
HAL Id: hal-03377721
https://univ-angers.hal.science/hal-03377721

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GASAT: A Genetic Local Search Algorithm for the
Satisfiability Problem

Frédéric Lardeux, Frédéric Saubion, Jin-Kao Hao

To cite this version:
Frédéric Lardeux, Frédéric Saubion, Jin-Kao Hao. GASAT: A Genetic Local Search Algo-
rithm for the Satisfiability Problem. Evolutionary Computation, 2006, 14 (2), pp.223-253.
�10.1162/evco.2006.14.2.223�. �hal-03377721�

https://univ-angers.hal.science/hal-03377721
https://hal.archives-ouvertes.fr

GASAT: A Genetic Local Search Algorithm for
the Satisfiability Problem

Frédéric Lardeux lardeux@info.univ-angers.fr
Frédéric Saubion saubion@info.univ-angers.fr
Jin-Kao Hao hao@info.univ-angers.fr

LERIA, University of Angers, 2 Bd Lavoisier, F-49045 Angers Cedex 01, FRANCE

Abstract
This paper presents GASAT, a hybrid algorithm for the satisfiability problem (SAT).
The main feature of GASAT is that it includes a recombination stage based on a spe-
cific crossover and a tabu search stage. We have conducted experiments to evaluate the
different components of GASAT and to compare its overall performance with state-of-
the-art SAT algorithms. These experiments show that GASAT provides very competi-
tive results.

Keywords
SAT, evolutionary algorithms, tabu search, recombination operators.

1 Introduction

The satisfiability problem (SAT) (Garey and Johnson, 1979), as one of the six basic core
NP-complete problems, has been the deserving object of many studies in the last two
decades. In addition to its theoretical importance, SAT has a large number of prac-
tical applications such as VLSI test and verification (Biere et al., 1999), the design of
asynchronous circuits (Gu and Puri, 1995), sports planning (Zhang, 2002) and so on.
An instance of the SAT problem is defined by a set of Boolean variables X =

{x1, ..., xn} and a Boolean formula F : {0, 1}n → {0, 1}. The formula is said to be sat-
isfiable if there exists an assignment v:X → {0, 1} satisfying F and unsatisfiable oth-
erwise. The formula F is in conjunctive normal form (CNF) if it is a conjunction of
clauses (a clause is a disjunction of literals and a literal is a variable or its negation).
Since any Boolean formula can be rewritten in CNF, CNF formulas are only considered
in this paper.
SAT is originally stated as a decision problem but there are other related SAT prob-

lems that may be of interest:

- model-finding: find satisfying truth assignments,

- MAX-SAT: find an assignment which satisfies the maximum number of clauses,

- model-counting: find the number of all the satisfying truth assignments.

During the last two decades, several improved solution algorithms have been de-
veloped and important progress has been achieved. These algorithms have consider-
ably enlarged our capacity of solving large SAT instances. Recent international chal-
lenges (Kautz and Selman, 2001; Simon et al., 2002) continue to boost the worldwide

c©2006 by the Massachusetts Institute of Technology Evolutionary Computation 14(2): 223-253

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

research on SAT. These algorithms can be divided into two main classes: complete and
incomplete algorithms.
A complete algorithm explores, often in an implicit way, the whole search space.

Consequently, such an algorithm can be used to solve either the initial decision prob-
lem or the model-finding problem. The most powerful complete algorithms are based
on the Davis-Putnam-Loveland procedure (Davis et al., 1962). They differ essentially
by the underlying heuristics used for the branching rule (Dubois et al., 1996; Li and
Anbulagan, 1997; Zhang, 1997). Specific techniques such as symmetry-breaking, back-
bone detecting or equivalence elimination are also used to reinforce these algorithms
(Benhamou and Sais, 1992; Dubois and Dequen, 2001; Li, 2000). As of today, com-
plete algorithms have an exponential complexity and the solution time may become
prohibitive for large and hard instances.
An incomplete algorithm does not carry out a systematic examination of the whole

search space. Instead, it explores, often in a guided way and with a limited time, some
parts of the search space. Such an algorithm is appropriate for tackling the model-
finding andMAX-SATproblems. Most incomplete algorithms are based on local search
(Hansen and Jaumard, 1990; Selman et al., 1994; Jaumard et al., 1996; Spears, 1996)
and evolutionary algorithms (EA) (De Jong and Spears, 1989; Hao and Dorne, 1994;
Fleurent and Ferland, 1996; Gottlieb et al., 2002). The very simple hill-climber GSAT
(Selman et al., 1992) and its powerful variant Walksat (Selman et al., 1994) are famous
examples of incomplete algorithms based on local search while FlipGA (Marchiori and
Rossi, 1999; Rossi et al., 2000) is a representative example of genetic algorithms for
SAT. Though incomplete algorithms are of little help for proving the unsatisfiability of
instances, they represent an indispensable complementary approach and a very inter-
esting alternative with respect to the complete algorithms.
In this paper, we are interested in the development of incomplete algorithms based

on the hybrid approach which combines local search and genetic search. Indeed, this
general Genetic Local Search approach, also called the memetic approach (Corne et al.,
1999; Hart et al., 2004), has proven to be quite successful in recent years in solving
a number of well-known difficult problems such as the traveling salesman problem
(Merz and Freisleben, 1997) and the graph coloring problem (Galinier and Hao, 1999).
The main motivation behind this approach is to use recombination (crossover) as a
guided diversification (exploration) mechanism and local search as a powerful inten-
sification (exploitation) mechanism. A first genetic local search algorithm for SAT was
reported in (Fleurent and Ferland, 1996) leading to remarkable results.
Until now, specific crossover operators have not been studied in depth for the SAT

problem (Fleurent and Ferland, 1996; Marchiori and Rossi, 1999). In this work, we
follow the genetic local search schema and focus on the design and study of a hybrid
algorithm based on SAT specific crossover operators combined with Tabu Search (TS).
The resulting algorithm is called GASAT (Genetic Algorithm for SAT). Within GASAT,
specific crossover operators are used to identify particularly promising search areas
while TS performs an intensified search of solutions around these areas. In such a
way, we hope to be able to achieve a good compromise between intensification and
diversification in the search procedure. One key point for such a hybrid algorithm
is obviously the definition of the specific crossover operator which should take into
account the semantic aspects of the SAT problem.
A first version of GASAT has been presented in (Hao et al., 2003). It uses a simple

TS and the Corrective Clause crossover. This paper proposes a reinforced TS which
uses new mechanisms, a study of four crossovers and a large panel of experimental

224 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

and comparative results.
The remainder of the paper is organised as follows. Section 2 presents our general

framework and the main lines of GASAT. Section 3 provides a study of the population
management. Sections 4, 5 and 6 describe our analysis of the recombination opera-
tor and of the TS. In section 7, GASAT is compared with other algorithms in order to
evaluate its performance. The paper closes with our conclusions in section 8.

2 A Genetic Local Search Algorithm for SAT: GASAT

As mentioned in the introduction, GASAT is based on a genetic local search approach.
It relies on the management of a population of individuals which are submitted to
recombination and local search operators. The earlier version of GASAT mentioned
above (Hao et al., 2003) was developed with a simple local search process. In this
section, the general scheme and the main components of the improved algorithm are
defined.

2.1 Representation and Search Space

The most obvious way to represent an individual for a SAT instance (as defined in the
introduction) is a binary string of n bits where each bit is associated with one variable.
In this representation, an individual X obviously corresponds to a truth assignment.
Therefore, for a given SAT instance involving n variables, the search space is the set
S = {0, 1}n (i.e. all the possible strings of n bits).

