly selected for being covered by HiRISE at higher resolution for comparison,
which include many features unique to the Martian surface. Application of MARSGAN will allow
high resolution colour imagery from CaSSIS to be obtained over extensive areas of Mars beyond
what has been possible to obtain to date from HiRISE.

Keywords: super-resolution restoration; SRR; Generative Adversarial Network; GAN; TGO; CaSSIS;
RSL; Gullies; Slope Streaks; frost; Mars2020; Perseverance; Jezero Crater

1. Introduction

Orbital imaging has been a highly effective way of exploring the Martian surface. The
ExoMars Trace Gas Orbiter (TGO)’s Colour and Stereo Surface Imaging System (CaSSIS)
provides multi-spectral optical imagery at 4–5 m/pixel spatial resolution [1]. CaSSIS has
higher spatial resolution, image quality, and with colour bands, comparing to the Mars
Reconnaissance Orbiter (MRO) Context Camera (CTX) images at 6 m/pixel [2]. However,
the spatial resolution of CaSSIS is limited compared to the details revealed by the MRO
High Resolution Imaging Science Experiment (HiRISE) images typically at 25–50 cm/pixel
resolution [3]. CaSSIS has much better global coverage compared to HiRISE (<4% since
2006) and will provide more repeat and stereo observations in the future.

Improving the spatial resolution of CaSSIS images would allow greater amounts of
information to be extracted about the nature of the surface and how it formed or changes
over time. One of the options to achieve a greater spatial resolution is through the use of
Super-Resolution Restoration (SRR/SR) techniques. This was first demonstrated with HiRISE
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25 cm/pixel orbital imagery in [4] who showed a 5 times (5×) improvement using 8 multi-view
images with view-angle differences≥8◦ with data acquired over 6 years. Subsequently, this
technique was employed to confirm the discovery of the Beagle2 lander in the Isidis plains [5].

With recent success of deep learning based SRR techniques, especially the Generative
Adversarial Networks (GANs), in the field of photo-realistic image enhancement, we
propose a Multi-scale Adaptive weighted Residual Super-resolution restoration GAN
(MARSGAN) network for single-image SRR applied to CaSSIS. We train the proposed
MARSGAN model with HiRISE images and demonstrate ~3× resolution enhancement for
CaSSIS images. See an example in Figure 1.
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Figure 1. An example of a small crop of a CaSSIS image (MY35_007017_173_0_NPB) super-resolved
with MARSGAN single-image SRR clearly revealing a small crater feature

MARSGAN SRR can not only be used for supporting image analysis to obtain im-
proved scientific understanding of the Martian surface, but it can also be used for support-
ing existing and future rover missions. SRR images can be employed for a wide range of
applications such as the detection of objects which may present hazards for landers and
rover navigation and path planning, the improvement of colour and hyperspectral images
for better understanding of surface mineralogy, the detection of spacecraft hardware, and
better definition of dynamic features. Such techniques can also be applied to time series for
change detection, for example in tracking dynamic features.

In this work, we describe in detail and show qualitative and quantitative assessments
of the proposed single-image MARSGAN CaSSIS SRR result for the Mars2020 Perseverance
Rover’s landing site [6,7], Jezero Crater. In addition, we demonstrate other potential
applications with 8 further test sites with scientifically interesting features.

The layout of this paper is as follows. In Section 1.1, we introduce the 8 study sites.
In Section 1.2, we review previous work in image SRR. In Section 2.1, we describe the
MARSGAN architecture. In Section 2.2, we show the MARSGAN’s loss functions. In
Section 2.3, we introduce different assessment methods. In Section 2.4, we provide training
and experimental details. In Section 3.1, we demonstrate CaSSIS SRR results for Jezero
crater and provide assessment details. In Section 3.2, we demonstrate CaSSIS SRR results
for 8 selected science targets. In Section 4.1, we discuss the perceptual-driven and PSNR-
driven SRR solutions. In Section 4.2, we broadly compare the proposed single-image and
deep-learning based approach with a traditional multi-image computer-vision based approach.
In Section 4.3, we briefly demonstrate the potential of the MARSGAN model for HiRISE, CTX,
and CRISM data. In Section 5, we summarise conclusions and discuss future work.

1.1. Study Sites

Our selected science targets include bedrock layers (Site-1), bright and dark slope
streaks (Site-2), defrosting dunes and dune gullies (Site-3), gullies at Gasa crater (Site-4),
recurring slope lineae at Hale Crater (Site-5), scalloped depressions and dust devils at
Peneus Patera (Site-6), gullies at Selevac crater (Site-7), and defrosting (so-called) spiders
(Site-8). Figure 2 shows cropped samples of the CaSSIS colour images for the above-
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mentioned science targets. The CaSSIS and HiRISE image IDs for the above study sites are
listed in Table 1 and can be found in Section 2.4.

Table 1. Testing CaSSIS scenes and overlapping HiRISE images for the selected science targets.

Site ID
/Name

Science Targets
/location

CaSSIS HiRISE

ID Imaging
Date

Local
Time Ls ID Imaging

Date
Local
Time Ls

1.Argyre
Basin

Bedrock
Layers

(−30.455, 313.292)
MY35_012491_213_0 2020-09-10 8:27 275.2◦ ESP_022619_1495 2011-05-24 14:31 298.7◦

2.Arabia Terra
Bright & Dark Slope

Streaks
(10.409, 41.696)

MY35_007017_173_0 2019-06-20 9:00 41.8◦ ESP_012383_1905 2009-03-18 15:32 229.5◦

3.Noachis
Terra

Defrosting dunes &
Dune gullies

(−58.618, 8.79)
MY35_010749_247_0 2020-04-20 17:38 187.0◦ ESP_059289_1210 2019-03-21 14:30 358.9◦

4.Gasa Crater Gullies
(−35.731, 129.436) MY35_012112_221_0 2020-08-10 15:43 255.6◦ ESP_065469_1440 2020-07-14 15:50 238.7◦

5.Hale Crater
Recurring Slope

Lineae
(−35.504, 323.454)

MY34_005640_218_1 2019-02-27 11:09 347.9◦ ESP_058618_1445 2019-01-27 14:06 331.5◦

6.Peneus
Patera

Scalloped
depressions & Dust

Devils
(−57.062, 54.544)

MY35_012488_241_0 2020-09-10 9:36 275.1◦ ESP_013952_1225 2009-07-18 14:36 305.6◦

7.Selevac
Crater

Crater & Gullies
(−37.386, 228.946) MY35_012121_222_0 2020-08-11 15:34 256.1◦ ESP_065307_1425 2020-07-02 15:46 230.7◦

8. South pole Defrosting Spiders
(−74.020, 168.675) MY35_011777_268_0 2020-07-14 2:02 238.2◦ PSP_002081_1055 2007-01-05 16:15 161.8◦Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 45 
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Site 4 is at Gasa crater, a 6.5km diameter crater located inside Cilaos crater, a 21.4km 
diameter crater. Gasa Crater has annual active gullies along its south-facing wall [36–39]. 
Gullies are also located on the south-facing wall of the larger host crater. Simulated and 
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alcoves into the bedrock. This crater has a pitted floor, which is thought to indicate an 
impact into icy materials and subsequent volatile release from the impact melt deposits 
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Figure 2. Examples of cropped CaSSIS images (in NPB colour) for the 8 study sites. (a) Site 1: Bedrock layers
(MY35_012491_213_0); (b) Site 2:Bright and dark slope streaks (MY35_007017_173_0); (c) Site 3: Defrosting dunes and
dune gullies (MY35_010749_247_0); (d) Site 4: Possible new gully activity at Gasa Crater (MY35_012112_221_0); (e) Site 5:
Recurring slope lineae at Hale Crater (MY34_005640_218_1); (f) Site 6: Scalloped depressions and dust devils at Peneus
Patera (MY35_012488_241_0); (g) Site 7: Gullies at Selevac Crater (MY35_012121_222_0); (h) Site 8: Defrosting spiders
(MY35_011777_268_0). N.B. the scale bar showing in (e) applies to all sub-figures.
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Site 1 is an image of the floor of a 41 km diameter crater located to the north of the
Argyre Basin whose floor exposes ancient layered rock deposits. The light tone of the
layers in these deposits suggests they could be ancient clays, e.g., [8,9], and therefore may
represent an ancient aqueous environment. The crater floor also hosts a number of dark
sand dunes, e.g., [10–12], and transverse aeolian ridges, e.g., [13,14]. Many dark dunes
on Mars have been shown to be currently in motion [15–18], whereas transverse aeolian
ridges are thought to be inactive [19,20].

Site 2 captures the northern rim slope and floor of an ancient ~45 km diameter crater in
Arabia Terra. The steeply sloping hillslopes have many slope streaks, believed to represent
avalanches of dust [21–23]. Many new slope streaks have been observed and they have
also been observed to fade [24,25]. Their exact trigger is still an open question [26–28]. The
flatter areas host numerous transverse aeolian ridges.

Site 3 comprises a ~55 km diameter crater in Noachis Terra which hosts a dunefield
(USGS dune database 0175-546) with active dune gullies [29–31]. The CaSSIS image is
taken at a time of year when the seasonal frosts are retreating, creating distinctive albedo
patterns on the surface [32–34]. These defrosting spots represent areas where dark dust has
been deposited on top of the bright seasonal ices (mainly carbon dioxide ice) by CO2 gas
escaping from underneath the ice [35]. Flows of dark sand along gullies are also thought to
occur at this time of year [29,36], driven by CO2 sublimation.

Site 4 is at Gasa crater, a 6.5km diameter crater located inside Cilaos crater, a 21.4 km
diameter crater. Gasa Crater has annual active gullies along its south-facing wall [36–39].
Gullies are also located on the south-facing wall of the larger host crater. Simulated and
actual CaSSIS images were able to pick out new deposits in this crater based on their colour
contrast [40,41]. The gullies in this crater have exceptionally well-developed source alcoves
into the bedrock. This crater has a pitted floor, which is thought to indicate an impact into
icy materials and subsequent volatile release from the impact melt deposits [40,41].

Site 5 is located on the central peak of Hale Crater, a 120–150 km diameter crater
located on the northern rim of the Argyre basin. The slopes here host Recurring Slope
Lineae (RSL) and gullies. RSL are dark linear markings that grow downslope during
the warmest periods of the year and were initially thought to be liquid water seeps,
e.g., [42–44], although that interpretation has been overturned and re-established many
times over in the last decade, e.g., [45–50]. The southern edge of the central peak area is
bounded by dark aeolian dunes. Further south the crater floor is intensely pitted, and this
texture indicates that the Hale impact liberated volatiles [41,51–53].

Site 6 shows terrain on the flank of Peneus Patera which hosts “scalloped depressions”.
These depressions are believed to be formed by loss of interstitial ice via sublimation and
subsequent collapse of the overlying terrain – often compared to terrestrial thermo karst
developed in permafrost terrains [54–58]. This particular image also shows dust devil
tracks – dark tracks left on the ground by the passage of small wind vortexes which remove
a thin layer of surface dust [59–62]. Dust devil tracks are constantly being formed and
fading, their pattern rarely remaining similar between two orbital images.

Site 7 is the 7.3 km diameter Selevac Crater whose south-facing walls hosts numerous
gullies, some of which have been active over the last decade [36]. The north-facing walls
host talus features typical of fresh impact craters. This crater has a pitted floor similar to
that shown by site 4, Gasa Crater. The terrain to the south of this crater hosts the subdued
crater rim of a Noachian aged crater that seems to be almost totally infilled and perhaps
breached by fluvial erosion [63,64].

