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ABSTRACT Memetic algorithms (MAs) are a powerful resource when dealing with optimization
problems, combining the diversification of the population-based approaches with the intensification of
local search. However, their success depends on the combination of operators and their ability to cope
with the intrinsic difficulties of a problem. Choosing the most suitable combination of operators that better
suits a given problem (or a set of instances of a problem) has proved to be a defiant and time-consuming
task. An approach to this task is the adaptive operator selection (AOS), based on the idea of choosing
operators during execution time based on some reward system related to their performance. In this paper,
we continue our previous work on studying the effectiveness of several operators of an MA to solve the
cyclic bandwidth sum problem (CBSP), now extending the operator set and incorporating the dynamic
multi-armed bandit (DMAB) framework to adaptively adjust the MA’s operators. The resulting technique,
named DMAB+MA, is compared to the independent MA versions in a full factorial experiment and with
respect to two reference algorithms of the literature. It was found that the quality of the solutions achieved
by DMAB+MA significantly improved the best-known results provided by the state-of-the-art algorithms
while keeping the competitive execution times with respect to the independent MA versions. Moreover,
DMAB-+MA was able to provide optimal/best-known solutions for the 40 tested graphs (with different
topologies) and to establish new better upper bounds for 12 of them.

INDEX TERMS Cyclic bandwidth sum problem, dynamic multi-armed bandit, adaptive operator selection,

memetic algorithms.

I. INTRODUCTION

In this work we deal with an A'P-hard combinatorial opti-
mization problem known as the Cyclic Bandwidth Sum
Problem (CBSP), which is formally defined as follows. Let
G = (V, E) be a finite undirected graph (the guest) of order n
and C, a cycle graph (the host) with vertex set |Vy| = n and
edge set Ey. Given an injection ¢ : V — Vg, representing
an embedding of G into C,, the cyclic bandwidth sum (the
cost) for G with respect to ¢ is defined as:

Cbs(G, ¢) = Z lp(u) — W)l , (H
(u,v)eE
where |x|, = min{|x|, n — |x|} (with 1 < |x|] <

n— 1) is called the cyclic distance, and the label associated to

The associate editor coordinating the review of this manuscript and
approving it for publication was Gang Li.

vertex u is denoted ¢(u). The CBSP consists in finding the
optimal embedding ¢*, such that Cbs(G, ¢*) is minimum,
Le., " = argmin ,c{Cbs(G, )} with ® denoting the set
of all possible embeddings.

Some relevant practical applications of the CBSP include
VLSI designs [1], [2], code designs [3], simulation of network
topologies for parallel computer systems [4], scheduling in
broadcasting based networks [5], and compressed sensing in
sensor networks [6].

The CBSP was first described by Yuan [7]. It belongs
to the Graph Embedding Problems (GEP), which goal is to
find the optimal way of embedding a guest graph into a host
graph [8]. One of the most studied GEP is the Bandwidth
Problem (BP) [9], which consist in embedding a graph into a
path, while minimizing the maximal distance between pairs
of adjacent guest’s vertices. Several other GEP can be derived
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from the BP. For example, if we are looking towards minimiz-
ing the sum of distances instead of the maximum distance,
we have the Bandwidth Sum Problem (BSP) [10]. If the
host graph is a cycle instead of a path, we have the Cyclic
Bandwidth Problem (CBP) [11]. And if the host is a cycle and
also the sum of distances is to be minimized, then we have the
CBSP [12]. Several other GEP, as well as the relationships
among them, have been compiled by Diaz et al. [13] and
Lam et al. [14]. While the theoretical bounds of the value of
the optimum for a given GEP can be used to derive upper and
lower bounds of other GEP, in the practice, algorithms able
to efficiently solve one GEP are not implicitly successful to
solve other of them. This is the case for the CBSP in relation
with the BSP and the CBP, therefore it is necessary to study its
difficulties and particularities independently from other GEP.

In a previous work [15] 24 Memetic Algorithms (MA)
versions for the CBSP, produced by the combination of a
small set of genetic operators, were extensively evaluated.
The experimental results showed that all of them were able
to produce significant better results than the state-of-the-art
reference methods. However, there were hints of premature
convergence and large performance variations depending on
the graph topologies tested. Motivated by these preliminary
findings in this paper we studied the design of MA and their
combination with an Adaptive Operator Selection (AOS)
approach for solving the CBSP in the general case.!

Our approach consists in implementing the Dynamic
Multi-Armed Bandit (DMAB) paradigm to automatically
alternate among 96 MA independent versions (each char-
acterized by a different set of genetic operators). We chose
the DMAB paradigm because it offered documented good
performance, and it was easy to incorporate into our main MA
framework due to its relative simplicity and few parameters
to be tuned. The results of this strategy, called DMAB+MA,
were compared to those of the MA independent best perform-
ing configurations and with the state-of-the-art methods over
a set of 40 instances with diverse graph topologies.

The remaining sections of this work are organized as fol-
lows. Section II presents a brief compilation of the most
relevant works related to the CBSP and an overview of the
DMAB paradigm. In Section III we present the main aspects
of our approach to the design of DMAB+MA. Experimental
setup and performances analysis are presented in Section I'V.
The DMAB+MA behavior is further discussed in Section V.
Finally our conclusions are presented in Section VI.

Il. RELATED WORK

A. CYCLIC BANDWIDTH SUM PROBLEM

The existence of a deterministic polynomial time algorithm
able to produce the optimum in the general case of a known
N'P-Hard problem such as the CBSP [7] is unlikely. In fact,
to the best of our knowledge, no exact algorithm for solving
it has ever been reported. Most of the early research about
the CBSP focused in the calculation of the optimal cost

IFor any graph topology.
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value depending on the topology of graph G. In this matter,
Jianxiu [12] and later Chen and Yan [16] have calculated
the exact cost value of the optimal solution for paths, cycles,
wheels, k-th power of cycles, and complete bipartite graphs.
Jianxiu [12] also established the upper bounds for the graph
resulting of the Cartesian product of two graphs, being those
graphs paths, cycles, or complete graphs.

Only recently the CBSP has received more attention in
the optimization and operation research communities where
the following approaches have been proposed: a local search
based approach [17], a constructive greedy heuristic [18],
hybrid metaheuristic algorithms [15], and a reformulation of
the evaluation function [19].

The first metaheuristic approach based in local search was
a General Variable Neighborhood Search (GVNS) [17]. This
algorithm starts from a lexicographical embedding which is
improved using a Reduced Variable Neighborhood Search
(RVNS). Then, two neighborhood operators and six perturba-
tion operators are applied in the GVNS phase. Computational
experiments, carried out on a set of graphs of order n < 200,
showed that GVNS achieves optimal results for path, wheel,
star, and cycle topologies. For graphs with n < 64 vertices,
resulting of the Cartesian product of paths, cycles, and com-
plete graphs, GVNS was able to produce solutions with cost
under the theoretical upper bounds.