2.2 Fitness Evaluation and Associated Functions

Let F be a given SAT instance and X an individual, the fitness of X with respect to F
is defined as the number of clauses of F which are not satisfied by X :

eval: S → IN

X 7→ card({c|¬sat(X, c) ∧ c ∈ F})

where card(A) denotes, as usual, the cardinality of the set A and the Boolean function
sat(X, c) indicates whether the clause c is true or false for X (i.e satisfied or not by the
assignment corresponding to X). This fitness function induces an order >eval on the
individuals of the population. The smallest value of this function is 0 and an individual
having this fitness value corresponds to a satisfying assignment. This orderwill be used
in the selection process.
Let flip be the following function allowing us to change the value of a variable:

flip: {0, 1} → {0, 1}
α 7→ 1− α

Let X [i ← α] be an individual X whose ith position (variable) is set to the value α.
Now, the improvement function is defined as follows.

improvement: S × IN → IN

(X, i) 7→ eval(X [i← flip(X |i)])− eval(X)

This function computes the improvement obtained by the flip of the ith variable ofX
and was previously introduced in GSAT andWalksat (Selman et al., 1994; Selman et al.,
1992). It corresponds to the gain of a flip according to the function eval and is equal
to the number of false clauses which become true by flipping the ith variable minus

Evolutionary Computation Volume 14, Number 2 225

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

the number of satisfied clauses which become false. Therefore a positive number indi-
cates an increase of the number of satisfied clauses while a negative one corresponds
to an increase of the number of false clauses. This function is used in GASAT specific
crossover operators and in the TS procedure.

2.3 The GASAT Algorithm

GASAT is a hybrid algorithm that combines a specific crossover operator and a TS
procedure. Given a randomly generated initial population where each individual rep-
resents a truth assignment, the first step consists in selecting its best individuals ac-
cording to the order <eval. Then, two individuals (parents) are randomly selected and
recombined to obtain a new individual (child). This resulting child is improved us-
ing the TS procedure and then added to the current population under certain insertion
conditions. This whole process is repeated until a solution is found or until a fixed
maximum number of crossovers is reached. The pseudo-code of the GASAT algorithm
is described in Algorithm 1 and will be detailed in the next sections.

Data: a set of CNF clauses φ,Maxflip,MaxNbCrossovers

Result: the best truth assignment
begin

CreatePopulation(P)
NbCrossovers← 0
while no X ∈ P satisfies φ and NbCrossovers < MaxNbCrossovers do

/* Selection */
P ′ ← Select(P, NbInd)
Choose X, Y ∈ P ′

/* Crossover */
Z ← Crossover(X, Y)
/* TS improvement */
Z ← TS(Z)
/* Insertion condition of the child */
P ← Replace(Z, P)
NbCrossovers← NbCrossovers + 1

if there exists X ∈ P satisfying φ then

return the corresponding assignment
else
return the best assignment found

end

Algorithm 1: GASAT Algorithm

3 Population Management

GASAT introduces two mechanisms to manage its population of individuals. First, a
specific selection of the parents helps the crossover to produce a good child and en-
sures the diversity of the selected parents. Second, the children are only introduced in
the population under certain insertion conditions. This mechanism acts as an inten-
sification process by drawing aside bad individuals. Since the size of the population
appears as a determinant factor for evolutionary algorithms performances, a study of
this parameter has been carried out to determine an optimal size for GASAT.

226 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

3.1 Selection Operator and Insertion Condition

GASAT is a steady-state algorithm. The whole population is kept for the next genera-
tion except the oldest individual which is replaced by a child obtained by the crossover
(if this one can be accepted in the population). Contrary to the well-known tournament
selection which chooses the best individual in a subset of randomly selected individu-
als, the GASAT selection operator randomly chooses two individuals in a subset of the
best individuals of the population.
The GASAT selection operator is a function select:S × IN → S that takes as input

a given population P and extracts a sub-population P ′ of size NbInd, which will serve
as parents for the recombination stage. Two parents are randomly selected in this sub-
population to be crossed. To insure an efficient search, it is necessary to keep some
diversity in the population. Indeed, if the selected parents are too similar, some regions
of the search space S may not be explored.

Data: a population P , NbInd

Result: a sub-population P ′

begin

P ′ = ∅
noP ′ = ∅
WorstInd = −1
WorstEval = 0
while card(P ′) 6= NbInd do

Ind← one individual of P
P = P − {Ind}
if (card(P ′) < NbInd) and (Ind 6∈ P ′) then

P ′ = P ′ ∪ {Ind}
if eval(Ind) > WorstEval then

WorstInd = Ind

WorstEval = eval(Ind)

else
if (eval(Ind) < WorstEval) and (Ind 6∈ P ′) then

P ′ = P ′ ∪ {Ind} − {WorstInd}
noP ′ = noP ′ ∪ {WorstInd}
WorstEval = 0
for all the individual tempInd ∈ P ′ do

if eval(tempInd) > WorstEval then

WorstInd = tempInd

WorstEval = eval(tempInd)

if card(P ′) 6= NbInd and card(P) = 0 then

Complete P ′ with individuals of noP ′ randomly selected

end

Algorithm 2: Selection process

A child can be inserted according to whether its fitness value is better than the
fitness value of the worst individual in the current sub-population P ′. This condition
accepts the insertion of an individual already in the sub-population. The diversity is
insured by the suppression of the older individual. Algorithm 2 describes the selec-

Evolutionary Computation Volume 14, Number 2 227

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

tion process. Note that a particular set noP ′ is introduced to record individuals which
are deleted from P ′ according to the insertion condition but which can be used later
to complete P ′ when needed. An example of the selection and insertion processes is
proposed Figure 3.1.

Crossover operator

Insertion
conditionbetter

process
Selection

Figure 1: Selection and insertion processes. A child is obtained by a crossover between
two randomly selected parents in a sub-population of the best individuals. If its fitness
value is better than the value of the worst individual of the sub-population then it
replaces the oldest individual of the population; otherwise the population is kept and
a new selection process is executed.

3.2 Population Size

The population size is generally an important parameter for evolutionary algorithms. If
the population is too small, the ability to explore the entire search space will be weak.
However, if the size is too large, a lot of time will be needed to manage the popula-
tion. Figure 2 shows the behavior of GASAT without TS with different population and
sub-population sizes on the random 3-SAT instance f1000 (Mitchell et al., 1992). The
sub-population size is presented as a percentage of the population size. Because we are
interested in both model-finding and MAX-SAT problems, the configuration quality is
given by the number of false clauses in the best configuration found during an execu-
tion instead of the success rate. Each combination population size/sub-population size is
tested 20 times. A pool of 20 populations is randomly generated and used for each run
to ensure that the algorithm behavior is not due to the initial population1. The stopping
criteria is the number of crossovers which is limited to 103.
As can be seen in Figure 2, when the population size increases, the configuration

quality is improved and the execution time rises. The same effects are observed when
the sub-population size is increased. If the purpose is to obtain very good results with-
out taking into account the execution time, a solution consists in taking a large popu-
lation and a large sub-population. On the other hand, if execution time must be very
short and the configuration is not necessarily very good, it may be interesting to set a
smaller population size. For GASAT, a trade-off between configuration quality and ex-
ecution time has been chosen. Figure 2 suggests that a population with 100 individuals

1All the experiments presented in this paper which require an initial population use a pool of similar
initial populations.

228 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

 30

 35

 40

 45

 50

 55

 60

 5 10 15 20 25

av
er

ag
e

n
u
m

b
er

 o
f

fa
ls

e
cl

au
se

s

size of the sub−population (percent of the population size)

population of 50 individuals
population of 75 individuals

population of 100 individuals
population of 125 individuals
population of 150 individuals

 5000

 10000

 15000

 20000

 25000

 5 10 15 20 25

av
er

ag
e

ti
m

e
o
f

ex
ec

u
ti

o
n
 (

se
c.