Site 8 is located near the south pole of Mars in a terrain intensely patterned by
“spiders”. These enigmatic surface features are characterised by hierarchical branching
networks of depressions, leading to one or more deeper foci. They are believed to be
formed by repeated erosion of the surface caused by gas escaping from under the metre-
thick seasonal ice deposits [35,65–69]. In this image, dark spots associated with defrosting
can be seen, as described already for site 3. However, no perennial changes have been
observed in spider systems so whether they are active today is a subject of debate.
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1.2. Previous Work

SRR (or SR) refers to the task of enhancing the spatial resolution of an image from
Lower-resolution (LR) to Higher-resolution (HR). In the past, SRR was based on the idea
that a combination of the non-redundant information contained in multiple LR images
can be used to generate a HR image. This is also referred to as multi-image SRR in the
field of computer vision. This was built on the fundamental basis of using image co-
registration, followed by multi-image sparse coding [70] or multi-image non-uniform
interpolation [71]. The actual enhancement of resolution, as well as their robustness to
noise, are generally limited with the simple forward techniques. Later around the 2010s,
SRR techniques followed the Maximum a Posteriori (MAP) approach [72–74] to resolve the
inverse process stochastically by assuming a model that each LR image is a downsampled,
distorted, blurred, and noise added version of the true scene, i.e., the HR image. Building
on the MAP techniques, we previously proposed two SRR systems in [4] and [75] for Mars
orbital imagery and Earth observation satellite imagery, adopting the multi-angle imaging
properties, and for the latter one, combining deep learning techniques.

The deep learning based SRR techniques have been fairly successful, during the past
decade, in solving the problem of resolution enhancement and texture synthesis of real-life
images and videos. The pioneering work of deep learning based SRR techniques, is the
three-layer Convolutional Neural Network (CNN) based SRR algorithm (SRCNN) [76]
that performs non-linear mapping between LR patches and HR patches, represented using
convolutional filters. A simple Mean Squared Error (MSE) loss function is used to train
the SRCNN network. Comparing to SRCNN, Very Deep Super-Resolution (VDSR) [77]
use a deeper network with smaller convolutional filters to learn only the residual (high
frequency information) between LR and HR images. VDSR is based on the popular VGG
(named after the Visual Geometry Group at the University of Oxford) architecture that
was originally proposed in [78] for large-scale image classification tasks. Instead of trying
to learn high-frequency details at the up-sampled scales as used in SRCNN and VDSR,
Fast SRCNN (FSRCNN) [79] and Efficient Sub-Pixel CNN (ESPCN) [80] learns the high-
frequency details through a deconvolutional layer and sub-pixel convolutional layer at
the end of their architecture, respectively, to significantly reduce unnecessary computation
overheads.

Recently, residual-network based architectures were fairly successful in SRR tasks.
The most representative ones are Enhanced Deep residual SR Network (EDSR) [81], Wide
activation Deep residual SR (WDSR) [82] and CAscading Residual Network (CARN) [83].
EDSR is based on the original ResNet [84] and SRResNet [85] architectures using residual
learning, and with a Rectified Linear Unit (ReLU) layer and Batch normalisation (BN)
layers being removed. Based on EDSR, WDSR further demonstrated expanding features
before ReLU activation leads to significant improvements, without adding additional
parameters and computation, and used Weight Normalisation (WN) to replace BN for
faster convergence and better accuracy. Both EDSR and WDSR have adopted the idea
of not using up-sampled input for CNN and used the sub-pixel shuffling at the end of
their architecture as proposed in the aforementioned ESPCN. On the other hand, CARN
improved on top of the traditional residual network and proposed a cascading mechanism
at both the local and global level in order to receive more information, and allow more
efficient flow of information, while keeping the network lightweight.

Other successful SRR architectures employed recursive networks that use shared
network parameters in convolutional layers in order to reduce memory usage. The most
representative ones are Deep Recursive Convolutional Network (DRCN) [86] and Deep
Recursive Residual Network (DRRN) [87]. DRCN reuses weight parameters and stack
recursive blocks to improve SRR performance without introducing new parameters for
convolutions. DRRN improves on top of DRCN by stacking residual blocks with shared
parameters to achieve superior results over DRCN.

Unlike the aforementioned SRR networks that treat all spatial locations, features, scales,
and channels of an image equally, some novel SRR networks use adaptively weighted
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importance to different locations, features, scales, and channels of an image. In Adaptive
Weighted Super-Resolution Network (AWSRN) [88], the authors proposed a lightweight
SRR network that uses a sequence of Adaptive Weighted Residual Units (AWRUs), to
replace the original Residual Units used in WDSR, to form a Local Fusion Block (LFB), and
then with a sequence of LFBs, to perform the non-linear mapping of extracted features.
AWSRN also proposed an Adaptive Weighted Multi-Scale (AWMS) reconstruction module
to selectively “stack and fuse” multi-scale convolutions in order to use the feature informa-
tion, derived from the non-linear mapping module, more effectively. Another successful
architecture that uses the idea of “selective attention” is the deep Residual Channel At-
tention Network (RCAN) [89]. RCAN emphasis is on the discriminative learning ability
across different feature channels via selective downscaling and upscaling of feature maps,
using Residual Channel Attention Blocks (RCABs) in Residual Groups (RGs), i.e., Residual
in Residual (RIR), to focus on more informative components of the LR features. Long and
short skip connections were used in RIR to help bypass low-frequency information and
stabilise the training process of their very deep network.

More recently, Generative Adversarial Networks (GANs) have become more popular
in the field of SRR that exploit perceptual differences rather than the pixel differences
between LR and HR images. GANs operate by training a generative model with the goal
of restoring high frequency textures, while in parallel, training a discriminator to distin-
guish SRR images from HR truth. SRGAN (Super-Resolution GAN), proposed in [85], first
used a GAN based architecture to generate visually pleasant SRR images. SRGAN uses
ResNet/SRResNet [84,85] as a backend and employs a weighted combination of content
loss that is defined on feature maps of high level features (the Euclidean distance between
the feature representations of generated image and reference image) from the VGG net-
work [78], and the adversarial loss that was originally defined in [90], to achieve visually
optimal results. The generator network in SRGAN has 16 identical residual blocks that
consist of 2 convolutional layers, BN, and Parametric ReLU, followed by 2 subpixel convo-
lutional layers, that were proposed in [80], for upscaling. The discriminator network in
SRGAN contains 8 convolutional layers/BN/Leaky ReLU (LReLU), with increasing num-
ber of feature maps and down-sampling when the number of features is doubled, followed
by 2 dense layers and a sigmoid activation. In parallel with SRGAN, an independent group
of researchers proposed a similar network called EnhanceNet [91]. The generator network
of EnhanceNet has 10 residual blocks followed by 2 nearest neighbour up-sampling (of
feature activation) layers and followed by a convolutional layer to cancel checkerboard
artefacts. In comparison to SRGAN, the major difference is that the EnhanceNet uses an
additional texture matching loss, which is computed from the Euclidean distance of local
(patch-wise) texture statistics, on top of the perceptual loss and adversarial loss, to enforce
locally similar textures between SRR and HR truth. The SRR result from EnhanceNet is
perceptually significantly sharper but suffers from more synthetic artefacts. Improved on
top of SRGAN, the Enhanced SR GAN (ESRGAN) [92] use the basic architecture of SRGAN,
replacing the original RBs with a deeper basic block, namely RIR Dense Block (RRDB), and
also uses an improved loss function that incorporates a new perceptual loss, a relativistic
adversarial loss, together with the traditional MSE loss.

In this work, we propose a novel MARSGAN network for single image SRR. MARS-
GAN improves upon ESRGAN, which is used as our backbone architecture, in three
aspects: (1) use an adaptive weighted basic block, called AW-RRDB (AWRRDB), with
noise inputs, for more effective residual learning while allowing local stochastic variations;
(2) use a multi-scale reconstruction scheme to make full use of both low-frequency and
high-frequency residuals; (3) use a fine-tuned loss function to balance between perceptual
quality and synthetic artefacts. MARSGAN is fully trained with HiRISE images and is
used, in this work, for CaSSIS single image SRR.
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2. Materials and Methods
2.1. MARSGAN Architecture

GANs provide a state-of-the-art framework for producing high-quality and “photo-
realistic” SRR images. Recent GAN variations [92–94] have been focusing on optimisations
of the original residual architecture of the generator network [85,91] and/or on better
modelling of the perceptual loss, in order to improve the visual quality of the SRR results.
In this work, we based our model on the ESRGAN architecture [92] due to its solid
performance on real-world images. Inspired by the adaptive weighted learning process
proposed in AWSRN [88] and the optimisations introduced in ESRGANplus [93], we
propose an Adaptive Weighted RRDB with noise inputs (AWRRDB) to replace the original
RRDB basic block in ESRGAN for more effective and efficient residual learning. Moreover,
we use a multi-scale reconstruction scheme [88] based on subpixel-shuffling [80,85] to
replace the up-sampling layers used in ESRGAN to make full use of both low-frequency
and high-frequency residuals while avoiding the checkerboard patterned artefacts from
using up-sampling layers [91]. We follow the standard discriminator network architecture
that was proposed in SRGAN [85] and adopt the relativistic average discriminator concept
that was proposed in [95] and employed in [92].

Our proposed Multi-scale Adaptive-weighted Residual SRR GAN (MARSGAN) net-
work architecture is shown in Figure 3. With MARSGAN, our goal is to estimate a
super-resolved image ISR from a lower-resolution input image ILR. Here ILR is the lower-
resolution version of its higher-resolution counterpart IHR. Note that IHR is only available
during training.
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The MARSGAN generator starts from a single convolutional layer (3 × 3 kernels,
64 feature maps, stride 1) for initial feature extraction, which can be formulated as

x0 = fext(ILR) (1)

where fext denotes the initial feature extraction function for ILR and the output feature map
from the first convolutional layer is x0.

In MARSGAN, our basic residual unit for non-linear feature mapping is AWRRDB.
AWRRDB is based on the original Dense Block (DB) structure and applies two modifications
on top of the RRDB basic residual units that were used in ESRGAN [92]. RRDB has a much
deeper and more complex structure (see Figure 3), compared to the Residual Blocks (RBs)
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used in SRGAN [85], in order to have much higher network capacity benefiting from dense
connections. The first modification to improve the RRDB basic blocks is through use of the
concept of AWRU, inspired by AWSRN [88]. Instead of applying a fixed value of residual
scaling [81] in each DB, i.e., 0.2 used in ESRGAN, we use 11 independent weights for each
DB (see Figure 3), which can be adaptively learned after given an initial value, to help the
flow of information and gradients more effectively. The second modification to the RRDB
structure is adding a Gaussian noise input after each DB. The additive Gaussian noise
inputs were demonstrated as being useful in [93] in terms of adding stochastic variation to
the generator network, while keeping their effects very localised, i.e., without changing the
global perception of the images. Note that 3 of the 11 weights are scaling factors for the
additive Gaussian noise. There was another potential improvement to the DB structure,
which was also proposed in [93], called Residual DB (RDB), by adding a residual every two
layers to augment the generator network capacity. However, we found the improvement of
using RDB is marginal compared to DB in AWRRDB, and therefore we keep the ESRGAN’s
design of DB in AWRRDB.