Later, Hamon et al. [18] designed MACH, a constructive
heuristic. MACH operates by decomposing the graph into a
list of disjoint paths by means of a depth-first search inspired
mechanism. This mechanism traverses the graph using the
Jaccard similarity index [20] as criterion to choose the next
vertex to add to the path. An embedding is constructed incre-
mentally by the aggregation of paths to a partial solution
following a greedy strategy. For most of the tested instances,
MACH consistently improved the solution quality achieved
by GVNS, as well as its running time.

In our previous work we tested the combinations of a
smaller set of genetic operators, resulting in 24 MA ver-
sions [15]. While all of them were able to produce significant
better results than MACH and GVNS, the best MA version
showed hints of premature convergence related to the survival
selection scheme. Therefore, we considered the possibility of
further improving its results by varying this genetic operator.

Moreover, in all the algorithms mentioned above the eval-
uation function was a direct implementation of (1). However,
as pointed out by Rodriguez-Tello et al. [19], this function is
susceptible to produce a fitness landscape with large plateaus
because of the limited number of equivalence classes that it
is able to induce. In an attempt to devise a consistent eval-
uation scheme having increased discriminative capabilities
with respect to the conventional evaluation function, three
alternative evaluation functions were introduced and tested.
All three alternative functions presented a higher discrimi-
native capability, but only one of them ensured full compat-
ibility with respect to (1). This function also demonstrated
a significant improvement in the solution quality produced
when tested in conjunction with basic local search algorithms.
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Therefore, it is of our interest to investigate the effects of
this alternative evaluation scheme in our MA versions and to
evaluate if it can help to achieve better final results.

B. DYNAMIC MULTI-ARMED BANDIT

The Multi-Armed Bandit (MAB) problem originated in the
Game Theory area [21], [22]. In this paradigm the bandit is
a machine with k arms. When an arm A; is played at time
t it receives a reward equal to 1 with probability p;. The
MAB problem consists in finding how to select an arm that
maximizes the cumulative reward.

Since in practice the distribution of reward probabilities
is unknown, the approaches to the MAB problem calculate
estimations instead. A widespread approach for estimating
reward chances in the MAB problem is the Upper Confi-
dence Bound (UCB) and its multiple variants [22]. The main
idea is to assign to each arm an estimation of its rewards
probabilities, i.e., a confidence, so that the arm with the best
estimation (higher confidence) is played every time. Under
the UCBI1 variant the confidence for arm i at time ¢ + 1 is
estimated as:

N N [21og Zl‘;l Nt
Dijt+1 =piy+C n—] ) ()
it

where n; ; is the number of times that arm i has been played
attime ¢, p; ; is the current reward, and C is a scaling factor to
control the trade-off between exploitation of the current best
arm and the exploration of other arms. Although C parameter
is not present in the original definition of UCB1 [22], its use is
extended [23] and it is critical for the exploitation-exploration
balance [24].

MAB implementations using UCB1 have been success-
fully employed as an approach to the Adaptive Operator
Selection (AOS) problem [25], [26] and as a way to select
low level heuristics within an hyperheuristic framework [27].
Differently from the original 0-1 reward system, an arm
representing an operator (or combination of operators [27])
is rewarded in function of the magnitude of the improvement
it brought to a solution (or population of solutions) after
having been played. Numerous alternatives to compute the
value of such reward have been devised [28]-[30]. Our pro-
posal implements a credit assignment mechanism known as
extreme value-based reward [31], which is discussed further
in Section III

The Dynamic Multi-Armed Bandit (DMAB) [32] was later
proposed as a method to cope with scenarios where the opti-
mal operator to apply varies among time. While the original
MAB could take considerable time to detect those varia-
tions, DMAB incorporates the Page-Hinkley (PH) test [33]
to quickly detect an abrupt change in the reward of the
current best arm, therefore recognizing whenever the optimal
operator has just changed and then restarting the reward and
confidence records. Such an approach has been known to
produce good results in the fields of hyperheuristics [34] and
evolutionary algorithms [23].
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IlIl. DYNAMIC MULTI-ARMED BANDIT AND MEMETIC
ALGORITHMS FOR THE CBSP

In this section we describe the algorithmic operators involved
in our MA versions, as well as their integration within the
DMAB paradigm.

Algorithm 1 Memetic Algorithm
1: input A set of operators {s, ¢, m, f, ss}

2: output A solution g

3: P < initializePopulation(P)

4: O <0

5: g < Ppest

6: repeat

7. forj < 1to udo

8: Py, Py < selection(s, P)

9: 0 < crossover(c, P,, Py, prob.)
10: o' < mutation(m, o, proby,)

11: 0" < inversion(o’, prob;)

12: O« 0Uo

13: g < fittest individual among g, o, ¢/, and 0”

under function f
14:  end for
15: P < survival(ss, P, O)
16: 0«40
17: Ppess < localsearch(Ppeg;, tries)
18: g <« fitter individual among current g and Ppeg
19: until stop criterion is met
20: return g

A. GENERAL MEMETIC ALGORITHM FRAMEWORK

The main body of our MA versions is presented in
Algorithm 1. It takes as input the set of operators {s, c, m,
f, ss} for selection, crossover, mutation, evaluation function,
and survival strategy, respectively.

In our previous work (see [15]) we implemented four
selection schemes (roulette, stochastic, random, and binary
tournament), two crossover mechanisms (cyclic and order-
based), as well as three mutation operators (cyclic insertion,
reduced 3-swap, and cumulative swap). Survival of individ-
uals was determined by the (i + A) strategy, allowing only
the fittest among parents and offspring to survive. For more
details about those operators we refer the reader to [15].
Additionally to those operators, in this work we incorporated
the (u, A) survival strategy that directly replaces the parent
population by the offspring.

It is also of our interest to investigate the suitability of the
best performing of the three alternative evaluation functions
introduced by Rodriguez-Tello et al. [19]. This function,
shown in (3), adds a floating point part to the calculation
of Cbs, which allows us to distinguish among solutions of
similar cost under the conventional evaluation scheme. The
floating point part of the expression is a weighted sum of the
frequency of occurrences dy of every cyclic distance of cost k.
Decreasing value cyclic distances have increasing weights
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assigned to them. The strategy penalizes the occurrences of
small value cyclic distances, considering that large cyclic
distances are easier to break. For more details related to the
alternative evaluation functions see [19].