)

size of the sub−population (percent of the population size)

population of 50 individuals
population of 75 individuals

population of 100 individuals
population of 125 individuals
population of 150 individuals

Figure 2: Influence of the population and sub-population sizes on the configuration
quality (top) and the execution time (bottom).

and a sub-population composed of 15 individuals correspond to this trade-off. Similar
tests have been realized on other instances and leading to similar conclusions.

4 Crossover Operators

The main goal of the crossover operator in GASAT is to create diversified and poten-
tially promising new individuals. For this purpose, the crossover should take into ac-
count as much as possible the semantics of the individuals. In the SAT problem, the
clauses of a given instance induce a constraint structure among the variables. One way
to define SAT specific crossover operators is then to use this constraint structure. More
specifically, based on the satisfiability of each clause with respect to the two parent in-

Evolutionary Computation Volume 14, Number 2 229

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

dividuals, one may try to create a child which benefits from both parents and satisfies
a maximum number of clauses. This can be achieved by correcting false clauses and
maintaining true ones. Three cases are then possible: 1) the clause is false for the two
parents; 2) the clause is true for the two parents; and 3) the clause is true for one parent
and false for the other.
In this section these different cases are studied and three structured crossover op-

erators are devised. The classical uniform crossover is also presented in order to com-
pare it with the structured ones and to assess their benefits. All these crossovers pro-
duce one child (Z) from two parents (X and Y), therefore each operator is a function
cross:S×S → S. At the beginning of all the crossovers, each variable of Z is undefined
and is assigned a value along the crossover process.

4.1 Corrective Clause Crossover (CC)

When a clause c is false for both parents, a possible solution for turning c into true is to
flip one of its variables2. However, this action may produce other false clauses. To limit
the number of new false clauses, the choice of the flipping variable should be guided
by the improvement evaluation function. This leads to the following Corrective Clause
Crossover (CC).

Data: two parentsX and Y

Result: one child Z

begin

All the variables of Z are assigned to undefined
for each clause c such that ¬sat(X, c) ∧ ¬sat(Y, c) ∧ ¬sat(Z, c) do

for all positions i such that the variable xi appears in c do

Compute σ = improvement(X, i) + improvement(Y, i)

Set Z|k = flip(X |k)where k is the position such that σ is maximum

All the variables of Z with no value take the value ofX or Y with equal probabil-
ity

end

Algorithm 3: Corrective Clause Crossover (CC)

4.2 Corrective Clause and Truth Maintenance Crossover (CCTM)

When a clause c is true for both parents, all the values of the variables appearing in c

may be copied fromone of the parent to the child. Unfortunately, this actionwould only
take into account the structure of the chosen parent. To be fair, values of variables com-
ing from both parents should be copied, but these values can be different. A solution is
to select the variable whose flip has the smallest impact and to set its value such that the
corresponding literal is true in c. Since only one variable is necessary to maintain this
clause as true, this operation may be again guided by the improvement function. This
leads to the following Corrective Clause and Truth Maintenance crossover (CCTM).

4.3 Fleurent and Ferland’s Crossover (F&F)

Fleurent and Ferland (1996) developed a solution for cases when a clause c is true for
one parent and false for the other. Their solution is: “The corresponding variables [to

2Note that, if a clause is false for both parents, then all the variables appearing in this clause have neces-
sarily the same value in both parents.

230 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Data: two parentsX and Y

Result: one child Z

begin

All the variables of Z are assigned to undefined
for each clause c such that ¬sat(X, c) ∧ ¬sat(Y, c) ∧ ¬sat(Z, c) do

for all positions i such that the variable xi appears in c do

Compute σ = improvement(X, i) + improvement(Y, i)

Set Z|k = flip(X |k)where k is the position such that σ is maximum

for each clause c such that sat(X, c) ∧ sat(Y, c) ∧ ¬sat(Z, c) do

for all positions i such that the variable xi appears in c and its associated literal is
true at least in one parent do

Compute σ = improvement(X, i) + improvement(Y, i)

Value Z|k such that sat(Z, c)where k is the position such that σ is minimum

All the variables of Z with no value take the value ofX or Y with equal probabil-
ity

end

Algorithm 4: Corrective Clause and Truth Maintenance crossover (CCTM)

this clause] are assigned values according to the parent satisfying the identified clause”.
This principle leads to the following definition:

Data: two parentsX and Y

Result: one child Z

begin

for each clause c such that sat(X, c) ∧ ¬sat(Y, c) (resp. ¬sat(X, c) ∧ sat(Y, c)) do

for all positions i such that the variable xi appears in c do

Z|i = X |i (resp. Z|i = Y |i)

All the variables of Z with no value take the value ofX or Y with equal probabil-
ity

end

Algorithm 5: Fleurent and Ferland’s crossover (F&F)

It is clear that for all these crossover operators, the order in which the clauses are
traversed is relevant. In our algorithm, they are traversed in the same order that they
are presented in the studied instance but, of course, a specific ordering could improved
the performances. Note also that CC, CCTM and F&F crossovers differ in the use of the
truth values of the clauses induced by the parents. As mentioned above, the key ideas
are to correct false clauses, to preserve true clauses and to maintain the structure of the
parent assignments.

4.4 Uniform Crossover

In this section, the definition of the uniform crossover operator (Syswerda, 1989) is
recalled. Each variable of the child is assigned by randomly taking the value of the
variable of one the parents.

Evolutionary Computation Volume 14, Number 2 231

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

Data: two parentsX and Y

Result: one child Z

begin

for each variable x do
Z|x takes the value of X |x or Y |xwith equal probability

end

Algorithm 6: Uniform Crossover

4.5 Comparison among the Crossover Operators

In order to study the characteristics of the above defined crossover operators, each of
them is inserted into a simplified genetic algorithm that carries out a sequence of recom-
bination stages on a population with or without using the selection and the insertion
processes. The four crossovers presented in the previous section are used.
The experiments are presented on a random 3-SAT instance: f500 (Mitchell et al.,

1992) with 500 variables and a ratio of clauses-to-variables of 4.25 (which corresponds
to hard instances (Monasson et al., 1999)) but other instances, structured (real combi-
natorial problems translated in SAT format) or not, have also been tested and provide
similar results.
The size of the population P is 100 and the sub-population P ′ of possible parents

has a size of 15 (according to section 3.2). A set of 20 populations has been generated
and each crossover has been tested over each element of this set. The stopping criteria
is the number of crossovers which is limited to 10 × 3. When there is no selection and
insertion processes, two parents are randomly chosen in the population and all the
children are inserted in the new population. Several parameters are studied: the fitness
(i.e., the average number of false clauses) vs. number of crossovers and the population
diversity (i.e. the entropy) vs. number of crossovers. The first comparison highlights the
search power of the crossovers and the second comparison indicates the ability to keep
a diversified population. The entropy, taking into account the value of each variable in
each individual, allows us to measure the population diversity. It corresponds to the
following function (Fleurent and Ferland, 1996) :

entropy(P) =

−
n∑

i=1

1∑

j=0

nij

card(P) log
nij

card(P)

nlog2

where n is the number of variables and nij is the number of times the variable i is set
to j in the population P . In this definition, entropy(P) ∈ [0, 1]. 0 indicates a popula-
tion of identical individuals whereas 1 means that all possible assignments are almost
uniformly distributed in the population.
The results are shown in Figure 3. Without the selection process, F&F and CCTM

crossovers obtain the best improvement of the average number of false clauses but
they also obtain the worst behavior w.r.t. the entropy. The uniform crossover does not
improve the average number of false clauses and its entropy decreases whereas the CC
crossover improves the average number of false clauses and maintains a high entropy.
With the selection process, CC and CCTM crossovers improve the average number

of false clauses. For all the crossovers, the selection process drops the entropy rates but
CC and CCTM stop these decreases sooner whereas the F&F behavior is damaged.
Concerning the uniform crossover, no significant improvement of the average number

232 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

without selection process with selection process

Fitness

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

F
al

se
 c

la
u
se

s

Crossovers

4

2

3

1

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

F
al

se
 c

la
u
se

s

Crossovers

4

2 3

1

Population
diversity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

E
n
tr

o
p
y

Crossovers

4

2

3

1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

E
n
tr

o
p
y

Crossovers

4
2

3

1

Figure 3: Evolution of the average number of false clauses and the entropywith the four
crossovers (1→Uniform crossover, 2→CCTM crossover, 3→CC crossover and 4→F&F
crossover).

of false clauses can be observed even with this selection mechanism. We may remark
that CC and CCTM crossovers have a better behavior than the F&F crossover.
Therefore, an efficient crossover is not necessarily a crossover which quickly im-

proves the whole population but rather which ensures a good trade-off between the
quality and the diversity of the population. The diversification process allows the al-
gorithm to benefit from a better exploration of the search space and prevents the pop-
ulation from stagnating in poor local optima.