Defining the DB used in the original ESRGAN architecture as fDB, then the output of
the n-th proposed AWRRDB units, denoted as xn+1, for input xn, (n = 0, 1, 2, . . . , 22) can
be expressed as

xn+1 = fAWRRDB(xn) = λn
b (xn3) + λn

a xn (2)

where λn
a and λn

b are two independent weights for the n-th AWRRDB unit, and xn3 can be
solved via 

xn3 = λn2
r fDB(xn2) + λn2

x xn2 + λn2
n Gn

xn2 = λn1
r fDB(xn1) + λn1

x xn1 + λn1
n Gn

xn1 = λn0
r fDB(xn) + λn0

x xn + λn0
n Gn

(3)

where λ
nk
r , λ

nk
x , and λ

nk
n , (k = 0, 1, 2), are three independent sets of weights for each DB

unit and Gn is the additive Gaussian noise inputs. The non-linear feature mapping is
represented by a sequence (23 in this work) of the proposed AWRRDBs. As shown in
Figure 3, each AWRRDB contains 3 DBs, and each DB contains 5 convolutional layers
(3 × 3 kernels, 32 feature maps, stride 1) and 4 LReLU activation with a negative slope of
0.2. Merging Equation (2) and Equation (3), the output of the non-linear mapping, xn+1, for
the n-th AWRRDB unit, given the initial input, x0, from Equation (1), can be expressed as

xn+1 = f n
AWRRDB

(
f n−1
AWRRDB

(
. . . f 0

AWRRDB(x0) . . .
))

(4)

After the non-linear feature mapping, we use an Adaptive Weighted Multi-Scale
Reconstruction (AWMSR) scheme [88] based on subpixel-shuffling [80,85] to replace the
up-sampling layers used in ESRGAN for SRR image reconstruction. The AWMSR unit
(see Figure 3), which was originally introduced in [88] and demonstrated helpful on top
of the WDSR results [82], stacks 4 different levels of scaling convolutions (3 × 3, 5 × 5,
7 × 7, 9 × 9 kernels) with adaptive weights (initialised with an equal weight of 0.25) to
make full use of the learned low-frequency and high-frequency information during SRR
reconstruction. Here the output xn+1 is fed to the AWMSR unit (see Figure 3), denoted as
fAWMSR, followed by a final convolutional layer, denoted as frec, to generate ISR, which
can be expressed as

ISR = frec

(
3

∑
i=0

αi f i
AWMSR(xn+1)

)
(5)

For the discriminator, we use the same network architecture as described in SR-
GAN [85] and ESRGAN [92], which contains 8 convolutional layers with an increasing
number of feature maps and strides of 2 each time the number of features is doubled
(3 × 3 kernels; 64 feature maps, stride 1; 64 feature maps, stride 2; 128 feature maps, stride
1; 128 feature maps, stride 2; . . . ; 512 feature maps, stride 1, 512 feature maps, stride 2). The
resulting 512 feature maps are followed by two fully connected dense layers together with
a final sigmoid activation function for output. We adopt the relativistic concept that was
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originally proposed in RaGAN [95] and was applied in ESRGAN [92], to use a “relativistic
discriminator”, which estimates the probability of the given real data to be relatively more
realistic than fake data in average, instead of simply predicting real or fake. The relativistic
discriminator network is optimised in an alternating manner [90] along with the generator
network to solve the adversarial min-max problem. Given the standard discriminator,
denoted as Ds, for real input image Ir and fake input image I f , then{

Ds(Ir ) = σ(C(Ir )) → 1 ( real)
Ds

(
I f

)
= σ

(
C
(

I f

))
→ 0 ( f ake)

(6)

where, σ is the sigmoid function, and C is the non-transformed discriminator output. Then
the relativistic average discriminator, denoted as DRa, for real input image Ir and fake
input image I f , can be formulated as DRa

(
Ir , I f

)
= σ

(
C(Ir )− EI f

(
C
(

I f

)))
→ 1 ( more real than f ake)

DRa

(
I f , Ir

)
= σ

(
C
(

I f

)
− EIr (C(Ir ))

)
→ 0 (less real than real)

(7)

where EI f represents the operation of computing the mean of all fake data in a mini-batch,
and EIr represents the operation of computing the mean of all real data.

2.2. Loss Functions

Loss function plays an important role in deep learning based SRR techniques. Up until
the work of SRGAN [85] and EnhanceNet [91], classic SRR networks mostly minimise the
peak Signal to Noise Ratio (SNR; PSNR) between the recovered SRR image and the ground
truth (HR). Due to the ill-posed nature of the SRR problem, texture details are typically
synthetic textures (if not absent) in the reconstructed SRR image and therefore cannot
be “pixel-to-pixel” matched with the ground truth, leading to a smoother solution that
averages all potential synthetic solutions within a PSNR oriented model. In SRGAN [85],
the authors proposed to replace the MSE based content loss (in pixel space) with a loss
(in feature space) defined by feature maps, denoted as ϕ(i, j), where j and i indicate
the j-th convolution (after activation) before the i-th maxpooling layer within the pre-
trained VGG19 network. SRGAN used ϕ(2, 2) and ϕ(5, 4) in their experiments. Instead
of completely removing the content loss term, in EnhanceNet [91], the authors explicitly
experimented with different combinations (weighted averages) of the content loss (τE),
perceptual loss (τP), adversarial loss (τA), and an additional texture loss (τT ; defined by
matching patch-wise statistics of textures). Their study shows the network optimised by τE
has the smoothest and most artefact-free results, whereas τP or τP + τA are much sharper
but full of artefacts, whereas τE + τP + τA and τE + τP + τA + τT produces some “balanced”
results that are comparably sharper (more detailed) but with less artefact.

ESRGAN demonstrated greater optimality, on top of SRGAN, to use the VGG features
before the activation layers in order to have denser feature representations (before activa-
tion), while keeping consistency of reconstructed SRR brightness [92]. Besides, ESRGAN
kept the l1 norm-based content loss term (weighted by a factor of 0.01) to balance the
perceptual-driven solutions. Due to the very small weight of the content loss, ESRGAN
proposed the use of a “network interpolation” method, which is a weighted average of the
two networks trained with perceptual loss and l1 loss, to balance the perceptual-driven
and PSNR-driven solutions.

The l1 and MSE based content loss, denoted as ll1
SR and lMSE

SR , respectively, can be
formulated as
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{
ll1
SR = 1

s2WH ∑sW
x=1 ∑sH

y=1

∣∣∣(IHR −G(ILR))x,y

∣∣∣
lMSE
SR = 1

s2WH ∑sW
x=1 ∑sH

y=1 ((IHR −G(ILR))x,y)
2 (8)

where G represents the generator function, W and H denote the width and height of the
ILR, and s denotes the scaling factor for ISR (and IHR) with respect to ILR.

The VGG based perceptual loss, denoted as lVGG/ϕ(i,j)
SR , can be expressed as

lVGG/ϕ(i,j)
SR =

1
Wi,jHi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(
(

ϕ(i, j)IHR
− ϕ(i, j)G(ILR)

)
x,y

)
2

(9)

where Wi,j and Hi,j represent the dimensions of the respective feature maps ϕ(i, j) within
the VGG network. The authors of ESRGAN also experimented with the VGG loss based on
a fine-tuned VGG network for material recognition and concluded the gain is marginal. We
also tested with both VGG networks for HiRISE images and visually checked the results -
there is not any viewable difference. Future experiments on perceptual loss that focuses on
texture still have the potential to improve the SRR results, but in this work, we stick with
the original pre-trained VGG19 network [78] for feature representation.

Based on Equation (7), the discriminator loss of RaGAN, denoted as lRa
D , can be

expressed as

lRa
D = −EIr

[
log
(

DRa

(
Ir , I f

))]
− EI f

[
log
(

1− DRa

(
I f , Ir

))]
(10)

The adversarial loss for the generator, denoted as lRa
SR, can be expressed as a symmetri-

cal form of Equation (10), as

lRa
SR = −EIr

[
log
(

1− DRa

(
Ir , I f

))]
− EI f

[
log
(

DRa

(
I f , Ir

))]
(11)

Given the nature of this work is to derive scientifically meaningful results, we therefore
adjust the total loss function to encourage solutions towards an ideal scenario, that is, better
than using MSE loss alone, but with minimal tolerance to artefacts. On the other hand,
we empirically found that using the same loss function as used in ESRGAN tends to
produce fine-scale synthetic textures that contain similar noise patterns introduced from
the original HiRISE images (this is further discussed in Section 4.1). Although optimisation
of perceptual based loss functions is better suited for photo-SRR applications, it does not
appear to be suitable for remote sensing applications, with the current state of the art of
deep learning based SRR. We rebalance the lower-level and higher-level perceptual loss
derived from the VGG network to act together as the perceptual loss, and also to give a
higher weight to the traditional MSE based content loss, in order to minimise the creation
of hallucinate finer details.

The total generator loss, LMARSGAN
G , used in this work can be expressed as a weighted

sum of the content loss formulated in Equation (8), lower-level and higher-level perceptual
losses formulated in Equation (9), and the adversarial loss formulated in Equation (11), as
follows

LMARSGAN
G = γlVGG/ϕ(5,4)

SR + (1− γ)lVGG/ϕ(2,2)
SR + λlRa

SR + ηlMSE
SR (12)

where γ, λ, and η, are the hyperparameters to balance different loss terms, where, in
comparison to the total loss used in ESRGAN, LESRGAN

G , can be expressed as

LESRGAN
G = lVGG/ϕ(5,4)

SR + λlRa
SR + ηll1

SR (13)

In order to show the effectiveness of the MARSGAN architecture, we choose to firstly
optimise the ESRGAN’s loss function, as shown in Equation (13), for the MARSGAN model
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for Jezero crater, as demonstrated in Section 3.1. In Section 3.2, we use our fine-tuned loss
function, shown in Equation (12), for the MARSGAN model, for the 8 science sites.

2.3. Assessment Methods

For validation and quality assessment, we follow the standard image quality metrics,
which include PSNR, Mean Structural Similarity Index Metric (MSSIM), Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE), and Perception-based Image Quality Evalua-
tor (PIQE), using HiRISE and downsampled HiRISE (at 1 m/pixel) as reference/validation
dataset. CaSSIS images and SRR results are co-registered with HiRISE using our in-house
multi-resolution image co-registration pipeline [96] in order to calculate PSNR and MSSIM,
and also to compare against the BRISQUE and PIQE scores. These metrics are available
via Matlab’s “Image Quality Metrics” bundle (https://uk.mathworks.com/help/images/
image-quality.html (accessed on 1 May 2021)) and can be summarised as follows:

(1) PSNR: PSNR is derived from the MSE and indicates the ratio of the maximum pixel
intensity to the power of the distortion. A mathematical expression of PSNR can
formulated as

PSNR(T, R) = 10log10

(
PeakVal2

MSE(T, R)

)
(14)

where T denotes the target image (the CaSSIS SRR image in our case), R denotes the
reference image (the down-sampled HiRISE image in our case), and PeakVal is the
maximum value of the reference image (normalised to 255 for 8-bit image in our case).

(2) MSSIM [97]. MSSIM is the mean of locally computed structural similarity. The
structural similarity index is derived using patterns of pixel intensities among neigh-
bouring pixels with normalised brightness and contrast. MSSIM can be formulated
as

MSSIM(T, R) = E

[
(2µTµR + C1)(2σT,R + C2)(

µ2
T + µ2

R + C1
)(

σ2
T + σ2

R + C2
)]. (15)

where E represents the operation of mean, µT , µR, σT , σR, and σT,R are the local means,
standard deviations, and cross-covariance of the target image and reference image
respectively. C1 and C2 are constants based on the dynamic range of pixel values.

(3) BRISQUE [98]. The BRISQUE model provides subjective quality scores based on a
pre-trained model using images with known distortions. The score range is [0,100]
and lower values reflect better perceptual quality.

(4) PIQE [99]. PIQE measures the quality of images using block-wise calculation against
arbitrary distortions. The score range is [0,100] and lower values reflect better percep-
tual quality.