[n/2]
1
Fi(G. ¢) = Cbs(G, ¢) + ; <ﬁ> . B

In our MA versions the potential solutions were repre-
sented by means of the permutation encoding, since it is
straightforward for this type of problem. The initial popu-
lation of individuals is confirmed by p randomly generated
individuals (line 3 in Algorithm 1). After having created an
initial population, the following operations take place through
the generations. Firstly, the selection mechanism chooses a
couple of individuals from population P for recombination
(line 8). Each couple produces only one offspring o, either
via crossover conditioned to probability prob., or as a copy
of the fitter parent otherwise (line 9). Then, the chromosome
of o is altered by a two phase mutation with independent
probabilities, prob,, and prob;, respectively (lines 10 and 11).
The first phase uses one of the three mutation operators pre-
viously mentioned (resulting in o’); the second phase acts as
an additional perturbation employing a fixed cyclic inversion
operator (resulting in 0”).

The individual 0" is added to population O (line 12). Then,
the best solution found so far (g) is updated by obtaining
the fittest individual among o, o/, 0”, and g. The purpose
of this is to avoid losing any possible improvement, since
the temporary chromosomes o and o’ are not actually stored
in O. The best-found solution g is stored independently of the
populations P and O. The survival phase (line 15) determines
the group of individuals that will remain in the population for
the next generation. In contrast with the common approach,
we do not apply local search to all offspring individuals.
Instead, local search operates for a maximum number of
iterations only with the fitter individual in the surviving pop-
ulation, as the last step in the generation (line 17). The stop
criterion for experiments with independent MA versions was
a fixed number 7' of maximum fitness function evaluations.

B. DYNAMIC MULTI-ARMED BANDITS

In the DMAB main framework, every MA version is defined
by a combination of the operators mentioned in the previous
section, and it represents a different algorithm, therefore a
different arm of the bandit. An arm is a set of operators A; =
{si, ci, m;, fi, ss;} denoting selection s;, crossover c;, mutation
m;, fitness function f;, and survival strategy ss;. Playing an
arm one time means to execute its correspondent MA version
for exactly one generation as stop criterion.

At the begging of the execution all k arms are played
over the initial population of individuals. Arms get a raw
reward assigned by the reward mechanism. After this initial
procedure, at each iteration an arm is selected based on
the estimated confidence. The selected arm is then played
its reward gets updated. The PH-test is applied to detected
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Algorithm 2 DMAB Algorithm

1: P < initializePopulation(P)

2: Set confidence and number of times arms have been

played to zero

3: fori < 1toK do
4: P’ < playArm(A;, P)
5:  Assign initial reward to A;
6: end for
7
8
9

: repeat
Compute confidence for all arms
: Ay <« selectArm()
10 P < playArm(A;, P)
11:  Update A reward and increase the number of
times it has been played
12:  if PH-test is triggered then

13: Set confidence and number of times arms have been
played to zero

14: fori < 1toK do

15: P’ < playArm(A;, P)

16: Assign initial reward to A;

17: end for

18:  end if

19: g < fitter individual among current g and Pp,
20: until stop criterion is met
21: return g

statistical abrupt changes in the average reward of the current
best arm. The triggering of the test is taken as an indicative
that the current arm is no longer the best, causing a restart of
the arms. This continues until some stop criterion is met. For
experiments with DMAB-+MA, the stop criterion was a fixed
maximum execution time s.

1) RAW REWARD AND CREDIT ASSIGNMENT MECHANISM
Whenever an arm is played its raw reward rr; is calculated
based on some measure of the improvement in the popu-
lation’s fitness. The method to quantify such improvement
may vary among implementations. In our case, it is calculated
as the normalized difference between the fitness of the best
individual in the population before (f,;;) and after (fj,)
playing arm A;.

rr; = 1old —Jnew —Jrew 100 4)

old

The mechanism for credit assignment implemented is the
extreme value-based reward [31]. It consists of maintaining
a register of the raw rewards an arm has got and assigning
an arm credit equal to the maximum of them. The core idea
behind this is to base credit not only in how good an arm has
performed the last time it was applied, but also historically.
The reward register works in a FIFO fashion and its maximum
size is the parameter W. However, the assumption that W > 1
would result in a better performance was proven wrong by our
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parameter tuning experiments (see Section I'V-C).

r= mvglx{rrj} )
j=

2) ARM SELECTION

The arm selection is controlled by the UCB 1 mechanism. The
selected arm is the one that maximizes the confidence. The
confidence of arm A; is calculated as:

2log kK plays;
confidence; = empRew; + C, | —ZJ_I ., (6)
plays;

where empRew; is the empirical reward of arm A;, equal to
the average credit it has received, plays; is the number of
times arm A; has been played, and C is an scaling factor
that controls the weight of the right part of the expression.
As opposed to the left part of the expression (empRew;)
favoring the arm with the greatest empirical reward getting
the most confidence, the right part favors the use of arms that
have been played the fewest times. The role of parameter C is
to balance between exploitation of the best performing arms
and the exploration of underused arms.

3) PAGE-HINKLEY TEST

The Page-Hinkely test is a mechanism to detect an abrupt
change in the underlying success probability distribution of
arms, which estimation is provided by the UCB1 method
discussed previously. Such a change reflects in the way that
after playing the most trusted arm its reward is significantly
different from its historical values. There are two key param-
eters involved in the PH-test: §, which provides tolerance for
slowly varying scenarios, and A, which is a trade-off between
false alarms and unnoticed changes (false positives and false
negatives) [32].

Let A; be the arm played at time ¢, the average stan-
dard deviation of the reward values for A; up to time ¢
is avgDev;; = avgDev;;_| + (empRew; — rr; + §). The
maximum value of avgDev;, is updated as maxDev;; =
max(avgDev; ;, maxDev; ;_1). The PH-test is triggered if
maxDev; ;—avgDev;; > A. Whenever the PH-test is triggered
the arms are restarted, meaning that their rewards, confidence,
and number of times played records are back to zero, as well
as the values avgDev; ; and maxDev; ;.

IV. EXPERIMENTAL RESULTS

In this section we present the conditions under which our
experiments took place. We describe the set of instances,
algorithm input parameters, and metrics involved, and pro-
vide visual and statistical performance comparisons. Firstly
we compare the best MA version with respect to our previous
work. Then, the performance of this version is compared with
the DMAB-+MA and the other state-of-the-art methods.

A. EXPERIMENTAL SETUP
A first step towards determining the effectiveness of our MA
implementations for solving the CBSP is to identify the best
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performing version. For this purpose, all the possible com-
binations of genetic operators were tested under a common
instance benchmark, parameters and initial populations. This
includes the algorithms reported in our previous work [15].
The algorithms were coded in C language and compiled in
gcc 4.4.77 with the O3 flag. All experiments were ran sequen-
tially on the same platform, an Intel Xeon CPU X5550 at
2.67 GHz and 16 GB in RAM.