5 Tabu Search (TS)

Each new individual created by the recombination stage of GASAT is improved by the
TS procedure. This can be considered as an intensification stage by searching around
the given individual according to a neighborhood relation.

5.1 Standard TS

TS is a local search method using a memory to avoid local optima (Glover and Laguna,
1997). TS has already been experimented for the SAT problem (Mazure et al., 1997).
The principle is quite simple: it acts somewhat as a descent algorithm (at each itera-
tion, it makes the best move), but once visited, a configuration is made tabu, that is, the
algorithm is not allowed to revisit this configuration for a given number of iterations.
Since the memorization of the last configuration could be costly, a common variation
consists in making only the moves tabu. A move is performed if it is the best one and if
it is not tabu. Once executed, the move is included in the tabu list, which acts as a fixed
size FIFO queue, and is removed from this list after λ iterations. The memorization of
moves instead of configurations may lead to an “over-constraint” on forbidden config-

Evolutionary Computation Volume 14, Number 2 233

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

urations. For this reason, the tabu status of a move may be disabled if the move leads
to a better configuration than the best one ever found (aspiration).
TS uses an aggressive search strategy to exploit its neighborhood. Therefore, it is

crucial to have special data structures and techniques which allow a fast updating of
move evaluations, and reduce the effort of finding best moves.
In the SAT context, it is clear that the moves are possible flips of the values of a

given assignment. The best one is selected thanks to the choose function (Algorithm
7) which compares the gain provided to the current assignment by each variable flip
thanks to the improvement function. In order to increase efficiency, the special data
structure for SAT is a matrix which provides for each variables the number of clauses
becoming true and the number of clauses becoming false by its flip. It then becomes
very easy to estimate the improvement due to a flip. This matrix is updated after each
flip changing only the values for the variables being in the clauses of the flipped vari-
able.
Here the TS corresponds to the TS of Mazure & al. (Mazure et al., 1997). The

tabu list is a list of indexes of already performed flips. The tabu list (λ) length and the
maximum number of flips are provided by an empirical study. The initial configuration
given as entry to the TS is a selected child generated by crossover and TS is used to
improve this child. The whole procedure is summarized in Algorithm 8.

Data: an assignment Z , the tabu list tabu, the best assignment found Best

Result: a position
begin

for all positions i do

if (Z[i← flip(Z|i)] 6∈ tabu) ∨ (eval(Z[i← flip(Z|i)]) < eval(Best)) then

Compute σ = improvement(Z, i)
else

σ = −∞

Return a position that is randomly selected in those which have the maximum σ

end

Algorithm 7: Choose function for the tabu search

5.2 Reinforcing TS with Refinement of the Variable Choice to Flip (RVCF)

When TS selects a variable to flip, several variables may be candidates. In order to
reduce the number of possible candidate variables, a new criterion is added to this
selection.
The more a clause has a significant number of true literals, the easier it is to flip

one of its variables without turning this clause into false. Therefore, the notion of truth
degree for a clause is introduced:

degree(X, c) = card({l|val(X, l) = 1, l ∈ c ∈ F})

where F is the set of clauses of the formula and val(X, a) is the truth value of the literal
a for the assignment X .

234 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Data: an assignment Z ,λ,Maxflip

Result: the best assignment found
begin

Set the list tabu to size λ

Best← Z

nbflip← 0
while not (eval(Best) = 0 ∨ nbflip > Maxflip) do

i← choose(Z)
if eval(Z[i← flip(Z|i)]) < eval(Best) then

Best← Z[i← flip(Z|i)]

nbflip← nbflip + 1
Z ← Z[i← flip(Z|i)]
remove the older index from tabu

add i to tabu

Return Best

end

Algorithm 8: Tabu Search (TS)

For each selected variable, its weight may be computed with the following weight
function:

weight(X, i) =

∑

c∈{y|y∈F ,lit(i)∈y,val(X,lit(i))=1}

degree(X, c)

card({y|y ∈ F , lit(i) ∈ y, val(X, lit(i)) = 1})

+
∑

c∈{y|y∈F ,lit(i)∈y,val(X,lit(i))=0}

degree(X, c)

card({y|y ∈ F , lit(i) ∈ y, val(X, lit(i)) = 0})

where lit(i) represents the literal associated to the variable i. Now, the new choose

function (Algorithm 9) always takes as input an assignment and returns the position
with the best improvement and the best weight.

Data: an assignment X
Result: a position
begin

for all positions i do

Compute σ = improvement(X, i)

for all positions j such that σ is maximum do

Compute α = weight(X, j)

Return a position that is randomly selected in those which have the αmaximum
end

Algorithm 9: Choose function for the tabu search with the RVCF

Table 1 shows the power of the RVCF mechanism when it is added to the standard
tabu search. Tests are realized on instances detailed in section 7.1.2. The number

Evolutionary Computation Volume 14, Number 2 235

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

of performed flips (number of single bit flips needed to find the best configuration)
is limited to 101 × 105 (the same number is used for the experiments performed in
section 7) and the tabu list length is set to 10% of the number of variables (empir-
ical result based on (Mazure et al., 1997)). The algorithm runs 20 times on each instance.

Comparison criteria As mentioned above, since we are interested in both model-
finding and MAX-SAT problems (due to the intrinsic nature of incomplete algorithms),
the configuration quality is most likely related to the number of false clauses (f.c.) in
the best configuration found during an execution than to the success rate. The average
number of performed flips for finding the best configuration (fl.) and the average
time of execution (sec.) are also used to characterize the power of the algorithms.
To compare the efficiency of the algorithms, a 95% confidence Student t-test3 has
been performed in order to assess if the difference in the number of false clauses
left by the two algorithms was statistically significant (Stat.). Finally, the percentage
of improvement (%) in the number of false clauses due to the new mechanism is
computed.