In practice, due to large differences of imaging time (year and local Mars time) between
HiRISE images and CaSSIS images (as explained in Section 2.4), these measurements,
sometimes, may not be appropriate. We try to assess the CaSSIS SRR result with the
“closest” HiRISE, in terms of the imaging date and local Mars time, in order to maintain
the most “compatible” brightness, contrast and shading characteristics between HiRISE
and CaSSIS, even though the choices are extremely limited.

Complementary to the quality measurements, we also demonstrate with SRR results
of the Jezero crater site, using sharpness measurement of contrasted-and-slanted edges
(see Section 3.1). This is a direct way of measuring image spatial resolution and is not
dependent on a reference HiRISE image, which is subject to changes in appearance, due
to different imaging time (the closest CaSSIS and HiRISE “pairs” used in this work is still
~1 month apart). Such measurements are critical for remote sensing applications in order
to quantify the effective resultant SRR resolution.

https://uk.mathworks.com/help/images/image-quality.html
https://uk.mathworks.com/help/images/image-quality.html
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2.4. Training and Testing

Our training dataset included ~1.8 million pairs of HiRISE (i.e., HR; at 0.25 m/pixel) and
down-sampled HiRISE (i.e., LR; at 1 m/pixel) cropped samples. The training HR samples
were extracted from 466 unique HiRISE images, containing non-overlapping unique features
of Mars (see Figure 4), including dunes (Figure 4a), craters (Figure 4b), hills (Figure 4c), layer-
ing (Figure 4d), slopes (Figure 4e), cones (Figure 4f), scallops (Figure 4g), gullies (Figure 4h),
falls (Figure 4i), deposits (Figure 4j), rocks (Figure 4k), chaos (Figure 4l), and other unique
features (a list of these features with associated HiRISE image IDs is provided in Supple-
mentary Materials). Note that all experiments (training and testing), in this work, are
performed with a scaling factor of 4x between LR and HR (or SR) images. The train-
ing LR samples are produced by applying a Gaussian filter and followed by a bicubic
down-sampling process of the corresponding HR samples.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 45 
 

 

~1 month apart). Such measurements are critical for remote sensing applications in order 
to quantify the effective resultant SRR resolution. 
2.4 Training and Testing 

Our training dataset included ~1.8 million pairs of HiRISE (i.e., HR; at 0.25m/pixel) 
and down-sampled HiRISE (i.e., LR; at 1m/pixel) cropped samples. The training HR 
samples were extracted from 466 unique HiRISE images, containing non-overlapping 
unique features of Mars (see Figure 4), including dunes (Figure 4a), craters (Figure 4b), 
hills (Figure 4c), layering (Figure 4d), slopes (Figure 4e), cones (Figure 4f), scallops 
(Figure 4g), gullies (Figure 4h), falls (Figure 4i), deposits (Figure 4j), rocks (Figure 4k), 
chaos (Figure 4l), and other unique features (a list of these features with associated HiRISE 
image IDs is provided in supplementary material). Note that all experiments (training and 
testing), in this work, are performed with a scaling factor of 4x between LR and HR (or 
SR) images. The training LR samples are produced by applying a Gaussian filter and 
followed by a bicubic down-sampling process of the corresponding HR samples.  

 

Figure 4. Examples of HiRISE image crops that are used for training of our networks, containing various unique features of the 
Martian surface. (a) Dunes at Herschel Crater (ESP_037948_1645); (b) Small craters (possibly filled by deltaic deposits) 
(PSP_006954_1885); (c) Columbia Hills (PSP_001513_1655); (d) Light-toned layering at Noctis region pit (ESP_017399_1680); (e) 
Slopes in Coprates Chasma (ESP_030426_1685); (f) Pitted cones in Melas Chasma (ESP_043850_1685); (g) Eroded scallops with layers 
(PSP_001938_2265); (h) Gullies within the central pit of Bamberg Crater (PSP_010301_2200); (i) Lava falls in northern Kasei Valles 
(ESP_040659_2025); (j) Putative salt deposits in Terra Sirenum (PSP_005811_1470); (k) Mound of sedimentary rocks in Gale Crater 
(PSP_006855_1750); (l) Gorgonum Chaos (ESP_016004_1425). For more detail, please refer to the HiRISE site at 
https://www.uahirise.org/sim/ (accessed on 1 May 2021). 

Figure 4. Examples of HiRISE image crops that are used for training of our networks, containing various unique features of
the Martian surface. (a) Dunes at Herschel Crater (ESP_037948_1645); (b) Small craters (possibly filled by deltaic deposits)
(PSP_006954_1885); (c) Columbia Hills (PSP_001513_1655); (d) Light-toned layering at Noctis region pit (ESP_017399_1680);
(e) Slopes in Coprates Chasma (ESP_030426_1685); (f) Pitted cones in Melas Chasma (ESP_043850_1685); (g) Eroded scallops
with layers (PSP_001938_2265); (h) Gullies within the central pit of Bamberg Crater (PSP_010301_2200); (i) Lava falls in
northern Kasei Valles (ESP_040659_2025); (j) Putative salt deposits in Terra Sirenum (PSP_005811_1470); (k) Mound of
sedimentary rocks in Gale Crater (PSP_006855_1750); (l) Gorgonum Chaos (ESP_016004_1425). For more detail, please refer
to the HiRISE site at https://www.uahirise.org/sim/ (accessed on 1 May 2021).

https://www.uahirise.org/sim/
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In Experiment-1, we train the original ESRGAN network with the original loss func-
tion, as shown in Equation (13). In Experiment-2, we train the proposed MARSGAN
network optimised with the same loss function that was used in ESRGAN. Finally, in
Experiment-3, we train the proposed MARSGAN network optimised by our rebalanced
loss function, as shown in Equation (12). Comparisons of the results from the three trained
models are given in Section 3.1. For further processing results, which are demonstrated in
Section 3.2, on the proposed CaSSIS science scenes, we use the MARSGAN model trained
with Experiment-3.

For Experiment-1, the batch size is set to 64 and the spatial sizes of the HR and LR
patches are set to 256x256 pixels and 64x64 pixels. This is 4 times larger for each HR/LR
patch compared to the spatial sizes used in [92] and ~7 times larger comparing to [85]. It
was observed in [92] that training a deep SRR network benefits from a larger patch size due
to an enlarged receptive field, with trade-offs to more computing resources and a longer
training time. We follow the two-stage training process, proposed in [92] for ESRGAN,
to train a PSNR-oriented model initially with the l1 loss in Equation (8), followed by the
perceptual-oriented training with the perceptual loss in Equation (13), with λ = 5× 10−3

and η = 1× 10−2. For Experiment-2, the batch size is 64 and the spatial sizes of the HR
and LR patches are set to 128 × 128 pixels and 32 × 32 pixels for a shorter training time.
The same two-stage training process (with the same hyperparameters) is followed as in
Experiment-1.

In Experiment-3, the batch size and spatial patch sizes are the same as Experiment-
2. We re-use the pre-trained MARSGAN model from Experiment-2 for initialisation for
the generator and continue training with the MARSGAN loss in Equation (12), with
λ = 5 × 10−3, γ = 0.5, and a higher η = 0.5 in order to encourage solutions with
minimised synthetic artefacts. The initial learning rate is 10−4, and halved at 50k, 100k,
300k, and 500k iterations. Standard Adam optimisation [100] is used with β1 = 0.9 and
β2 = 0.999. Training and testing are achieved on the latest NVIDIA RTX 3090 GPU.

Our testing dataset is a collection of CaSSIS colour images for the Perseverance rover’s
landing site, and as well as several selected science-oriented scenes introduced in Section 1.1.
Note that our HiRISE training dataset is in greyscale. To handle the colour channels of
CaSSIS image, we can either feed the CaSSIS colour images directly into the MARSGAN
prediction module, which will work on the brightness channel (V) in the Hue-Saturation-
Value (H-S-V/HSV) colour space, or we can produce SRR on each individual colour channel
in the Red-Green-Blue (R-G-B/RGB) colour space and merge them later, for colour output.
In our experiments, we found the two approaches result in similar SRR quality, however, the
latter approach leads to a slightly different colour appearance compared to the input image
(see Figure 5 for demonstration of the differences). Theoretically, the texture/sharpness
manipulation in the separate R-G-B channels should not affect the brightness/reflectance
for each channel alone, but it has an effect if we merge back the three channels in R-G-B
colour space. On the other hand, texture/sharpness changes in the V channel would not
affect the brightness/reflectance and also would not affect the colour appearance which is
controlled by the H and S channel. Therefore, when merging the three channels in H-S-V
colour space, only texture and sharpness change, brightness/reflectance and colour will
remain. We follow this approach for all CaSSIS SRR results presented in this paper.
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Figure 5. Example of the effect on SRR on each individual colour channels in R-G-B colour space and SRR on the brightness
intensity channel in H-S-V colour space, in comparison to the input.

In addition, CaSSIS uses multiple combinations of long-to-short wavelengths to syn-
thesise colour in R-G-B colour space [101], e.g., NIR-PAN-BLU, and empirically speaking,
CaSSIS images generally have a better SNR on their longer wavelength channels, i.e.,
NIR band (centred at 936.7 nm), RED band (centred at 836.2 nm) and PAN band (centred
at 675 nm) and have a lower SNR on their shorter wavelength channels, i.e., BLU band
(centred at 499.9 nm). Figure 6 shows that the BLU band is obviously noisier compared to
the NIR and PAN band. Therefore, running SRR on the R-G-B colour channels separately
may provide an opportunity to produce a better SRR result via different treatment on the
three channels, e.g., applying denoising on the BLU channel. However, the issue of the
resulting different colour appearance needs to be tackled in a future study.
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Figure 6. An example of the CaSSIS N-P-B colour image (MY36_014520_019_0), and its corresponding NIR, PAN, and BLU
bands, visually showing the different SNR levels for NIR, PAN, and BLU.

Finally, for validation purposes, we only pick the CaSSIS testing images that has one or
more corresponding HiRISE observations. If multiple HiRISE images are available for com-
parison, the one that was captured with the closest date and/or Solar Longitude (Ls) to the
CaSSIS scene is used. Note that none of these validation HiRISE images are used for train-
ing (see Supplementary Materials for a list of the training HiRISE image IDs). The testing
and validation datasets for the selected science targets is presented in Table 1. The proposed
quantitative assessment is only applied to the results of Jezero Crater (see Section 3.1).
For the science-oriented scenes, only visual qualitative comparisons are given (see Section 3.2).
A collection of examples of the CaSSIS testing images for the proposed science targets can
be found in Figure 2.
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3. Results
3.1. Results and Assessment for Jezero Crater

In this section, we first demonstrate our CaSSIS SRR results over the Mars2020 Perse-
verance rover’s landing site, Jezero Crater. The input LR image is the 4 m/pixel CaSSIS
NPB colour image (native resolution is about 4.5 m/pixel), that was captured on 23 Febru-
ary 2021 during the morning (local Mars time). The HR reference image (for validation)
is the 25 cm/pixel HiRISE RED band image (native resolution is 29.3 cm/pixel; see
https://www.uahirise.org/ESP_068294_1985 (accessed on 1 May 2021)) that was captured
on 19 February 2021 at 14.55 in the afternoon (local Mars time). As the two images were
captured pretty close to the same date, no obvious difference of the Martian surface at
1 m/pixel scale is expected. For example, both CaSSIS and HiRISE images have captured
components from the rover, which landed on 18 February 2021. However, due to different
solar illumination directions (morning and afternoon lighting), some surface features may
look different due to surface bi-directional reflectance effects.