TABLE 1. Operators keys.

Operator Key Operator Key
Stochastic selection S1 Reduced triple-swap mutation M2
Roulette selection S2 Cumulative swap mutation M3
Random selection S3 (g, A) survival strategy SS1
Binary tournament selection S4 (p 4 ) survival strategy SS2
Cyclic crossover Cl Conventional evaluation function Vi
Oder-Based crossover c2 Alternative evaluation function V2
Cyclic insertion mutation Ml

Table 1 summarizes the operator keys that allow

us to identify a specific MA version by the combi-
nation of operators that it implements. For example,
identifier S4 _C2 M1_SS2 V1 stands for a MA version
that implements binary tournament selection (S4), cyclic
crossover (Cl), cyclic insertion mutation (M1), (u + X)
survival strategy (SS2), and the conventional evaluation
function (V1).

The instances set includes 40 representative, topologically
diverse graphs that have been often used in the GEP or CBSP
literature [17]-[19]. The set includes 6 Cartesian products
of graphs, 24 sparse matrices from the Harwell-Boeing col-
lection, 2 paths, 2 cycles, 2 wheels, and 4 k-th powers
of cycle (k € {2,10}). The instances size varies from
24 to 715 vertices and from 59 to 3,720 edges.

TABLE 2. Parameter settings for the MA algorithms.

Parameter Value Parameter Value
Population size p 20 Mutation probability prob,,, 0.543
Max. evaluations 1" 4.0E+08 Inversion probability prob; 0.240
Crossover probability prob. 0.788 Max. local search iterations tries 10

For all the MA versions being tested we provided a fixed
set of parameter values (Table 2), which were derived from
the literature and from our automatized tuning experiments
using the irace utility [35].

B. IDENTIFYING THE BEST MA

The best MA was identified by comparing all 96 versions
in terms of the solution quality they achieved with respect
to the best-know solutions. For each instance being solved
by a particular algorithm, we computed the relative root
mean square error (RMSE) for 31 independent executions.
The tested algorithms included our MA versions, as well as
GVNS [17] and MACH [18]. The RMSE metric for a certain
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FIGURE 1. RMSE distribution for Top-5 MA group and MA-34 among the
instance set.

TABLE 3. O-RMSE ranking for the Top-5 MA versions, MA-34 MACH and
GVNS.

Average Time to
Operator O-RMSE  runtime  local opt.
Rank  Algorithm configuration (%) (s) (s)
1 MA-19 S4_C1_M1_SS1_V1 0.983  264.526 118.634
2 MA-20 S4_C1_M2_SS1_V1 1.099 193316 87.110
3 MA-68 S4_C1_M2_SS1_V2 1.112 273.548 153.704
4 MA-67 S4_C1_M1_SS1_V2 1.126 372.276 200.842
5 MA-43 S4_C1_MI1_SS2 V1 2.031 85.555 28.749
6 MA-34 S2_C2_MI1_SS2 VI 2.045 85.851 29.976
MACH N/A 2.659 7.725 N/A
GVNS N/A 4427 612380 900.145
test instance ¢ is defined as:
R 2
Z Cbs, (t)—Cbs* (1)
| Cbs*(1)
r=
RMSE(t) = 100% , (7

R

where Cbs, () is the best solution quality achieved by the
algorithm at execution r, R is the total number of executions,
and Cbs*(¢) is the best-know quality solution for instance ¢,
achieved either by GVNS, MACH, or by any of our MA ver-
sions. An RMSE equal to 0% means the algorithm achieved
the best-known solution quality in all the R executions, and
therefore it is the preferred value.

For comparing the algorithm performance among the
complete instance set 7, the overall root mean square
error (O-RMSE) is computed as the average RMSE value for
|'7T| = 40 instances in the testing set.

1
O-RMSE = — Z RMSE() . (8)
7l teT

The five MA configurations presenting the best perfor-
mance in terms of solution quality are those with the lower
O-RSME rates. This group is hereafter referred as Top-5 MA.
Their distribution of RMSE values among instances is pre-
sented in Fig. 1. Table 3 describes the operator configuration
of algorithms in the Top-5 MA, their achieved O-RMSE
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rate, average execution time, and average time to reach the
best solution found. It also includes the reference methods
from the literature, (GVNS and MACH), as well as MA-342
which was the best MA resulting from our preliminary work
reported in [15]. The stop criterion for GVNS was a max-
imum running time of 900s. As reference, there are 21 out
of 96 MA versions leading to better O-RMSE values than
MACH, and 56 of them with better O-RMSE values than
GVNS.

The presence of some operators among the Top-5 MA is
consistent with the achievement of high quality solutions.
Algorithms in the Top-5 MA differ from one another at
most in three operators: mutation scheme, survival strategy,
and evaluation scheme; while binary tournament and cyclic
crossover remain present, clearly showing dominance over
their competitors.

Selection by binary tournament ensures that the relatively
fitter individuals are chosen for crossover, without imposing
an excessive selection pressure, since one individual only
needs to be fitter -or at least as fit- as some other to be chosen.
While this may help to prevent offspring from quickly losing
diversity, recombination by cyclic crossover prevents implicit
mutations, ensuring that the offspring is not so different
from their parents. The results suggest that for this particular
problem, being able to select relatively fit individuals, and
then inherit their genes in the absolute positions, is important
and useful to produce building blocks of higher order and
therefore have a fit and diverse offspring.

The only algorithm in the Top-5 MA implementing sur-
vival strategy SS2 (u + A) has also the wider O-RMSE
leap with respect to the rest of the group. Lets also point
out that MA-43 differs from the configuration with the best
O-RMSE value (MA-19) only in the selection scheme, so the
impact of the change is relevant. MA-43 is the fastest algo-
rithm in the group, performing 4.0E4-08 evaluations in only
85.555 seconds, while the other algorithms in the Top-5 MA
group took more than twice this amount of time. Although,
MA-43 stops improving after 28.749 seconds on average,
and the best solutions it reported have worst quality than
their pairs. This means that MA-43 was faster because it was
not performing updates of the best-found solution, and the
local search (having not found any improving solution for the
best individual in the population) stopped at its first iteration.
MA-43 got trapped in a locally optimal solution, and since
that solution was prevented from leaving the population by
the (u + A) survival strategy, it continued propagating its
genes to the next generations. The fitter the new individuals
became, the closer they were to the locally optimal solution,
and the more chances they had to remain in the population,
ultimately decreasing diversity.