Benchmarks TS TS+RCVF Stat. Imp.

instance var. cls. struc. false clauses fl. sec. false clauses fl. sec. T-St. %
avg. s.d. ×103 avg. s.d. ×103 (95%)

3blocks 283 9690 Y 1.70 0.46 1399 49 1.00 0.00 1 175 Y +41
color-10-3 300 6475 Y 1.36 0.77 2881 56 0.05 0.22 3224 94 Y +96
par16-4-c 324 1292 Y 4.85 0.65 4666 43 4.95 0.22 76 101 N −2
par8-1 350 1149 Y 1.00 0.00 22 43 1.00 0.00 29 71 N 0

difp 19 0 arr rcr 1201 6563 Y 9.25 1.34 4572 157 4.95 0.22 670 482 Y +46
difp 19 99 arr rcr 1201 6563 Y 18.35 1.62 5133 156 10.40 1.71 2302 511 Y +43
color-18-4 1296 95905 Y 30.90 0.83 2653 436 26.20 1.08 4062 2556 Y +15
g125.17 2125 66272 Y 17.90 1.97 793 461 16.90 2.51 1475 1414 N +6
g125.18 2250 70163 Y 14.70 2.90 1117 508 13.85 2.50 1408 1358 N +6
par32-5 3176 10325 Y 6.35 0.79 3533 337 5.30 0.56 1851 780 Y +17

glassy-s1069116088 399 1862 N 5.00 0.00 50 59 5.00 0.00 67 185 N 0

glassy-s325799114 450 2100 N 8.00 0.00 2862 67 8.50 0.50 2027 207 Y −6
hgen2-s1205525430 500 1750 N 0.90 0.29 361 63 0.90 0.29 937 215 N 0

hgen2-s512100147 500 1750 N 1.00 0.00 465 69 1.00 0.00 708 222 N 0

f1000 1000 4250 N 1.70 1.43 2182 108 1.00 1.7 4197 300 N +41
f2000 2000 8500 N 5.50 1.88 3147 242 5.55 2.44 3464 887 N −1

Table 1: Influence of the RVCF mechanism on the Tabu Search

The results presented in Table 1 show the influence of the RVCF mechanism. On
structured instances, good results are observed for the RVCF mechanism but on ran-
dom instances, no clear dominance appears. Random instances aremore homogeneous
in their constraint structures and the improvement due to the RVCF mechanism is too
poor to compensate its cost: even if the RVCF improves the TS, it dramatically increases
the execution time. This weakness is compensated by the good results for structured
instances but this is not the case for random instances. The RVCF mechanism improves

3The 95% Student’s t-test is based on the average, the standard deviation and the cardinality of a set of
runs and used a p-value equal to 1.96. It is computed to insure that the difference of two sets is significant.

236 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

the number of false clauses but it has no impact on the standard deviation. Finally, the
number of performed flips has the same order of magnitude for the two algorithms.

5.3 Reinforcing TS with Diversification

During the TS, it is not unusual to observe the number of false clauses decreasing dra-
matically to reach a small value which never drops to 0. The last false clauses are often
the same and they block the TS which stumbles over them. These clauses are called
stumble clauses.
To avoid this problem, a new diversification mechanism has been developed

(Algorithm 10). When a stumble clause appearsMaxFalse times (whose typical value
is 5), it is forced to become true by flipping one of its variables. This flip induces new
false clauses which are forced to become true too and so on, recursivelyRec times. The
flipped variables cannot be flipped again before k flips which maintains these clauses
true.

Data: an assignment Z ,MaxFalse, k, Rec

Result: an assignment
begin

FC ← {c|c ∈ clause, c appears false MaxFalse times}
for each c ∈ FC do
Select the variable i ∈ c such that improvement(X, i) is maximal
Z ← Z[i← flip(Z|i)]
imust not be flipped before k flips
count← Rec

while count 6= 0 do

NFC ← {c|c ∈ clause, sat(Z[i← flip(Z|i)], c),¬sat(Z, c)}
for each c ∈ NFC do
Select the variable i ∈ c such that improvement(Z, i) is maximal
Z ← Z[i← flip(Z|i)]
imust not be flipped before k flips

Return Z

end

Algorithm 10: Diversification

This mechanism allows the search to escape from the local optima more easily than
with a standard TS as highlighted by the peaks in Figure 4. Tests have been performed
on several instances and the same effect has been observed. Figure 4 which is repre-
sentative of the diversification mechanism effect presents the evolution of one run on a
random instance (f1000).
This mechanism is introduced in the TS algorithm at the end of the While loop,

just after the introduction of the flipped variable in the tabu list.

5.4 Combination of the Previous Mechanisms

The two specific mechanisms slow down the algorithm but allow us to improve the
results in terms of quality. The tests are presented on two instances using all possible
combinations of the previously described mechanisms. Each instance is a represen-
tative of one family of problems (f1000 for random instances and color10-3 for

Evolutionary Computation Volume 14, Number 2 237

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

 0

 5

 10

 15

 20

 25

 30

 35

 1000 2000 3000 4000 5000

F
al

se
 c

la
u

se
s

Crossovers
 0

 5

 10

 15

 20

 25

 30

 35

 1000 2000 3000 4000 5000

F
al

se
 c

la
u

se
s

Crossovers

Figure 4: TS without diversity (left) and TS with diversity (right)

structured instances (see section 7.1.2)).
The parameters are a TS of 101× 105 performed flips and a tabu list length of 10%

of the number of variables. Each instance is run 20 times. A new criteria of comparison
is added to characterize most precisely the power of the mechanisms. Four values are
given: the success rate (%) which is the number of successful runs divided by the total
number of runs, the average number of false clauses (f.c.), the number of performed
flips (fl.) and the average time in second (sec.) for finding the best configuration.

Instances
f1000 color10-3

% f.c. fl.×10
3 sec. % f.c. fl.×10

3 sec.
Standard TS 25 1.70 2181 94.75 15 1.36 2881 56.93
TS + RVCF 60 1.00 4197 300.82 95 0.05 3224 94.54
TS + Diversification 45 0.69 2929 94.75 10 1.09 4246 53.12
TS + RVCF + Diversification 45 0.81 3081 342.85 100 0.00 3631 119.58

Table 2: Comparisons of RVCF and diversification for the Tabu Search

Table 2 shows the interaction between the two mechanisms for random and struc-
tured instances. Only two instances are presented but others were tested and similar
results were obtained.
For random instances, the diversification mechanism and the RVCF mechanism

improve the results but the combination of both deteriorates them (see Table 1). TS with
the diversification mechanism seems to provide the best results for random instances.
For structured instances, the combination of the RVCF mechanism and the diver-

sification mechanism improves the results. The RVCF mechanism intensifies the search
whereas the diversification mechanism allows the search to escape from local optima.

6 Combining Crossover and Tabu Search

The previous section presented four crossovers and a reinforced TS. Even if crossovers
provide us with good results individually, it is not clear if they would be efficient when
combined with the reinforced TS (RTS). In this section, the good results of the CC
crossover combined with RTS are shown. Then, results will be presented in order to
show that the RTS benefits from the evolutionary algorithm.

238 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

6.1 Influence of the Crossover

To further assess the interaction between RTS and each crossover operator, each of the
four operators are inserted in GASATwith the reinforced tabu search combining RVCF
and diversification mechanisms. Each of the four hybrid algorithms is run 20 times on
some selected representative instances, namely, a blocks world instance (3blocks), a
parity function instance (par16-4-c), a random instance (f1000) and a chess-board
coloring instance (color10-3). These instances are presented in detail in section 7.1.2.
They come from four different representative families of benchmarks. The experimen-
tal conditions are the same for the four algorithms. The F&F crossover is used without
the selection process since it gives better results (Figure 3). A RTS of at most 104 per-
formed flips is applied to each child and the number of crossovers is limited to 103.
The flips which have been done during the crossovers are taken into account in the to-
tal number of flips. A set of 20 populations has been generated and each combination
has been tested over each element of this set.
Four comparison criteria are used in order to evaluate the different crossovers im-

proved by RTS. The success rate (%), which is the number of successful runs divided by
the total number of runs, and the average number of false clauses highlight the search
power of the algorithm. The speed is evaluated using average number of crossovers
(cr.) in the successful runs and the average number of performed flips for finding the
best configuration.

CC CCTM F&F Uniform
instances % cr. % cr. % cr. % cr.
3blocks 10 439 0 - 0 - 0 -
color-10-3 100 287 95 224 95 255 95 218
f1000 85 235 70 177 60 189 70 146
par16-4-c 5 788 10 206 0 - 0 -

Table 3: Comparison based on the success rate of different crossovers included in the
GASAT algorithm

CC CCTM F&F Uniform
instances f.c. fl.×103 f.c. fl.×103 f.c. fl.×103 f.c. fl.×103

3blocks 0.90 90 1.00 0.2 1.00 0.2 1.00 0.8
color-10-3 0.00 41 0.03 934 0.03 788 0.03 1001
f1000 0.16 6417 0.32 622 0.17 775 0.23 715
par16-4-c 2.60 538 3.55 129 2.90 215 2.75 368

Table 4: Comparison based on the average number of false clauses of different
crossovers included in the GASAT algorithm

Table 3 and Table 4 give the same conclusion: the combination between CC and
RTS is more powerful than the others.