In this work, we down-sample the 25 cm HiRISE image to 1 m using the GDAL’s
“cubicspline” down-sampling method (https://gdal.org/programs/gdal_translate.html
(accessed on 1 May 2021)) to simulate 1 m view of the surface, in order to compare with
the SRR results (with an effective resolution enhancement factor of ~3) at the scale of
1 m. For the 8 cropped regions shown in Figure 7, a visual comparison of the SRR results,
from the three experiments (refer to Section 2.4), against downsampled HiRISE image
(1 m/pixel) and as well as the original resolution HiRISE image (at 0.25 m/pixel), can
be found in Figure 8. The first experiment (second column of Figure 8) refers to the
CaSSIS SRR processing with the ESRGAN network that was trained with HiRISE images.
The second experiment (third column of Figure 8) refers to the CaSSIS SRR processing
with the proposed MARSGAN network that was trained with the same HiRISE training
dataset (but optimised with the ESRGAN’ loss function and with a smaller patch size for
faster convergence; hereafter referred to as MARSGAN-m1). The third experiment (fourth
column of Figure 8) refers to the CaSSIS SRR processing with our proposed MARSGAN
network with our rebalanced loss function (hereafter referred to as MARSGAN-m2). For
more details of the three experiments, please refer to Section 2.4.

https://www.uahirise.org/ESP_068294_1985
https://www.uahirise.org/ESP_068294_1985
https://gdal.org/programs/gdal_translate.html


Remote Sens. 2021, 13, 1777 17 of 40Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 45 
 

 

 

Figure 7. An overview map, from CaSSIS (MY36_014520_019_0) NPB colour image and HiRISE (ESP_068294_1985) RED band 
greyscale image, of the Perseverance rover’s landing site, Jezero Crater, showing locations (in red bounding box from crop-A to H) 
of 8 cropped areas for zoom-in comparison (see Figure 8) and quantitative assessment (see Table 2). 
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A. The rover itself is not visible from the CaSSIS image and thus SRR results but is visible 
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Figure 7. An overview map, from CaSSIS (MY36_014520_019_0) NPB colour image and HiRISE (ESP_068294_1985) RED
band greyscale image, of the Perseverance rover’s landing site, Jezero Crater, showing locations (in red bounding box from
crop-A to H) of 8 cropped areas for zoom-in comparison (see Figure 8) and quantitative assessment (see Table 2).

Figure 8 shows zoom-in views of the 8 selected areas for detailed comparison. The
selected areas (crop-A to H) contain different types of features around the landing area, and
also include a view of the rover’s jettisoned parachute and back-shell, shown in crop-A.
The rover itself is not visible from the CaSSIS image and thus SRR results but is visible
from the HiRISE images in between two “blast patterned” bright features. From Figure 8,
we can observe that, generally speaking, both the ESRGAN and MARSGAN results are
able to show 2–4 times of resolution enhancement in comparison to the input CaSSIS image
and referencing HiRISE image. Our proposed MARSGAN models (MARSGAN-m1 and
MARSGAN-m2) outperforms the original ESRGAN model in terms of edge sharpness and
realistic texture details. Although the larger-scale structural features (e.g., crater ridges, big
rocks, dune patterns) are pretty seamless on the CaSSIS SRR image and the 1 m HiRISE
image (except for their different illumination directions), some of the very fine scale features
(e.g., rocks, ground textures) still show quite a lot of differences between the SRR results
and the 1 m HiRISE image. This is due to the ill-posed nature of SRR, as if the information
is completely missing from the LR image, then it cannot be recovered. Though textures syn-
thesis is involved, we limit this process at the training stage, to discourage the perceptually
pleasing solutions that have artefacts or fault textures (refer to Sections 2.2 and 2.4).
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Figure 8. CaSSIS SRR results, from ESRGAN, MARSGAN-m1, and MARSGAN-m2, of 8 cropped areas at Jezero Crater, in
comparison with the original 4 m/pixel CaSSIS input image, 1 m/pixel down-sampled HiRISE image, and 0.25 m/pixel
original HiRISE image. See Figure 7 for locations of cropped images.
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Table 2. Statistics of the image quality metrics for the input CaSSIS image (LR; at 4 m/pixel native resolution) and upscaled
to 1 m/pixel for ESRGAN SRR result, MARSGAN-m1 SRR result, MARSGAN-m2 SRR result, and the down-sampled
HiRISE image (HR reference image; at 1 m/pixel) for the 8 areas (as shown in Figures 7 and 8).

Area ID Image PSNR MSSIM BRISQUE % PIQE %

A

CaSSIS 4m (upscaled to 1 m) 26.0443 0.4259 52.4714 89.5445

ESRGAN SRR 27.4360 0.6447 45.2599 58.2798

MARSGAN-m1 SRR 28.3800 0.6628 44.3843 48.1842

MARSGAN-m2 SRR 28.8617 0.7348 40.8888 37.9551

HiRISE 1 m - 1.0 37.3207 17.8052

B

CaSSIS 4m (upscaled to 1 m) 25.2536 0.5010 55.2349 89.4813

ESRGAN SRR 1 m 27.1629 0.6266 44.8523 62.1144

MARSGAN-m1 SRR 1 m 27.5165 0.7527 43.4409 58.2852

MARSGAN-m2 SRR 27.5788 0.7121 43.3642 57.8908

HiRISE 1 m - 1.0 40.0622 39.2406

C

CaSSIS 4m (upscaled to 1 m) 26.6270 0.5890 62.2095 89.4329

ESRGAN SRR 27.5628 0.6099 51.2506 53.4608

MARSGAN-m1 SRR 28.2237 0.7378 49.2374 52.4337

MARSGAN-m2 SRR 28.7730 0.7970 40.2497 37.9989

HiRISE 1 m - 1.0 42.8763 39.1884

D

CaSSIS 4m (upscaled to 1 m) 24.8450 0.4129 55.6545 89.3675

ESRGAN SRR 26.9355 0.5282 44.2364 69.3333

MARSGAN-m1 SRR 27.6077 0.5479 34.3705 54.2366

MARSGAN-m2 SRR 28.6258 0.6231 29.2820 45.4305

HiRISE 1 m - 1.0 29.5525 39.2207

E

CaSSIS 4m (upscaled to 1 m) 23.4176 0.5025 46.6789 91.6742

ESRGAN SRR 24.4753 0.7128 40.5757 89.0071

MARSGAN-m1 SRR 24.9328 0.7348 40.7020 75.0569

MARSGAN-m2 SRR 25.9999 0.7434 40.3389 54.8428

HiRISE 1 m - 1.0 41.9687 69.8425

F

CaSSIS 4m (upscaled to 1 m) 23.0258 0.7153 66.6770 89.5689

ESRGAN SRR 25.1195 0.8354 54.0616 55.4445

MARSGAN-m1 SRR 24.5218 0.8545 41.8365 47.2499

MARSGAN-m2 SRR 25.2674 0.8667 44.0096 48.2412

HiRISE 1 m - 1.0 43.4908 47.9397

G

CaSSIS 4m (upscaled to 1 m) 25.0528 0.4539 54.5540 89.6983

ESRGAN SRR 26.1769 0.6643 45.1263 69.5151

MARSGAN-m1 SRR 26.8709 0.7590 43.9563 57.2191

MARSGAN-m2 SRR 27.0346 0.7659 41.5752 58.0473

HiRISE 1 m - 1.0 42.4498 48.9388

H

CaSSIS 4m (upscaled to 1 m) 26.6873 0.5973 53.3890 89.5466

ESRGAN SRR 27.0394 0.7170 44.7894 69.0773

MARSGAN-m1 SRR 27.9313 0.7945 43.4202 63.0145

MARSGAN-m2 SRR 28.1564 0.8121 41.7960 58.9527

HiRISE 1 m - 1.0 36.9841 51.9500
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Table 2 shows the statistics of the standard image quality metrics (refer to Section 2.3), for the
input CaSSIS image, ESRGAN SRR, MARSGAN-m1 SRR, MARSGAN-m2 SRR, and validation
HiRISE image (at 1 m/pixel resolution), for 8 cropped areas shown in Figures 7 and 8. In order
to calculate the PSNR and MSSIM using the 1 m/pixel downsampled HiRISE images as
references, the input 4 m/pixel CaSSIS images are upscaled, using GDAL’s bicubic resizing
function (see https://gdal.org/programs/gdal_translate.html (accessed on 1 May 2021)),
by a factor of 4, to 1 m/pixel. As mentioned in Section 2.4, all SRR results in this work
already have an upscaling factor of 4 and they are all in the same scale with the reference
1 m/pixel down-sampled HiRISE images. All the HiRISE images are co-registered to the
CaSSIS images.

In general, as shown in Table 2, the SRR results from ESRGAN, MARSGAN-m1, and
MARSGAN-m2, have achieved higher PSNR and MSSIM for all 8 areas. MARSGAN results
have achieved overall higher PSNR compared to ESRGAN, with one outlier for crop-F,
and have higher MSSIM for all 8 areas. The higher MSSIM values of the MARSGAN-m1
and MARSGAN-m2 SRR images, compared to the ESRGAN SRR images, reflect that they
contain more abundant and sharper structural features which are observable in the HiRISE
image. MARSGAN-m2 has achieved slightly better PSNR comparing to MARSGAN-m1.
MARSGAN-m2 has also achieved better MSSIM comparing MARSGAN-m1 for 7 areas,
with one outlier for crop-B.

On the other hand, the BRISQUE and PIQE measurements directly reflect the image
quality in terms of sharpness, contrast, perceptual quality, and SNR. BRISQUE and PIQE
scores between 0 to 100 and lower values mean better image quality (see Section 2.3). From
Table 2, we can observe the much better image quality scores of MARSGAN-m2 SRR results
compared to the input CaSSIS images and as well as the ESRGAN SRR results. For some
of the areas, MARSGAN-m2 has achieved even better BRISQUE (crop-C, D, E, G) and
PIQE scores (crop-C and E) than the 1 m HiRISE images. The BRISQUE and PIQE scores
do not necessarily correlate with the amount of information in the image, for example,
downsampled HiRISE images always contain more finer-scale information which are not
recorded on the original CaSSIS and hence not resolvable on CaSSIS SRR images, however,
BRISQUE and PIQE scores reflect the images’ quality based on their existing information.

Nonetheless, these image quality metrics do not directly reflect the achieved image
resolution of the SRR results. In order to estimate the resolution of the SRR results, we
perform edge sharpness measurements on high-contrast slanted-edges using the Imatest®

software (https://www.imatest.com/ (accessed on 1 May 2021)). The edge sharpness
measurement measures the total amount of pixels from 10% to 90% rise of a high-contrast
edge profile (see Figure 9). If the total number of pixels are compared to the total number
of pixels of the same edge profile of its LR counterpart, then their ratio can be used to
estimate an enhancement factor between the two images. We perform this test for a
rippled dune area at the northwest side of the largest crater on the same CaSSIS scene
(MY36_014520_019_0), where many high contrast edges are presented to perform this
measurement. The MARSGAN-m2 results is compared against the original CaSSIS image
at 1 m/pixel scale (only PAN band is used for this measurement).

https://gdal.org/programs/gdal_translate.html
https://www.imatest.com/
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at Jezero crater, using the Imatest® software, for the original CaSSIS image (MY36_014520_019_0; the first and the third
column) and MARSGAN SRR image (the second and the fourth column). For each slanted edge, there is a sub-figure,
showing a profile line crossing the detected edge. Imatest® measurement of the total pixel number of a 10% to 90% rise
along the profile line is shown inside each plot. For texts inside the plots, please refer to the original full-resolution figure in
Supplementary Materials.