We identified binary tournament, cyclic crossover, and
(u, X) survival strategy as more successful in terms of

2The identification of MA versions was affected by the addition of new
operators in this work. Thus, the version MA-10 from [15] is now referred
here as MA-34.
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TABLE 4. Statistical analysis for comparing the performance of the Top-5 MA group.

Instances V| |E| MA-19/ MA-19/ MA-19/ MA-19/ MA-20/ MA-20/0 MA-20/ MA-43/ MA-43/ MA-67
i i MA-20 MA-43 MA-67 MA-68 MA-43 MA-67 MA-68 MA-67 MA-68 MA-68
path100 100 99 * — — — — — — + * —
path200 200 199 + + + * * + — * — —
cycle100 100 100 * + — + * — * — * +
cycle200 200 200 + + + + + * * — — —
wheel100 100 198 * —+ — + * — * — * +
wheel200 200 398 + + + + + * — — — —
cyclePow100-2 100 200 * * * * * * * * * *
cyclePow200-2 200 400 * + + * + * * — — —
cyclePow100-10 100 1000 * * * =+ * * * * * +
cyclePow200-10 200 2000 * * * * * * + * * *
S99 T T T T T T 817 71627 T T« T T T x T T T x T T T T T T T T T T x T T T T T T T T T T T T T % T
c9k9 81 405 * * * * * * * * * *
k9k9 81 648 * —+ * * * * * * * *
p9c9 81 153 * + + * + * * * — *
p9k9 81 396 * * * * * * * * * *
p9p9 81 144 * + * * + * * — — *
T (0 D [ R T
ash85 85 219 * + — * + — * — — +
curtis54 54 124 * + * * + * * — *
ibm32 32 90 + + * + + — * — — +
will57 57 127 * + * * + * * — — *
impcol_b 59 281 * + * * + * * — — *
impcol_d 425 1267 * * * — * * * * * —
nos4 100 247 * * * * * * * * * *
nos6 675 1290 — —+ —+ — + + + — — —
494 _bus 494 586 - + + - + + + — — —
662_bus 662 906 + + - + + + — — —
685_bus 685 1282 — + + - + + + — — —
can_24 24 68 * * * * * * * * * *
can_144 144 576 * * * * * * * * * *
can_292 292 1124 - + + - + + + — — —
can_445 445 1682 — + + - + + + — — —
can_715 715 2975 — + + - + + + — — —
bespwrO1 39 46 * + * * + * * — — *
bespwr02 49 59 * + * * + * * — — *
bespwr03 118 179 — + — — + * — — — —
besstk01 48 176 + + * + + — — — — +
besstk06 420 3720 — —+ + — + + * — — —
dwt_503 503 2762 — + + - + + — — — —
dwt_592 592 2256 — + + — + + + — — —
+ 5 28 15 7 24 11 9 1 0 6
— 11 1 5 13 1 6 6 25 25 17
* 24 11 20 20 15 23 25 14 15 17
Overall winner MA-20 MA-19 MA-19 MA-68 MA-20 MA-20 MA-20 MA-67 MA-68 MA-68

solution quality. However, for the roles of mutation and
evaluation schemes we do not have obvious winners. While
mutation by cyclic insertion and reduced 3-swap seem to be
more competitive than mutation by cumulative swap, it is
still unclear which one of them is the best by considering
only their O-RMSE values. For example, if we focus in
MA-19 and MA-20 we found that they only differ in the
mutation scheme. The O-RMSE value of MA-19, which
is lower than that of MA-20, may lead us to infer that
cyclic insertion mutation (M1) is more suitable than reduced
3-swap (M2). However, that behaviour reverses when observ-
ing the results for MA-68 and MA-67 where the configuration
implementing mutation M2 has a better O-RMSE value than
the one reached with mutation M1.

In previous results from our preliminary work [15] it
was observed that the algorithms incorporating order-based
crossover and cyclic insertion mutation were consistently
better than those incorporating cyclic crossover and reduced
3-swap mutation. However, the enlarged operator set that
produces new MA versions and the instance set, which
includes graphs of higher order and size, allow us to obtain
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new results that extend our previous knowledge on how the
operators interact. This is specially remarkable for the sur-
vival strategy. For example, the best MA from our prelim-
inary work, here named as MA-34 (S2_C2_M1_SS2_V1)
ranked 6th, while MA-10 (S2_C2_M1_SS1_V1), varying
only in survival strategy, ranked 87th. It is clear that no
single operator is responsible for the success of the algo-
rithm, but it is the interaction among them which truly
determines it.

To further analyze the versions among the Top-5 MA,
a statistical significance analysis was performed. Normal-
ity of data distributions was evaluated by the Shapiro-Wilk
test. Bartlett’s test was implemented to determine whether
the variances of the normally distributed data were homo-
geneous or not. We applied ANOVA test in the case vari-
ance homogeneity was present and Welch’s t parametric tests
on the contrary. Meanwhile, Kruskal-Wallis test was imple-
mented for non-normal data. In all cases the significance level
considered was 0.05.

Table 4 presents the results of pair-wise statistical com-
parisons of Top-5 MA versions among the instance set.
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First three columns describe the instance set by the order
and size of the graphs being considered. The following ten
columns compare a pair of Top-5 MA configurations, say A
and B, which is denoted as A / B. The cases where version A
presents a significant better performance than version B are
marked in the corresponding cells as +, standing for a victory
of A. Otherwise, if B outperforms A, the cell is marked with
the symbol —, representing a defeat of A. The » symbol stands
for ties: those cases where there is not statistical significant
difference between A and B performance, i.e., pygiue(A, B) <
0.05; and therefore the comparison cannot be decided in favor
of any of them. The last three rows summarize the total
victories (+), defeats (—) and ties (x) for each pair of versions
in the Top-5 MA group.

In these comparisons MA-43, the only algorithm in the
Top-5 MA implementing 4 survival strategy (SS2), scored
only 3 victories against another algorithm, and it was always
defeated in overall victories, reinforcing our inferences from
Table 3. However, we remark that the O-RMSE value of MA-
43 is still better than the one of MACH. Meanwhile, algorithm
MA-67 can only defeat MA-43 in overall victories and there
are few instances for which it delivers statistical significant
better results than the rest of the group.

It is interesting to observe and compare the behavior of
MA-19, MA-20, and MA-68. These algorithms ranked as
the three with smaller error rates and shorter times. The
O-RMSE values for MA-20 and MA-68 are close to each
other (0.9832 and 1.0991) differing only in 0.1159 and they
vary only in evaluation scheme. When compared, MA-20
and MA-68 present the highest tie rate (25) and MA-20 is
only better by a margin of 3 instances, confirming that the
alternative evaluation scheme can indeed be useful. More-
over, MA-68, an algorithm implementing the alternative
scheme, actually defeats MA-19 (the algorithm with the
lower O-RMSE) in overall victories, and delivers results as
good or even better for 33 out of 40 instances.