6.2 Improvement due to Each Process

To assess the benefit of the evolutionary process for the combination of TS and a
crossover operator, Table 5 presents a comparison between the RTS and the combi-
nation of this RTS and the CC crossover (RTS+CC). In the same way, Table 6 presents

Evolutionary Computation Volume 14, Number 2 239

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

a comparison between the evolution process only with the CC crossover and the hy-
bridization RTS+CC. Most of the results are improved in the presence of the evolution-
ary process.
For this combination, our RTS using the RVCF (section 5.2) and the diversification

mechanism (section 5.3) is applied to each child. The number of crossovers is limited
to 103 and the number of performed flips per child is limited to 104. The flips which
are done during the crossovers are taken into account in the total flips number. A set of
20 populations is generated and each combination is tested over each element of this
set. Concerning the reinforced RTS without evolutionary process, the number of flips
is limited to 101× 105 performed flips. The tabu list length is set to 10% of the number
of variables in all the TS.
For the evolutionary process alone, the number of crossovers is limited to 103 and the
crossover is the CC crossover.

Comparison criteria The configuration quality is given by the number of false clauses
in the best configuration found during an execution. The average of this number (avg.)
and its standard deviation (s.d.) are presented for 20 executions. The average number
of performed flips for finding the best configuration (fl.) is also used to characterize
the power of the algorithms. Again, to compare the efficiency of the algorithms, a 95%
confidence Student t-test allows us to check that the number of false clauses of the two
algorithms is significantly different. Finally, the percentage of improvement (%) in the
average number of false clauses due to the evolutionary process (Table 5) or to the RTS
(Table 6) is computed.

Benchmarks RTS RTS+CC Stat. Imp.

instance var. cls. SAT false clauses fl. false clauses fl. T-St. %
avg. s.d. ×103 avg. s.d. ×103 (95%)

3blocks 283 9690 Y 1.00 0.00 0.1 0.90 0.30 41 N +10
color-10-3 300 6475 Y 0.00 0.00 3631 0.00 0.00 926 N 0

par16-4-c 324 1292 Y 5.05 1.77 56 2.60 0.54 538 Y +49
par8-1 350 1149 Y 1.00 0.00 10 0.50 0.50 587 Y +50

difp 19 0 arr rcr 1201 6563 Y 5.00 0.00 317 4.96 0.2 730 N +1
difp 19 99 arr rcr 1201 6563 Y 10.40 1.62 2375 4.95 0.22 8402 Y +52
color-18-4 1296 95905 Y 25.70 1.14 3370 25.20 0.51 2082 N +2
g125.17 2125 66272 Y 17.25 2.21 939 3.38 0.99 142 Y +80
g125.18 2250 70163 Y 13.80 1.25 1006 0.2 0.4 134 Y +99
par32-5 3176 10325 Y 5.00 0.71 2540 5.60 0.49 2428 Y −12

glassy-s1069116088 399 1862 Y 5.00 0.00 48 5.00 0.00 157 N 0

glassy-s325799114 450 2100 Y 8.00 0.00 2567 8.00 0.00 601 N 0

hgen2-s1205525430 500 1750 Y 0.90 0.30 306 1.00 0.00 304 N −11
hgen2-s512100147 500 1750 Y 1.00 0.00 716 1.20 0.40 304 Y −20

f1000 1000 4250 Y 0.69 0.77 2929 0.16 0.89 6417 Y +77
f2000 2000 8500 Y 3.14 2.08 2671 1.93 0.96 1912 Y +39

Table 5: Influence of the evolutionary process in GASAT

From Tables 5 and 6, it appears that the combination of the evolutionary process
and the RTS improves most of the time the results of RTS alone or of the evolutionary

240 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Benchmarks CC RTS+CC Stat. Imp.

instance var. cls. SAT false clauses false clauses T-St. %
avg. s.d. avg. s.d. (95%)

3blocks 283 9690 Y 15.70 2.83 0.90 0.30 Y +94
color-10-3 300 6475 Y 7.65 1.39 0.00 0.00 Y +100
par16-4-c 324 1292 Y 21.25 3.28 2.60 0.54 Y +88
par8-1 350 1149 Y 20.50 3.25 0.50 0.50 Y +98

difp 19 0 arr rcr 1201 6563 Y 66.65 6.84 4.96 0.2 Y +93
difp 19 99 arr rcr 1201 6563 Y 71.15 8.17 4.95 0.22 Y +93
color-18-4 1296 95905 Y 52.55 2.78 25.20 0.51 Y +52
g125.17 2125 66272 Y 22.50 3.29 3.38 0.99 Y +85
g125.18 2250 70163 Y 17.84 3.30 0.2 0.4 Y +99
par32-5 3176 10325 Y 234.15 12.78 5.60 0.49 Y +98

glassy-s1069116088 399 1862 Y 25.75 4.49 5.00 0.00 Y +100
glassy-s325799114 450 2100 Y 30.10 3.53 8.00 0.00 Y +100
hgen2-s1205525430 500 1750 Y 25.70 3.38 1.00 0.00 Y +96
hgen2-s512100147 500 1750 Y 24.95 3.43 1.20 0.40 Y +95

f1000 1000 4250 Y 37.40 5.49 0.16 0.89 Y +99
f2000 2000 8500 Y 72.10 6.82 1.93 0.96 Y +97

Table 6: Influence of the RTS in GASAT

Benchmarks CC / GASAT CCTM / GASAT
instance var. cls. Performed Flips Performed Flips

f1000 1000 4250 0.000035 0.000075
3blocks 283 9690 0.000084 0.000102
par32-5 3176 10325 0.000126 0.000215

Table 7: Cost of crossovers w.r.t. RTS

process alone.
Finally, the cost of the crossovers has been evaluated with respect to the RTS in

term of flips. Table 7 shows that the CC and the CCTM crossovers do not perform a
signifiant number of flips w.r.t. the number of flips performed by RTS. Note that CC
and CCTM execute approximatly the same number of performed flips.
From now on, GASAT is used to denote the hybridization between RTS and CC

crossover which obtains the best results.

7 Experimental Results

In this section, the GASAT algorithm is evaluated. First, GASAT is compared with five
well-known evolutionary algorithms and then with two state-of-the-art SAT solvers:
Walksat (Selman et al., 1994) and UnitWalk (Hirsch and Kojevnikov, 2001). Walksat
is historically one of the best incomplete solvers while UnitWalk is a winner of the
SAT2003 competition. Tests are realized on a cluster with Linux and Alinka (5 nodes
each of them with 2 CPU Pentium IV 2.2 Ghz and 1 GB of RAM) used sequentially.

Evolutionary Computation Volume 14, Number 2 241

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

7.1 Comparisons with Evolutionary Algorithms

Results presented in (Gottlieb et al., 2002) are used to compare GASAT with some
evolutionary algorithms and test FlipGA (Marchiori and Rossi, 1999) and GASAT on
different benchmarks.

7.1.1 Comparisons with Results Presented in Gottlieb et al.

Gottlieb et al. proposed several evolutionary algorithms for SAT (Gottlieb et al., 2002).
Results presented in that paper (Gottlieb et al., 2002) are considered and GASAT results
are added w.r.t. the same comparisons criteria. To get the same search power for all
the algorithms the parameters of (Gottlieb et al., 2002) are used: each instance is tested
between 5 to 50 times and the number of performed flips is limited to 3× 105. The data
provided in Table 8 are: the success rate (%) which is the number of successful runs
divided by the total number of runs and the average number of performed flips for
successful runs.