In this assessment, we perform the slanted-edge measurement (https://www.imatest.
com/docs/#sharpness (accessed on 1 May 2021)) using the Imatest® software for 20 high-
contrast edges within 20 Regions of Interest (ROIs). Figure 9 shows zoom-in views of the 20
ROIs from the CaSSIS image and corresponding SRR image, 40 plots of the corresponding
edge profiles (the orthogonal lines crossing the automatically detected edges), and the total
number of pixels for a 10% to 90% rise along the profile line. The statistics in Figure 9
are summarised in Table 3. An enhancement factor between the MARSGAN SRR image
and input CaSSIS image, for each “slanted-edge”, is calculated by dividing the total pixels
involved for the 10% to 90% profile rise of the original CaSSIS image, with the total
pixels involved for the 10% to 90% profile rise of the MARSGAN SRR image. An average
of 20 “slanted-edge” measurements, indicates a factor of 2.9625 ± 0.7x (~3x) resolution
enhancement for the MARSGAN SRR result compared to the CaSSIS image. This agrees
with our visual observation that is illustrated in Figure 8.

Table 3. Summary of the statistics from Figure 9, and estimation of enhancement factor, from the
total pixel counts of 10% to 90% profile rise crossing the 20 automatically detected slanted-edges, for
the input CaSSIS image (MY36_014520_019_0) and MARSGAN SRR image.

Slanted-Edge
ID

CaSSIS Image
(Total Number of
Pixels for 10–90%

Profile Rise)

MARSGAN SRR
(Total Number of
Pixels for 10–90%

Profile Rise)

ROI Size
(Pixels)

Enhancement
Factor

1 4 1.87 14 × 12 2.14
2 6.36 1.86 16 × 14 3.42
3 6.26 2.32 19 × 20 2.70
4 4.98 1.87 18 × 21 2.66
5 5.80 2.31 21 × 27 2.51
6 6.99 2.23 26 × 20 3.13
7 5.22 1.05 21 × 21 4.97
8 5.81 1.98 25 × 19 2.93
9 5.04 1.36 20 × 17 3.71

10 4.85 1.29 23 × 22 3.76
11 4.19 1.59 17 × 22 2.64
12 5.87 2.44 22 × 25 2.41
13 6.01 1.59 24 × 19 3.78
14 4.19 1.84 26 × 25 2.28
15 6.07 2.07 16 × 18 2.93
16 6.64 2.58 17 × 16 2.57
17 4.45 1.56 20 × 15 2.85
18 6.09 1.91 23 × 18 3.19
19 3.86 1.85 23 × 17 2.09
20 6.21 2.41 17 × 11 2.58

Average - - - 2.9625 ± 0.7

3.2. Results and Visual Demonstration of Science Targets/Sites

Further to the initial assessment and validation work of the Perseverance rover’s
landing site, we demonstrate CaSSIS SRR results using the proposed MARSGAN model (i.e.,
MARSGAN-m2), for 8 more CaSSIS scenes, containing different science targets introduced
in Section 1.1 (examples are shown in Figure 2). These science targets include (a) Bedrock
layers (in Site-1); (b) Bright and dark slope streaks (in Site-2); (c) Defrosting dunes and dune
gullies (in Site-3); (d) Gullies at Gasa Crater (in Site-4); (e) Recurring slope lineae at Hale
Crater (in Site-5); (f) Scalloped depressions and dust devils at Peneus Patera (in Site-6); (g)

https://www.imatest.com/docs/#sharpness
https://www.imatest.com/docs/#sharpness
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Gullies at Selevac Crater (in Site-7); (h) Defrosting spiders (in Site-8). Input CaSSIS image
IDs and reference HiRISE image IDs are provided in Table 1. In this section, examples
are shown with 4 small crops for each CaSSIS scene (full-strip results are provided in
Supplementary Materials).

Figure 10 shows examples of 4 cropped regions of the MARSGAN SRR result for
Site-1, in comparison with the input 4m CaSSIS image MY35_012491_213_0 and down-
sampled 1 m HiRISE image ESP_022619_1495. The CaSSIS image and HiRISE were taken
at different local Mars time, i.e., CaSSIS in the morning and HiRISE in the afternoon, so
obvious differences in illumination directions are shown between the CaSSIS/SRR and
HiRISE images. Note that the HiRISE images are always imaged in the afternoon (~2–5 pm
local Mars time). Crop A-D in Figure 10 shows exposed bedrock) and transverse aeolian
ridges on the crater floor. We can observe clearer shapes and outlines of features from the
CaSSIS SRR result and the 1 m HiRISE image. Despite some finer scale textures shown in
HiRISE, the larger scale structural features shown in CaSSIS SRR are similar to those in the
HiRISE reference image.

Figure 11 shows examples of 4 cropped regions of the MARSGAN SRR result for Site-2,
in comparison with the input 4m CaSSIS image MY35_007017_173_0 and down-sampled
1 m HiRISE image ESP_012383_1905. For this site, the CaSSIS image was also taken in the
morning and is illuminated from the other side compared to the HiRISE image. Crop A-C
in Figure 11 shows bright and dark slope streak features. The CaSSIS SRR result reveals
clearer boundaries of the slope streak feature and has higher SNR compared to the original
input. Crop D in Figure 11 shows transverse aeolian ridges inside a small crater. The
CaSSIS SRR result has enhanced sharpness and structural clarity for the aeolian features
and agrees broadly with the HiRISE image.

Figure 12 shows examples of 4 cropped regions of the MARSGAN SRR result for Site-3,
in comparison with the input 4m CaSSIS image MY35_010749_247_0 and down-sampled
1 m HiRISE image ESP_059289_1210. This site highlights dunes and associated defrosting
features on the Martian surface. The CaSSIS image was taken in the afternoon, but due to
large Ls (seasonal) differences, frost is no longer present on the HiRISE image, so the albedo
patterns are not apparent anymore. The dunes were covered by frost for the CaSSIS/SRR
image. Crop D shows gully-channels on dune slip faces with new deposits visible in the
CaSSIS SRR image. The CaSSIS SRR image has visually shown improved resolution of the
dark defrosting spots and higher SNR comparing to the input.

Figure 13 shows examples of 4 cropped regions of the MARSGAN SRR result for
Site-4, in comparison with the input 4m CaSSIS image MY35_012112_221_0 and down-
sampled 1 m HiRISE image ESP_065469_1440. The CaSSIS and HiRISE images were taken
at very similar local Mars time and just under a month apart, resulting in very similar
illumination/contrast between each other. Crop A-C in Figure 13 shows gully channels
between bedrock outcrops at the rim of Gasa Crater, and crop D in Figure 13 shows small
bedrock outcrops on the floor of Gasa Crater. The CaSSIS SRR result has brought out the
details of the gullies and bedrock outcrop and has good agreement with the reference
HiRISE image. Note there are local mis-registration/distortions between the CaSSIS/SRR
and HiRISE images, which are due to very limited overlapping area between the original
CaSSIS and HiRISE images.
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Figure 14 shows examples of 4 cropped regions of the MARSGAN SRR result for Site-5,
in comparison with the input 4m CaSSIS image MY34_005640_218_1 and down-sampled
1 m HiRISE image ESP_058618_1445. Site-5 highlights RSL features on the central peak
of Hale crater. In the CaSSIS SRR result, RSL features have better visibility and show
clearer outlines compared to the original CaSSIS image. The HiRISE image was taken one
month apart and has a small illumination difference of 3 hours apart the CaSSIS. Better
measurement of the changes of the RSL features should be possible using the CaSSIS SRR
result after co-registration with the HiRISE.

Figure 15 shows examples of 4 cropped regions of the MARSGAN SRR result for
Site-6, in comparison with the input 4m CaSSIS image MY35_012488_241_0 and down-
sampled 1 m HiRISE image ESP_013952_1225. The CaSSIS image was taken in the morning
and has resulted in an opposite illumination direction compared to the HiRISE image.
Site-6 highlights the scalloped depression terrain and dust devil tracks. We can see the
dark linear features, in crop D of Figure 15, which are the dust devil tracks, are different
in the CaSSIS/SRR and HiRISE because they were imaged 10 years apart (and these
features change on a sub-annual timescale). We can observe better structural information
of scalloped features, from the CaSSIS SRR result, in crop B of Figure 15, and more fine
scale details in crops A and C. The overall noise level for this site is higher than the other
sites, and especially for crop D, the improvement of SNR in the SRR result is limited. This
is probably due to the lack of any patterned textures or structures from the original input
image.

Figure 16 shows examples of 4 cropped regions of the MARSGAN SRR result for Site-7,
in comparison with the input 4m CaSSIS image MY35_012121_222_0 and down-sampled
1 m HiRISE image ESP_065307_1425. Site-7 contains gullies in Selevac crater. The CaSSIS
and HiRISE images were taken at similar dates and local Mars time and therefore have
similar illumination/contrast. Crop A-D of Figure 16 shows larger-scale and finer-scale
gullies and rock outcrops at the crater’s rim. Shaper edges, clearer structural detail, and
better SNR can be observed from the CaSSIS SRR result in comparison to the input CaSSIS
image. Finer scale textures are missing from the SRR result in comparison to HiRISE, but
as previously mentioned, we do not seek to introduce details that were not initially present
in the LR input in this work.

Finally, Figure 17 shows examples of 4 cropped regions of the MARSGAN SRR result
for Site-8 in comparison with the input 4m CaSSIS image MY35_011777_268_0. The co-
registration of HiRISE (PSP_002081_1055) and CaSSIS/SRR images were not possible for
this site due to large time and seasonal differences of high latitude features. Therefore, no
reference samples are shown for this site. Site-8 highlights the spider features terrain with
frost. Better SNR and clearer structures of such features are observable from the CaSSIS
SRR result in comparison to the input CaSSIS image.
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Figure 17. (Site-8) Cropped examples (A–D) of 4m CaSSIS image (MY35_011777_268_0), MARSGAN CaSSIS SRR, and 1 m
downsampled HiRISE image (PSP_002081_1055).

4. Discussion
4.1. Perceptual-Driven Solution or PSNR-Driven Solution

Perceptual-driven models generally produce SRR results with sharper edges and
richer textures, which lead to visually more pleasing results, in comparison to the PSNR-
driven models. However, due to the ill-posed nature of SRR, lost information or missing
textures cannot be fully and correctly recreated based on the LR image. Therefore, the
sharper and richer the details are, the more stochastic solutions are involved. On the other
hand, PSNR-driven SRR solutions are generally smoother and have less texture details,
but they have a much lower chance of creating artefacts and synthetic textures. This was
demonstrated in [85] and [91] that PSNR-driven solutions encourage the models to find
pixel-wise averages of all potential solutions that have high and sharp texture details. The
averaged solutions are, therefore, smoother but less “synthetic”.