When it comes to comparing overall victories, MA-20 is
never defeated by any other algorithm in the Top-5 MA, nor
even MA-19. Focusing in one to one comparisons there are
only 11 instances in which some other algorithm delivers
better results than MA-20 and in general terms the harder
instances cases are in its favor. This analysis allows us to
identify MA-20 as the statically dominant method over the
Top-5 MA, and in conjunction with O-RMSE values, as the
best among all MA configurations tested.

C. COMPARING DMAB+MA RESULTS

The combination of DMAB with MA versions as arms is
referred as DMAB+MA. The experiments with this tech-
nique were ran over the same set of instances previously
mentioned. Similarly to the MA version, DMAB parameter
values were set using the irace utility [35] for automatized
parameter tuning. Table 5 shows the values assigned to each
parameter. The extreme value-based reward mechanism was
suppressed by this tuning process, since it set the length of
the reward register to W = 1.

VOLUME 7, 2019

TABLE 5. Parameter settings for the DMAB+MA algorithms.

Parameter Value Parameter Value

Crossover probability prob.  0.812
Mutation probability prob,,  0.761
Inversion probability prob; 0.012
Scaling factor C' 7.138

Length of the reward register W/ 1
PH-test tolerance § 0.299
PH-test triggering umbral A 33.472
Max. running time for DMAB s 600s

TABLE 6. Results for the Top-5 MA versions.

Average  Time to
MA Operator O-RMSE runtime local opt.

Rank rank Algorithm configuration (%) (s) (s)
1 DMAB N/A 0.076  600.013  132.345
2 1 MA-19  S4_C1_MI1_SS1_VI 1.097 264526  118.634
3 2 MA-20  S4_C1_M2_SS1_V1 1.199 193316 87.110
4 3 MA-68  S4_C1_M2_SS1_V2 1.218 273548  153.704
5 4 MA-67  S4_C1_MI1_SS1_V2 1.247 372276  200.842
6 5 MA-85  S3_C1_MI1_SS2_V2 2210 104.436 42.244
7 6 MA-43  S4_C1_MI1_SS2_V1 2213 85.555 28.749
9 8 MA-34  S2_C2_MI1_SS2_V1 2.231 85.851 29.976
23 MACH N/A 2.869 7.725 N/A
59 GVNS N/A 4419 900.145  612.380

Table 6 depicts the updated O-RMSE values that
now include the best solutions reached by DMAB+MA.
This updating is necessary since O-RMSE is a met-
ric relative to best-known results. For this comparison,
DMAB-+MA ranked first among all the considered meth-
ods. Since DMAB-+MA improved the best-known results for
12 instances, the ranking of the MA versions was affected,
MA-43 was displaced from the Top-5 MA by MA-85 and
the algorithm from our preliminary work [15] fell to rank 8.
DMAB-+MA reduced the error rate by over 1%, while keep-
ing a very competitive average time to reach its best-found
solutions (see last column in Table 6). Even if its average run
time is 600.013 seconds, this corresponds to the predefined
stop condition (s) of DMAB+MA.

20 - - T

RMSE

8 + 7
I
6l 4
e |
4t | * B
2t | + 4
or —+
I I I I
GVNS MACH MA-20 DMAB+MA
Algorithms

FIGURE 2. RMSE distribution for GVNS, MACH, the best MA independent
version (MA-20) and DMAB+MA.

Fig. 2 shows RMSE values for GVNS, MACH, MA-20,
and DMAB+MA over the instance set. Not only
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TABLE 7. Statistical analysis for comparing the performance MACH,

the MA-20 y DMAB+MA.

Instances V| |E| MA-20/ MA-20/ MACH/
MACH DMAB+MA DMAB+MA
path100 100 99 — — *
path200 200 199 — - *
cycle100 100 100 — - *
cycle200 200 200 * * *
wheel100 100 198 * * *
wheel200 200 398 * * *
cyclePow100-2 100 200 * * *
cyclePow200-2 200 400 * * *
cyclePow100-10 100 1000 * * *
cyclePow200-10 200 2000 * * *
c9c9” T T T T T 81 ~ 1627 T T« T T T T T T T T T x
c9k9 81 405 * * *
k9k9 81 648 * * *
p9c9 81 153 * * *
p9k9 81 396 * * *
p9p9 81 144 * * *
jgort — T T T T T 5 T T B — 7
ash85 85 219 + — —
curtis54 54 124 + * —
ibm32 32 90 + - -
will57 57 127 + * —
impcol_b 59 281 + * —
impcol_d 425 1267 + - —
nos4 100 247 + * —
nos6 675 1290 + - —
494_bus 494 586 * — —
662_bus 662 906 + - -
685_bus 685 1282 + - -
can_24 24 68 + * —
can_144 144 576 * * *
can_292 292 1124 * * *
can_445 445 1682 + — —
can_715 715 2975 + - -
bespwrO1 39 46 -+ * —
bespwr02 49 59 + * —
bespwr03 118 179 + — —
besstk01 48 176 + — -
besstk06 420 3720 + - -
dwt_503 503 2762 + - —
dwt_592 592 2256 + — —
+ 21 0 0
- 3 17 22
* 16 23 18
Overall winner MA-20 DMAB+MA DMAB+MA
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DMAB+MA reached an RMSE median equal to zero, but it
also reduced the overall dispersion of the RMSE values. This
means that, as expected, the DMAB+MA approach offers
more robustness to instance variations. The higher RMSE
value of DMAB+MA (0.681 for instance 662_bus) almost
halves the O-RMSE of MA-20 and most of its remaining
values are under the median of MA-20.

Table 7 provides a comparison of the statistical signifi-
cance of the results achieved by DMAB+MA, MA-20, and
MACH. For instances of cycle, path, wheel, and k-th power
of cycle topologies the three algorithms are typically tied, all
of them reaching the optimal solutions in almost all cases.
The only three instances where MA-20 is defeated by MACH
become ties when the DMAB paradigm is incorporated. Both
MA-20 and DMAB+MA represent a significant improve-
ment with respect to MACH , specially when dealing with
Harwell-Boeing instances. However, DMAB-+MA outstand-
ing results make it the undisputed overall winner, since no
algorithm reached significant better solutions than it in any
of the considered instances. For detailed results over each
instance we refer the reader to Table 8 in Appendix .
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(b)

FIGURE 3. Convergence comparison among MA-34, MA-20, and
DMAB+MA for two representative instances [(a) path200 and
(b) cycle200] along 100,000 generations.