The solvers tested in (Gottlieb et al., 2002) are:

• SAWEA (Eiben and van der Hauw, 1997): using the Stepwise Adaptation of Weights,
it increases only weights that correspond to unsatisfied clauses and implicitly forc-
ing the evolutionary search to focus on these difficult clauses.

• RFEA2 and RFEA2+ (Gottlieb and Voss, 2000): they use a refining function based
on associating weights with each variable, high positive weights indicate that cor-
responding variables are favored to be true whereas negative weights express a
preference to false.

• FlipGA (Marchiori and Rossi, 1999): it is an evolutionary local search algorithm
which generates a child by standard genetic operators and then improves it by
means of local search (Flip Heuristic). It shares some similarities with GASAT.

• ASAP (Rossi et al., 2000): it is obtained from FlipGA by changing the Flip Heuristic
in a tabu search process.

All the used instances are generatedwith the problem generatormkcnfwritten by Allen
van Gelder (Van Gelder, 1993). They are random 3-SAT instances with a ratio clauses-
to-variables of 4.3:

• suite A, 4 groups of 3 instances with 30, 40, 50 and 100 variables,

• suite B, 3 groups of 50 instances with 50, 75 and 100 variables,

• suite C, 5 groups of 100 instances with 20, 40, 60, 80 and 100 variables.

Table 8 shows that GASAT does not have the best success rate for random
instances with few variables. But, in the next section, we will show that, for large
instances, GASAT is very competitive w.r.t. one of the best evolutionary solver
(FlipGA).

242 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Instances GASAT SAWEA RFEA2 RFEA2+ FlipGA ASAP

Suite n.b. var. % fl. % fl. % fl. % fl. % fl. % fl.

A 3 30 99 1123 100 34015 100 3535 100 2481 100 25490 100 9550
A 3 40 100 1135 93 53289 100 3231 100 3081 100 17693 100 8760
A 3 50 91 1850 85 60743 100 8506 100 7822 100 127900 100 68483
A 3 100 95 7550 72 86631 99 26501 97 34780 87 116653 100 52276

B 50 50 96 2732 - - 100 12053 100 11350 100 103800 100 61186
B 50 75 83 6703 - - 95 41478 96 39396 82 29818 87 39659
B 50 100 69 28433 - - 77 71907 81 80282 57 20675 59 43601

C 100 20 100 109 100 12634 100 365 100 365 100 1073 100 648
C 100 40 100 903 89 35988 100 3015 100 2951 100 14320 100 16644
C 100 60 97 9597 73 47131 99 18857 99 19957 100 127520 100 184419
C 100 80 66 7153 52 62859 92 50199 95 49312 73 29957 72 45942
C 100 100 74 1533 51 69657 72 68053 79 74459 62 20319 61 34548

Table 8: Comparison among evolutionary algorithms (n.b. is the number of instances
and var. is the number of variables)

7.1.2 Comparison between GASAT and FlipGA

To compare GASAT with an existing evolutionary algorithm on large instances,
FlipGA, which is one of the ones most similar to GASAT, is used. Due to the spe-
cific local search (hill-climbing) of FlipGA, it is more convenient to limit the number
of crossovers instead of the number of flips. In fact, since the number of crossovers is
not controlled in FlipGA, all the flips can be done during the local search process. Thus
FlipGA and GASAT are limited to 102 crossovers. Each instance is tested 20 times.
Tests are performed on two classes of instances: structured instances and random

instances including satisfiable and unsatisfiable problems. All these instances4 were
presented at the SAT2002 (Simon et al., 2002) or SAT2003 competitions.

• structured instances (real problems translated in SAT format):
· 3blocks (a blocks world problem),
· color-10-3, color-18-4coloring problems (Beresin et al., 1989)),
· difp 19 0 arr rcr, difp 19 99 arr rcr (integer factorization problems),
· mat25.shuffled, mat26.shuffled (n×nmatrix multiplication withm prod-
ucts (Li et al., 2002)),
· par16-4-c, par32-5, par32-5-c (problems of learning the parity function).

• random instances:
· f1000, f2000 (DIMACS instances(Mitchell et al., 1992)),
· 2 instances of 500 variables generated by hgen2with seeds 1205525430 (hgen2-a)
and 512100147 (hgen2-b),
· 2 instances generated by glassy one with 399 variables and seed 1069116088
(glassy-a) the other with 450 variables and seed 325799114 (glasst-b).

FlipGA specificity : FlipGA works only on exact-3-SAT instances. Therefore, all the
instances must be transformed by the following mechanism:

4Available at http://www.info.univ-angers.fr/pub/lardeux/SAT/benchmarks-EN.html

Evolutionary Computation Volume 14, Number 2 243

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

(x) → (x ∨ X1 ∨ X2) ∧ (x ∨ ¬X1 ∨ X2)
∧(x ∨ X1 ∨ ¬X2) ∧ (x ∨ ¬X1 ∨ ¬X2)

(x1 ∨ x2) → (x1 ∨ x2 ∨ X1) ∧ (x1 ∨ x2 ∨ ¬X1)
(x1 ∨ x2 ∨ x3) → (x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x3 ∨ x4) → (x1 ∨ x2 ∨ X1) ∧ (¬X1 ∨ x3 ∨ x4)
(x1 ∨ x2 ∨ . . . ∨ xi ∨ . . . ∨ xn−1 ∨ xn) → (x1 ∨ x2 ∨ X1) ∧ . . . ∧ (¬Xi−2 ∨ xi ∨ Xi−1)

∧ . . . ∧ (¬Xn−3 ∨ xn−1 ∨ xn)

This transformation increases the number of clauses and the number of variables
but preserves the minimal number of false clauses for unsatisfiable instances. Now the
precise parameters are provided for each algorithm.

GASAT: GASAT uses the CC crossover with a population of 102 individuals. During
the initialization of this population, a RTS of 103 performed flips is applied to each
individual. The selection process for the parents and the insertion condition for the
children are activated. The number of possible parents for the crossover is limited
to 15 different individuals. The number of allowed crossovers is 102 and a RTS of at
most 104 performed flips is applied to each child. The size of the tabu list is set to 10%
of the number of variables in the problem. The RVCF mechanism is applied only on
structured instances. The diversification mechanism is activated when a unique false
clause remains unsatisfied during 5 performed flips. False clauses are recursively set
to true 10 times. The number of times that a flipped variable must wait before it can be
flipped again is set to 10% of the number of variables.

FlipGA: Here a version provided by Claudio Rossi is used. The pool size is equal to
10 because larger populations affect the efficiency of FlipGA as it was indicated in
(Marchiori and Rossi, 1999). The generation process stops after 102 generations and
uses the convergence mechanism. FlipGA uses a uniform crossover and the mutation
is disabled. The other parameters are standard values stored in a configuration file
which is provided with the FlipGA algorithm.

Comparison criteria Four comparison criteria are used to evaluate GASAT versus
FlipGA. For each instance, the average number (avg.) of false clauses is indicated for
the best configuration obtained after 20 runs, the standard deviation (s.d.) and the
average number of performed flips and the average running time for finding the best
configuration. Success rate is not mentioned because for many instances, no solution
is found. The statistical value (Stat.) of the Student t-test is also mentioned (see section
5.2). Finally, the percentage of improvement (%) in the number of false clauses due to
the use of GASAT is computed.

Table 9 shows a clear dominance in term of quality (i.e., f.c. and fl.) of GASAT on
structured instances and on random instances with more than 400 variables whereas
the execution time is larger. The high number of flips executed by FlipGA confirm the
fact that few crossovers would be applied if the number of flips was limited.