Although SRR networks that are optimised for the best perceptual quality are currently
popular for SRR research in general computer vision tasks, they are not fit for purpose for
remote sensing or scientific applications. The issue is illustrated in Figure 18 using two
small example samples of HiRISE images (ESP_029674_1650 & PSP_007455_1785). The first
column is the input LR images, the second column is the SRR images produced with l1
loss optimised ESRGAN model (representing “PSNR-driven” solutions), the third column
is the SRR images produced with ESRGAN model that was optimised using a balanced,
e.g., η = 1 in Equation (13), perceptual and l1 loss (representing “Balanced” solutions)
and the fourth column is the SRR images using perceptual loss only trained ESRGAN
model (representing “Perceptual-driven” solutions). We can observe from Figure 18 that
the PSNR-driven solution doesn’t produce any artefact but meanwhile doesn’t produce
sharp SRR result. On the other hand, the perceptual-driven solution produces the sharpest
result and richest texture. However, in the case of ESP_029674_1650, synthetic textures
have been brought into the image, and in the other case of PSP_007455_1785, shapes of
the small rocks have been altered, synthetically, compared to the original LR image. As
shown from the third column of Figure 18, ESRGAN model with a balanced perceptual-
and PSNR-oriented optimisation, produces good quality result with no visible artefacts.
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Our MARSGAN SRR solution feeds the model with stochastic variations having the
perceptual loss as a weighted term during training, but also keeps a highly weighted term
of the MSE loss to minimise texture synthesis and the production of artefacts (refer to
Section 2.4). A balanced SRR solution, with the best possible resolution enhancement
and minimised artefact creation, is the overall objective of this work. As demonstrated in
Section 3.2 with different science targets, there were no obvious synthetic artefact found
with our proposed MARSGAN SRR results.
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Figure 18. Illustration with HiRISE SRR images using ESRGAN models that were optimized with l1 loss function (“PSNR
Oriented”), VGG loss function (“Perceptual Oriented”), and our balanced loss function (“Balanced”), showing the impact of
having perceptual-driven training/prediction and having PSNR-driven training/prediction.

4.2. Single Image SRR or Multi-Image SRR

SRR have been divided into single-image and multi-image techniques (including
video SRR). Theoretically, multi-image SRR techniques have more information (resources)
to use, for example, the classic multi-frame subpixel information [70], the multi-angle-view
information [4], and information from spatial-temporal correlations [102,103]. Therefore,
multi-image SRR techniques could theoretically produce more details.

This is also demonstrated in Figure 19, in which a MARSGAN single-image SRR result
using a single HiRISE image (PSP_010097_1655_RED) as input, is shown compared with
the GPT [4] multi-image SRR result using a sequence of 8 overlapping HiRISE images (with
different viewing angles) as input, and by comparison, to the 25 cm/pixel original HiRISE
image (PSP_010097_1655_RED) over the Homeplate area visited by MER-A, Spirit. We can
observe that the multi-image SRR result brought out more detail, e.g., surface deposits and
small rocks, while the single-image SRR result seems to have a sharper reconstruction of
the rover tracks.

On the other hand, the GPT multi-image SRR result (for 8 repeat input images with
1000 × 1000 pixels) took a whole day to process on a high-spec CPU machine (Intel Core
i7 @2.8GHz), while the MARSGAN SRR prediction for the same-sized single image input
only took a few minutes on the same CPU and takes less than a second on the NVIDIA®

RTX3090 GPU. The trade-off becomes obvious, when we want to process a large image,
like a full-strip CaSSIS or HiRISE. Note that the GPT SRR [4] is based on multi-angle view
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information and not based on deep learning, and also its key component is not suitable for
GPU implementation.
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and GPT [4] multi-image SRR result, cropped over the Homeplate area.

4.3. Extendability with Other Datasets

This paper focuses on SRR processing of the TGO CaSSIS images. However, it should
be pointed out that the proposed MARSGAN model can also be applied to other extra-
high resolution, e.g., 0.25 m HiRISE, or medium-to-high resolution, e.g., 6 m CTX and
18m Compact Reconnaissance Imaging Spectrometer (CRISM), Mars imaging datasets.
Figure 20 shows an example of the MARSGAN SRR result, in comparison to the original
HiRISE colour image (ESP_068294_1985; https://www.uahirise.org/ESP_068360_1985
(accessed on 1 May 2021)) of the Perseverance rover’s parachute at the landing site.
Figure 21 shows examples of the MARSGAN SRR result, in comparison to the origi-
nal CTX image (rectJ21_052811_1983_XN_18N282W_v7pt1_6m_Eqc_latTs0_lon0; https:
//planetarymaps.usgs.gov/mosaic/mars2020_trn/CTX/ (accessed on 1 May 2021)) over
Jezero crater. Figure 22 shows an example of the MARSGAN SRR result, in comparison to
the original CRISM image (using bands 233, 78, and 13 of frt0000d3a4_07_if164l_trr3_raw
downloaded from PlanetServer at http://planetserver.eu/ (accessed on 1 May 2021)),
over Capri Chaos, Valles Marineris. In the future, with cross-instrument training (using
different datasets with different resolutions to form the LR/HR training dataset), further
improvement of the MARSGAN model can be expected.

https://www.uahirise.org/ESP_068360_1985
https://planetarymaps.usgs.gov/mosaic/mars2020_trn/CTX/
https://planetarymaps.usgs.gov/mosaic/mars2020_trn/CTX/
http://planetserver.eu/
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Figure 22. Comparison of the 18 m/pixel CRISM image (frt0000d3a4_07_if164l_trr3_raw; using band
233, band 78, and band 13 for RGB colour) and the MARSGAN SRR result over Capri Chaos, Valles
Marineris.

5. Conclusions

In this paper, we introduced the network architecture and training details of the
proposed MARSGAN model for single-image SRR of TGO CaSSIS images. MARSGAN
offers improvements over the ESRGAN model by using adaptive weighted basic residual
blocks, a multi-scale reconstruction scheme, and a rebalanced loss function. We showed the
improvements of MARSGAN in comparison with ESRGAN for CaSSIS SRR over the Per-
severance rover’s landing area. Image-quality based assessment (against down-sampled
HiRISE images) and edge-sharpness based effective resolution measurement are demon-
strated for the landing site image. A resolution enhancement of a factor of ~3x is estimated
based on the Imatest®’s slanted-edge measurements. Further demonstration of CaSSIS
SRR for 8 selected science-oriented scenes are given, which include many features unique
to the Martian surface (e.g., bedrock layers, slope streaks, defrosting dunes, gullies, RSL,
scalloped depressions, dust devils, and defrosting Spiders). For these science study sites,
we demonstrated general improvement of image SNR, improvement of edge sharpness
for different feature outlines, and enhancement of high-frequency details. Finally, the
potential extendibility of the proposed MARSGAN model is demonstrated with examples
from HiRISE, CTX, and CRISM images. Future work will include scientific studies to
demonstrate what new information can be derived from the SRR results. Also, SRR of
multi-spectral data (i.e., CRISM) will be explored in the wavelength domain.
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33. Kossacki, K.J.; Leliwa-Kopystyński, J. Non-uniform seasonal defrosting of subpolar dune field on Mars. Icarus 2004, 168, 201–204.
[CrossRef]

34. Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N. Observations
of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus 2013, 225, 881–897. [CrossRef]

35. Kieffer, H.H.; Christensen, P.R.; Titus, T.N. CO 2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south
polar ice cap. Nature 2006, 442, 793–796. [CrossRef] [PubMed]

36. Dundas, C.M.; McEwen, A.S.; Diniega, S.; Hansen, C.J.; Byrne, S.; McElwaine, J.N. The formation of gullies on Mars today. Geol.
Soc. Lond. Spec. Publ. 2019, 467, 67–94. [CrossRef]

37. Dundas, C.M.; Diniega, S.; Hansen, C.J.; Byrne, S.; McEwen, A.S. Seasonal activity and morphological changes in Martian gullies.
Icarus 2012, 220, 124–143. [CrossRef]

38. Dundas, C.M.; McEwen, A.S.; Diniega, S.; Byrne, S.; Martinez-Alonso, S. New and recent gully activity on Mars as seen by HiRISE.
Geophys. Res. Lett. 2010, 37, 37. [CrossRef]

39. Dundas, C.M.; Diniega, S.; McEwen, A.S. Long-term monitoring of Martian gully formation and evolution with MRO/HiRISE.
Icarus 2015, 251, 244–263. [CrossRef]

40. Tornabene, L.L.; Osinski, G.R.; McEwen, A.S.; Boyce, J.M.; Bray, V.J.; Caudill, C.M.; Grant, J.A.; Hamilton, C.W.; Mattson, S.S.;
Mouginis-Mark, P.J. Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during
the impact process. Icarus 2012, 220, 348–368. [CrossRef]

41. Boyce, J.M.; Wilson, L.; Mouginis-Mark, P.J.; Hamilton, C.W.; Tornabene, L.L. Origin of small pits in martian impact craters. Icarus
2012, 221, 262–275. [CrossRef]

42. McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C.
Seasonal flows on warm Martian slopes. Science 2011, 333, 740–743. [CrossRef]

43. Ojha, L.; McEwen, A.; Dundas, C.; Byrne, S.; Mattson, S.; Wray, J.; Masse, M.; Schaefer, E. HiRISE observations of recurring slope
lineae (RSL) during southern summer on Mars. Icarus 2014, 231, 365–376. [CrossRef]

44. Munaretto, G.; Pajola, M.; Cremonese, G.; Re, C.; Lucchetti, A.; Simioni, E.; McEwen, A.; Pommerol, A.; Becerra, P.; Conway, S.;
et al. Implications for the origin and evolution of Martian Recurring Slope Lineae at Hale crater from CaSSIS observations. Planet.
Space Sci. 2020, 187, 104947. [CrossRef]

45. Stillman, D.E.; Michaels, T.I.; Grimm, R.E.; Harrison, K.P. New observations of martian southern mid-latitude recurring slope
lineae (RSL) imply formation by freshwater subsurface flows. Icarus 2014, 233, 328–341. [CrossRef]

46. Stillman, D.E.; Grimm, R.E. Two pulses of seasonal activity in martian southern mid-latitude recurring slope lineae (RSL). Icarus
2018, 302, 126–133. [CrossRef]

47. McEwen, A.S.; Schaefer, E.I.; Dundas, C.M.; Sutton, S.S.; Tamppari, L.K.; Chojnacki, M. Mars: Abundant Recurring Slope Lineae
(RSL) Following the Planet-Encircling Dust Event (PEDE) of 2018. J. Geophys. Res. Planets 2020. [CrossRef]

48. Gough, R.V.; Nuding, D.L.; Archer Jr, P.D.; Fernanders, M.S.; Guzewich, S.D.; Tolbert, M.A.; Toigo, A.D. Changes in Soil Cohesion
Due to Water Vapor Exchange: A Proposed Dry-Flow Trigger Mechanism for Recurring Slope Lineae on Mars. Geophy. Res. Lett.
2020, 47. [CrossRef]

49. Vincendon, M.; Pilorget, C.; Carter, J.; Stcherbinine, A. Observational evidence for a dry dust-wind origin of Mars seasonal dark
flows. Icarus 2019, 325, 115–127. [CrossRef]

http://doi.org/10.1029/2000JE001296
http://doi.org/10.1029/2003JE002123
http://doi.org/10.1016/j.icarus.2011.08.028
http://doi.org/10.1016/j.icarus.2019.01.010
http://doi.org/10.1029/2018RG000617
http://doi.org/10.1016/j.icarus.2020.113951
http://doi.org/10.1029/2002GL014936
http://doi.org/10.1130/G31287.1
http://doi.org/10.1144/SP467.13
http://doi.org/10.1016/j.icarus.2019.03.034
http://doi.org/10.1029/2009JE003515
http://doi.org/10.1016/j.icarus.2003.11.010
http://doi.org/10.1016/j.icarus.2012.09.024
http://doi.org/10.1038/nature04945
http://www.ncbi.nlm.nih.gov/pubmed/16915284
http://doi.org/10.1144/SP467.5
http://doi.org/10.1016/j.icarus.2012.04.005
http://doi.org/10.1029/2009GL041351
http://doi.org/10.1016/j.icarus.2014.05.013
http://doi.org/10.1016/j.icarus.2012.05.022
http://doi.org/10.1016/j.icarus.2012.07.027
http://doi.org/10.1126/science.1204816
http://doi.org/10.1016/j.icarus.2013.12.021
http://doi.org/10.1016/j.pss.2020.104947
http://doi.org/10.1016/j.icarus.2014.01.017
http://doi.org/10.1016/j.icarus.2017.10.026
http://doi.org/10.1029/2020je006575
http://doi.org/10.1029/2020GL087618
http://doi.org/10.1016/j.icarus.2019.02.024