V. DMAB DISCUSSION

Although in a general sense the MA versions improved
the results of previous works such as MACH [18] and
GVNS [17], they had problems to reach the known optimal
Cbs value for some instances, particularly those of the path,
cycle, and wheel topologies. It was intuited in [15] that pre-
mature convergence was responsible for this behaviour, due
to an excessive selective pressure introduced by the (u + 1)
survival strategy. The introduction of (u, 1) to the analyzed
operator set, as well the combination of MA and DMAB
were partially motivated to avoid this issue. Fig. 3 shows the
average convergence of MA-34, MA-20 and DMAB+MA
for instance path200 along 100,000 generations. Compared
with the MA versions, DMAB+MA has the ability to alter-
nate among operators which prevents the loss of diversity in
the population while still keeping the evolution towards fitter
solutions.
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FIGURE 4. Average number of times that arms employing particular operators were played along 50,000 generations. (a) Selection
operators. (b) Crossover operators. (c) Mutation operators. (d) Survival strategies. (e) Evaluation functions.
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TABLE 8. Detailed performance comparison of MACH, MA-34, MA-20, and DMAB+MA.

MACH MA-20 (S4_CI1_M2_SS1_V0) MA-34 (S2_C2_MI1_SS2_V1) DMAB+MA
Graph v |E| d UB/Opt* Best Avg Std T Best Avg Std T Best Avg Std T Best Avg Std T
path100 100 99 0.020 99* 99 99.00 0.00  0.00 99 131.71 25.19 1648 9 99.00 0.00 7.48 9 99.00 0.00 11.58
path200 200 199 0.010 199* 199 199.00 0.00 0.01 404 517.23 83.75  25.63 316 622.45 113.88  26.38 199 199.00 0.00 86.74
cycle100 100 100 0.020 100* 100 100.00 0.00  0.00 100 146.97 55.24 573 100 144.65 56.29 513 100 100.00 0.00  14.66
cycle200 200 200 0.010 200" 200 200.00 0.00 0.01 394 531.81 11925 2578 486 696.58 132.15  25.70 200 200.00 0.00  59.79
wheel100 100 198 0.040 2600" 2600 2600.00 0.00 0.01 2600 2646.71 47.96 9.10 2600 2633.42 4594  11.71 2600  2600.00 0.00 2.88
wheel200 200 398 0.020 10200* 10200  10200.00 0.00 0.07 10400  10549.42 98.86  40.85 10484  10656.84 93.02 4454 10200 10200.00 0.00 1483
cyclePow100-2 100 200 0.040 300" 300 302.72 231 0.00 300 45129  167.88 2.53 300 385.16 155.97 5.16 300 300.00 0.00 29.38
cyclePow200-2 200 400 0.020 600" 600 602.40 221 001 600 108626  324.60  29.67 600  1357.16 347.06  36.49 600 600.00 0.00  79.73
cyclePow100-10 100 1000  0.202 5500 5598 5711.68 67.76  0.04 5500  5652.58  849.53 7.32 5500  5500.00 0.00  11.89 5500  5500.00 0.00 0.37
cyclePow200-10 200 2000 0.101 11000* 11042 11200.64 76.52  0.11 11000  15999.68 5252.26 2.99 11000  16734.19  5296.30 4.36 11000  11000.00 0.00 7.60
o 81162 0050 873 991 12922 13071 001 873 96655 7052 056 873 96152 §573 630 873 87300 000 15369
c9k9 81 405 0.125 7434 1809 1809.00 0.00 0.01 1809  1809.00 0.00 6.63 1809  1809.00 0.00 0.68 1809  1809.00 0.00  30.51
k9k9 81 648 0.200 8370 9424 9541.10 53.74  0.02 8280  8495.55  257.83 3.01 8280  8605.81 270.05  21.87 8280  8280.00 0.00 303.16
p9c9 81 153 0.047 7434 794 794.00 0.00  0.00 745 751.77 14.06 1.07 745 805.81 73.38 5.62 745 745.00 0.00 300.97
p9k9 81 396 0.122 7362 1728 1728.00 0.00  0.01 1728 1728.00 0.00 6.17 1728  1728.00 0.00 1.13 1728 1728.00 0.00  49.28
p9p9 81 144 0.044 720 944 1268.10 162.45  0.00 516 516.00 0.00 13.32 516 585.68 96.65 3.51 516 516.00 0.00 3890
GEont 1 49 o891 147 142 14200 000 000 141 14100 000 000 141 14100 000 000 141 14100 000 000
ash85 85 219 0.061 4708 1214 1395.34 126.53  0.14 913 933.81 21.84 9.67 919 1036.58 89.64  22.89 913 913.00 0.00 4888
curtis54 54 124 0.087 1705 448 622.54 86.12  0.03 411 411.00 0.00 8.00 411 422.90 20.66 8.54 411 411.00 0.00 62.34
ibm32 32 90 0.181 743 493 539.72 2331 0.01 405 405.94 2.48 12.57 405 411.84 8.18 1.84 405 405.00 0.00 0.24
will57 57 127 0.080 1841 408 433.32 4386 0.04 335 33542 2.33 2.17 335 34529 21.55 0.60 335 335.00 0.00 11.42
impcol_b 59 281 0.164 4215 2462 2841.06 21484  0.07 1822 1822.00 0.00 0.23 1822 1829.74 9.90 0.16 1822 1822.00 0.00 0.72
impcol_d 425 1267 0.014 134935 23995  35083.34  5557.16 13.46 12960 16338.74 2484.91 231.19 12232 1593290  3170.52 7147 12179 12302.84 20449 310.75
nos4 100 247 0.050 6237 1181 1448.04 26425  0.06 1031 1031.00 0.00 2.23 1031 1031.00 0.00 6.03 1031 1031.00 0.00 5543
nos6 675 1290 0.006 218010 35658  48573.80  4660.16  2.12 15443 16583.74  871.78 330.47 24230 32277.10 308831  47.12 11702 12877.87  823.97 339.73
494_bus 494 586 0.005 72517 4873 5701.84 41044 995 5228  5515.58 185.15 180.39 9359  10784.65 99345 3579 4496 497590  220.70 307.36
662_bus 662 906 0.004 150169 12956 1535450  1319.83 31.75 10956 12112.84  559.60 312.00 18762 24389.68 241177  40.40 9238 10475.84  672.78 283.74
685_bus 685 1282 0.005 219863 14300  17723.38  2083.32 37.46 15110  16320.00  658.46 319.46 22626 28396.52  2960.05  52.49 11154 11907.97  484.88 334.62
can___24 24 68 0.246 425 216 253.06 1555 0.01 182 182.00 0.00 0.16 182 182.00 0.00 0.18 182 182.00 0.00 0.03
can__144 144 576 0.056 20881 2250 2258.94 6.11  0.02 1776~ 2587.61  749.96 8.25 1776 2339.00 787.03 9.48 1776 1776.00 0.00  49.30
can__292 292 1124 0.026 82333 23288  25903.86  1731.32  7.10 15139 15577.48  833.70 103.14 15763  18982.10 214892  75.81 15115 15126.94 792 283.30
can__445 445 1682 0.017 187543 41259 5123526  4795.67 18.74 27865 28817.26  429.88 231.31 29799 34132.00 249248  86.83 26704 26789.32 54.07 397.47
can__715 715 2975 0.012 532525 91646 109431.58 10123.94 79.88 67316 70106.13 2146.42 449.09 72683 89289.74  8991.61 8534 61768 65047.94 1440.59 309.54
bespwrO1 39 46 0.062 460 101 114.48 8.08  0.01 98 98.00 0.00 0.77 98 102.58 5.82 4.80 98 98.00 0.00 3.28
bespwr02 49 59 0.050 737 158 179.40 1947  0.02 148 148.00 0.00 1.14 148 151.94 593 10.53 148 148.00 0.00 423
bespwr03 118 179 0.026 5325 766 927.02 70.56  0.26 663 666.58 1.71 2471 664 713.19 53.72 14.67 662 663.42 0.76 321.30
besstk01 48 176 0.156 2156 1147 1336.48 107.99  0.02 936 938.71 3.78  20.08 936 954.45 1343 2132 936 936.00 0.00 4.24
besstk06 420 3720 0.042 391532 65017  83263.24  7489.16 30.87 53772 58924.52 4845.19 34348 55140 67875.65 10377.12 177.82 51847 52092.23 138.83  294.99
dwt__503 503 2762 0.022 348012 55067  67128.50  6003.72 32.69 40998 42919.16 2932.07 344.80 43453  59031.48  7346.48 122.69 37452 37732.81 137.07 373.96
dwt__592 592 2256 0.013 334452 33659  44864.18  4826.16 44.03 29620 31218.29 1188.39 352.28 28856 4265832  7073.52  84.30 25076 27280.55 1827.61 312.86