Remote Sens. 2021, 13, 1777 39 of 40

50. Ojha, L.; Wilhelm, M.B.; Murchie, S.L.; McEwen, A.S.; Wray, J.J.; Hanley, J.; Massé, M.; Chojnacki, M. Spectral evidence for
hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 2015, 8, 829–832. [CrossRef]

51. Jones, A.P.; McEwen, A.S.; Tornabene, L.L.; Baker, V.R.; Melosh, H.J.; Berman, D.C. A geomorphic analysis of Hale crater, Mars:
The effects of impact into ice-rich crust. Icarus 2011, 211, 259–272. [CrossRef]

52. El-Maarry, M.R.; Dohm, J.M.; Michael, G.; Thomas, N.; Maruyama, S. Morphology and evolution of the ejecta of Hale crater in
Argyre basin, Mars: Results from high resolution mapping. Icarus 2013, 226, 905–922. [CrossRef]

53. Collins-May, J.L.; Carr, J.R.; Balme, M.R.; Ross, N.; Russell, A.J.; Brough, S.; Gallagher, C. Postimpact Evolution of the Southern
Hale Crater Ejecta, Mars. J. Geophys. Res. Planets 2020, 125, 6302. [CrossRef]

54. Séjourné, A.; Costard, F.; Gargani, J.; Soare, R.J.; Fedorov, A.; Marmo, C. Scalloped depressions and small-sized polygons in
western Utopia Planitia, Mars: A new formation hypothesis. Planet. Space Sci. 2011, 59, 412–422. [CrossRef]

55. Lefort, A.; Russell, P.S.; Thomas, N. Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by
HiRISE. Icarus 2010, 205, 259–268. [CrossRef]

56. Zanetti, M.; Hiesinger, H.; Reiss, D.; Hauber, E.; Neukum, G. Distribution and evolution of scalloped terrain in the southern
hemisphere, Mars. Icarus 2010, 206, 691–706. [CrossRef]

57. Dundas, C.M. Effects of varying obliquity on Martian sublimation thermokarst landforms. Icarus 2017, 281, 115–120. [CrossRef]
58. Soare, R.J.; Conway, S.J.; Gallagher, C.; Dohm, J.M. Ice-rich (periglacial) vs icy (glacial) depressions in the Argyre region, Mars: A

proposed cold-climate dichotomy of landforms. Icarus 2017, 282, 70–83. [CrossRef]
59. Thomas, P.; Gierasch, P.J. Dust devils on Mars. Science 1985, 230, 175–177. [CrossRef]
60. Balme, M.; Greeley, R. Dust devils on Earth and Mars. Rev. Geophys. 2006, 44. [CrossRef]
61. Whelley, P.L.; Greeley, R. The distribution of dust devil activity on Mars. J. Geophys. Res. Space Phys. 2008, 113. [CrossRef]
62. Reiss, D.; Fenton, L.; Neakrase, L.; Zimmerman, M.; Statella, T.; Whelley, P.; Rossi, A.P.; Balme, M. Dust devil tracks. Space Sci.

Rev. 2016, 203, 143–181. [CrossRef]
63. Forsberg-Taylor, N.K.; Howard, A.D.; Craddock, R.A. Crater degradation in the Martian highlands: Morphometric analysis of the

Sinus Sabaeus region and simulation modeling suggest fluvial processes. J. Geophys. Res. Space Phys. 2004, 109. [CrossRef]
64. Craddock, R.A.; Maxwell, T.A. Geomorphic evolution of the Martian highlands through ancient fluvial processes. J. Geophys. Res.

Space Phys. 1993, 98, 3453–3468. [CrossRef]
65. Piqueux, S.; Byrne, S.; Richardson, M.I. Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders. J.

Geophys. Res. Phys. Planets 2003, 108. [CrossRef]
66. Hao, J.; Michael, G.G.; Adeli, S.; Jaumann, R. Araneiform terrain formation in Angustus Labyrinthus, Mars. Icarus 2019, 317,

479–490. [CrossRef]
67. Thomas, N.; Portyankina, G.; Hansen, C.J.; Pommerol, A. HiRISE observations of gas sublimation-driven activity in Mars’

southern polar regions: IV. Fluid dynamics models of CO2 jets. Icarus 2011, 212, 66–85. [CrossRef]
68. Hansen, C.J.; Thomas, N.; Portyankina, G.; McEwen, A.; Becker, T.; Byrne, S.; Herkenhoff, K.; Kieffer, H.; Mellon, M. HiRISE

observations of gas sublimation-driven activity in Mars’ southern polar regions: I. Erosion of the surface. Icarus 2010, 205, 283–295.
[CrossRef]

69. Portyankina, G.; Markiewicz, W.J.; Thomas, N.; Hansen, C.J.; Milazzo, M. HiRISE observations of gas sublimation-driven activity
in Mars’ southern polar regions: III. Models of processes involving translucent ice. Icarus 2010, 205, 311–320. [CrossRef]

70. Tsai, R.Y.; Huang, T.S. Multipleframe Image Restoration and Registration. In Advances in Computer Vision and Image Processing; JAI
Press Inc.: New York, NY, USA, 1984; pp. 317–339.

71. Keren, D.; Peleg, S.; Brada, R. Image sequence enhancement using subpixel displacements. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; pp. 742–746.

72. Hardie, R.C.; Barnard, K.J.; Armstrong, E.E. Joint MAP registration and high resolution image estimation using a sequence of
undersampled images. IEEE Trans. Image Process. 1997, 6, 1621–1633. [CrossRef]

73. Farsiu, S.; Robinson, D.; Elad, M.; Milanfar, P. Fast and robust multi-frame super-resolution. IEEE Trans. Image Process. 2004, 13,
1327–1344. [CrossRef]

74. Yuan, Q.; Zhang, L.; Shen, H. Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 379–392. [CrossRef]

75. Tao, Y.; Muller, J.-P. Super-resolution restoration of MISR images using the UCL MAGiGAN system. Remote Sens. 2019, 11, 52.
[CrossRef]

76. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the
ECCV 2014, Zurich, Switzerland, 6–12 September 2014; pp. 184–199.

77. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

78. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on
Learning Representations (ICLR). arXiv 2014, arXiv:1409.1556.

79. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Transactions on Petri Nets and
Other Models of Concurrency XV; Springer: Cham, Switzerland, 2016; pp. 391–407.

http://doi.org/10.1038/ngeo2546
http://doi.org/10.1016/j.icarus.2010.10.014
http://doi.org/10.1016/j.icarus.2013.07.014
http://doi.org/10.1029/2019JE006302
http://doi.org/10.1016/j.pss.2011.01.007
http://doi.org/10.1016/j.icarus.2009.06.005
http://doi.org/10.1016/j.icarus.2009.09.010
http://doi.org/10.1016/j.icarus.2016.08.031
http://doi.org/10.1016/j.icarus.2016.09.009
http://doi.org/10.1126/science.230.4722.175
http://doi.org/10.1029/2005RG000188
http://doi.org/10.1029/2007JE002966
http://doi.org/10.1007/s11214-016-0308-6
http://doi.org/10.1029/2004JE002242
http://doi.org/10.1029/92JE02508
http://doi.org/10.1029/2002JE002007
http://doi.org/10.1016/j.icarus.2018.07.026
http://doi.org/10.1016/j.icarus.2010.12.016
http://doi.org/10.1016/j.icarus.2009.07.021
http://doi.org/10.1016/j.icarus.2009.08.029
http://doi.org/10.1109/83.650116
http://doi.org/10.1109/TIP.2004.834669
http://doi.org/10.1109/TCSVT.2011.2163447
http://doi.org/10.3390/rs11010052


Remote Sens. 2021, 13, 1777 40 of 40

80. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

81. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144.

82. Yu, J.; Fan, Y.; Yang, J.; Xu, N.; Wang, Z.; Wang, X.; Huang, T. Wide activation for efficient and accurate image super-resolution.
arXiv 2018, arXiv:1808.08718.

83. Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268.

84. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Amsterdam, The Netherlands, 11–14 October 2016; pp. 770–778.

85. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

86. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE
conference on computer vision and pattern recognition, Amsterdam, The Netherlands, 11–14 October 2016; pp. 1637–1645.

87. Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155.

88. Wang, C.; Li, Z.; Shi, J. Lightweight image super-resolution with adaptive weighted learning network. arXiv 2019,
arXiv:1904.02358.

89. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301.

90. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. arXiv 2014, arXiv:1406.2661. [CrossRef]

91. Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. EnhanceNet: Single image super-resolution through automated texture synthesis. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4491–4500.

92. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced super-resolution generative adversarial
networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14
September 2018.

93. Rakotonirina, N.C.; Rasoanaivo, A. ESRGAN+: Further improving enhanced super-resolution generative adversarial network.
In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 3637–3641.

94. Zhang, W.; Liu, Y.; Dong, C.; Qiao, Y. RankSRGAN: Generative adversarial networks with ranker for image super-resolution. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 3096–3105.

95. Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. arXiv 2018, arXiv:1807.00734.
96. Tao, Y.; Muller, J.-P.; Poole, W. Automated localisation of Mars rovers using co-registered HiRISE-CTX-HRSC orthorectified

images and wide baseline Navcam orthorectified mosaics. Icarus 2016, 280, 139–157. [CrossRef]
97. Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Qualifty Assessment: From Error Visibility to Structural Similarity.

IEEE Trans. Image Process. 2004, 13, 600–612.
98. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process.

2012, 21, 4695–4708. [CrossRef]
99. Venkatanath, N.; Praneeth, D.; Chandrasekhar, B.M.; Channappayya, S.S.; Medasani, S.S. Blind Image Quality Evaluation Using

Perception Based Features. In Proceedings of the 21st National Conference on Communications (NCC) 2015, Mumbai, India,
27 February–1 March 2015.

100. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
101. Tornabene, L.L.; Seelos, F.P.; Pommerol, A.; Thomas, N.; Caudill, C.M.; Becerra, P.; Bridges, J.C.; Byrne, S.; Cardinale, M.;

Chojnacki, M.; et al. Image Simulation and Assessment of the Colour and Spatial Capabilities of the Colour and Stereo Surface
Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Sci. Rev. 2018, 214, 18. [CrossRef]

102. Salvetti, F.; Mazzia, V.; Khaliq, A.; Chiaberge, M. Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks. arXiv 2020, arXiv:2007.03107.

103. Chu, M.; Xie, Y.; Leal-Taixé, L.; Thuerey, N. Temporally coherent gans for video super-resolution (tecogan). arXiv 2018,
arXiv:1811.09393.

http://doi.org/10.1145/3422622
http://doi.org/10.1016/j.icarus.2016.06.017
http://doi.org/10.1109/TIP.2012.2214050
http://doi.org/10.1007/s11214-017-0436-7

	Introduction 
	Study Sites 
	Previous Work 

	Materials and Methods 
	MARSGAN Architecture 
	Loss Functions 
	Assessment Methods 
	Training and Testing 

	Results 
	Results and Assessment for Jezero Crater 
	Results and Visual Demonstration of Science Targets/Sites 

	Discussion 
	Perceptual-Driven Solution or PSNR-Driven Solution 
	Single Image SRR or Multi-Image SRR 
	Extendability with Other Datasets 

	Conclusions 
	References