Fig. 4 plots the average accumulated number of times
that an arm employing a particular operator was selected
and played along 50,000 generations for a representative
Harwell-Boeing instance (dwt_503). An arm is played only
once per generation. The decline in the average accumu-
lated plays indicates that arm statistics were restarted after
the triggering of the PH-test whenever the best arm had
changed. The graphics imply tendencies to play more often
arms employing cyclic crossover (Fig. 4(b)), cumulative
2-swap mutation (Fig. 4(c)), and (u + A) survival strat-
egy (Fig. 4(d)), while only a slight tendency for binary
tournament (Fig. 4(a)), and no tendency for the evaluation
function (Fig. 4(e)).

At the begging of the search process the DMAB mecha-
nism is at an exploration phase, making an equal use of all
available arms and showing no preference by any of them.
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As the search progresses and reward feedback is collected
the DMAB slides into a phase of exploiting the best perform-
ing arms, and operator preferences become more remarkable
towards the triggering of the PH-test. When a restart happens,
all arms are tested, competing directly from the same search
points. This allows the algorithm to choose an arm based not
in reward estimations but in the actual performance. After
the arm statistics are restarted the DMAB enters again in a
exploration phase and the usage of operators becomes again
more balanced. As an hyperheuristic approach, DMAB works
in the domain of algorithms instead of directly over problem
solutions. Its focus on balancing exploitation of good arms
and exploration of underused arms, translated to the actual
search space, results in providing good search directions,
recognizing stagnation in local optimums and being able to
escape from them.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper we contrasted the effectiveness of several MA
configurations characterized by different sets of operators and
an adaptive approach to online self alternation of operators.

We studied the behavior of 96 versions of a MA, both
independently and when they are integrated into the DMAB
paradigm. Results among the best five MA independent
versions showed selection by binary tournament, cyclic
crossover, and survival strategy (u, 1) as more suitable oper-
ators for the CBSP with respect to their competitors, while
mutation by cyclic insertion and reduced 3-swap were com-
petitive with each other. It was also found that there are
cases where the alternative evaluation scheme reported by
Rodriguez-Tello et al. [19] can provide better guidance for
the search process.

MA-20 was identified as the best stand-alone MA ver-
sion, providing consistently and significantly better solutions
for the general case of the CBSP than any other method
previously reported. However, MA-20 results were further
improved by the adaptive method DMAB+MA presenting
more reduced error rates and a competitive amount of time
needed to reach the best-know solutions.

Although the full factorial experimental design employed
when comparing MA versions was informative, it demands
high amounts of both time and computing power. If the
operator set were to be extended it will be necessary to
study how that new operator interactions will impact the
performance. And as it was discussed in the previous section,
the success of the MA versions depends not only on the
combination of operators, but also on the instance topolo-
gies analyzed. While MA-20 results are outstanding against
previously reported methods (including MA-34), there is no
guarantee that it will be good enough for other new type of
instances. The DMAB-+MA approach proposed here is an
alternative to address those issues. While the independent MA
versions are limited to a fixed set of operators and potentially
overspecialized for some instance topologies, DMAB+MA
has all the operators available and the capacity to adapt in
function of their success. Even if being able to exploit all
of them comes at the expense of increasing computational
demands and execution time, the results speak by them-
selves proving that DMAB+MA is a competitive approach
that provides optimal/best-known solutions for all tested
instances and to establish new better upper bounds for 12 of
them.

These very promising results on the CBSP might encour-
age further work on the implementation of our DMAB+MA
approach for efficiently solving other related graph embed-
ding problems. It would also be worth investigating alter-
native implementations of the essential components of the
DMAB paradigm, including: 1) Schemes to compute the
value of the arms’ reward [28]-[30], 2) Strategies for
confidence estimation (other than UCB1) and regret-based
feedback [32], and even 3) Arm encodings for managing
heterogeneous low level heuristics for implementing a hyper-
heuristic framework based on the DMAB paradigm [27].
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APPENDIX A

DETAILED RESULTS

Table 8 presents detailed results of MACH, MA-20, MA-34,
and DMAB-+MA. The number of nodes |V|, edges |E]|,
density d, and upper-bound (UB) (or optimum value (Opt™*),
when available) are listed for each instance in the set. For each
algorithms we recorded the cost of the best found solution
Best along 31 runs, the average cost Avg of the solutions, and
its standard deviation Std, as well as the average execution
time 7.
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