7.2 Comparison among GASAT, Walksat and UnitWalk

Due to the incomplete and non-deterministic character of GASAT, Walksat (Selman
et al., 1994) and UnitWalk (Hirsch and Kojevnikov, 2001), each algorithm has been
run 20 times on each benchmark. Tests are performed on a subset of the SAT2003

244 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Benchmarks FlipGA GASAT Stat. Imp.

instances var. cls. f.c. fl. sec. f.c. fl. sec. T-St. %
avg. s.d. ×103 avg. s.d. ×103 (95%)

par16-4-c.3SAT 446 1414 10.15 0.85 1026 9 5.85 1.01 137 35 Y +42

mat25.shuffled.3SAT 1388 2768 10.10 2.41 674 28 7.60 0.80 113 161 Y +25

mat26.shuffled.3SAT 1704 3424 12.89 3.54 9143 44 8.00 0.00 41 749 Y +38

par32-5-c.3SAT 1711 5722 27.40 1.68 5746 77 19.60 1.69 311 129 Y +28

3blocks.3SAT 2783 12190 7.20 0.40 11631 79 5.25 1.09 197 436 Y +27

difp 19 0 arr rcr.3SAT 5157 10560 87.60 7.23 20340 109 84.25 6.13 657 661 N +4

difp 19 99 arr rcr.3SAT 5157 10560 87.95 9.75 20172 107 81.40 7.14 639 658 Y +7

par32-5.3SAT 6458 13748 50.65 3.35 62149 290 41.25 5.02 755 813 Y +19

color-10-3.3SAT 6675 12850 41.65 1.80 24664 86 46.53 3.08 18 1343 Y -12

color-18-4.3SAT 97200 191808 2064.35 363.65 2818 1150 248.50 0.50 27 33128 Y +88

glassy-a.3SAT 399 1862 7.60 1.06 411 16 5.00 0.00 153 18 Y +34

glassy-b.3SAT 450 2100 11.45 1.28 479 21 8.95 0.22 166 86 Y +22

hgen2-a.3SAT 500 1750 6.24 1.19 579 16 1.40 0.49 294 22 Y +78

hgen2-b.3SAT 500 1750 7.00 1.34 575 18 1.80 0.68 268 22 Y +74

f1000.3SAT 1000 4250 8.90 1.67 1480 47 2.30 0.90 408 45 Y +74

f2000.3SAT 2000 8500 16.90 2.07 3641 122 7.35 1.80 709 97 Y +57

Table 9: Comparison between FlipGA and GASAT

competition instances in which each family is represented by at least one instance. The
search effort of Walksat and UnitWalk is essentially defined by the number of allowed
flips. Therefore, when GASAT is compared with Walksat and UnitWalk, their number
of performed flips are limited to 101× 105. As in the SAT2003 competition, the running
time is limited to one hour for each run. We will now provide the precise parameters
for each algorithm.

Walksat: Walksat is a randomized local search algorithm. It tries to determine the
best move by randomly choosing an unsatisfied clause and selecting a variable to flip
within it. The version v415 is used. The number of tries (Maxtries) is set to 10 with at
most 101 × 104 performed flips for each try. When one solution is found, the search
stops. Walksat uses the “novelty” heuristic with a noise set to 0.5 (its default value).

UnitWalk: UnitWalk is an incomplete randomized solver. It is a combination of unit
clause elimination and local search. UnitWalk version 0.9816 is used. A function which
provides the best assignment found has been included, since the standard UnitWalk
solver only returns the last assignment found. The maximum number of allowed flips
is 101× 105 for each try.

GASAT: GASAT uses the CC crossover which works with a population of 102 indi-
viduals. During the initialization of this population, a RTS of 103 performed flips is
applied to each individual. The selection process for the parents and the insertion
condition for the child are activated. The number of possible parents for the crossover
is limited to 15 different individuals. The number of allowed crossovers is 103 and
an RTS of at most 104 performed flips is applied to each child. So, the maximum
number of performed flips allowed is 101 × 105. The size of the tabu list is set to 10%

5Walksat is available: http://www.cs.washington.edu/homes/kautz/walksat/
6UnitWalk is available: http://logic.pdmi.ras.ru/∼arist/UnitWalk/

Evolutionary Computation Volume 14, Number 2 245

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

of the number of variables in the problem. The RVCF mechanism is applied only to
structured instances. The diversification mechanism is activated when a unique false
clause remains unsatisfied for 5 iterations. False clauses are recursively set to true 10
times. The number of times that a flipped variable must wait before it can be flipped is
set again to 10% of the number of variables.

Comparison criteria All the instances of the SAT 2003 competition are very hard to
satisfy (when they are satisfiable). Therefore, it seems to be more interesting and wiser
to use the number of false clauses in the best configuration found during an execution
than success rate. The two first criteria are the average number of clauses (avg.) and
its standard deviation (s.d.) for 20 runs. The third criterion is the average number of
performed flips (fl.) to obtain this best configuration. Although the CPU time is not
given in the tables, it is in the same order of magnitude for both UnitWalk andWalksat
whereas GASAT is more or less 20 % slower. Here, statistical values of the Student
t-test are not mentioned because, for each instance, the results obtained by the best
algorithm are, most of the time, significantly different with respect to the others.

Results
For each instance, a ranking based on the performance of each solver is proposed

taking into consideration the average number of false clauses and, if this number is the
same for several solvers, the average number of performed flips is taken into account.
The first place is attributed to the best solver and the third place for the worst. Then, the
average ranking is computed for each solver. This scoring scheme is not perfect because
it does not take into account the distances among the three results but it does let us
highlight the algorithms winning the most instances as in the SAT 2003 competition.
Bold type is used in the three tables to emphasize the best average number of false

clauses except when these results are similar for the three solvers.

Handmade instances (theoretical problems coded in SAT):
The results given in Table 10 show that GASAT is competitive on the handmade

instances. It obtains an average rank of 1.75 whereas UnitWalk obtains 1.88 and
Walksat 2.38.

Random instances:
Table 11 also shows that GASAT provides similar and sometimes better results

than Walksat and UnitWalk on the random instances. GASAT obtains an average rank
of 1.54 whereas Walksat obtains 2.00 and UnitWalk 2.46. We observe that GASAT gets
results with a very small standard deviation compared with the other solvers.

Industrial instances:
From Table 12, we observe that the results of GASAT are not as interesting

as for the handmade and random instances. Indeed, the average rank for GASAT
is 2.3, the one of Walksat is 1.6, and the one of UnitWalk is 2.1. The relatively
bad behavior of GASAT is particularly visible for four large instances (k2fix gr 2p-
invar w9.shuffled-as.sat03-436, cnt10.shuffled-as.sat03-418, dp11u10.shuffled-as.sat03-
422, frg1mul.miter.shuffled-as.sat03-351). Analyzing the RCVF mechanism of GASAT,
we suspect that the high number of clauses in these instances is a possible explanation
for this ”bad” performance. Indeed, the degree function requires the examination of
a lot of clauses and is as a result a time-consuming process. However, the one hour

246 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Benchmarks GASAT Walksat UnitWalk

instances var. cls. f.c. fl. f.c. fl. f.c. fl.
avg. s.d. ×103 avg. s.d. ×103 avg. s.d. ×103

2000009987nc.-
shuffled-as.sat03-
1665

2756 10886 43.70 6.32 1063 89.70 8.75 4847 10.50 1.53 367

bqwh.33.381.shuf-
fled-as.sat03-1642

1555 9534 50.05 7.32 985 88.10 3.95 4143 38.80 3.74 533

clus-1200-4800-20-
20-001.shuffled-
as.sat03-1085

1200 4800 1.05 0.67 899 0.00 0.00 63 9.15 11.23 2338

color-18-4.-
shuffled-as.sat03-
1486

1296 95904 26.15 0.73 330 38.05 1.02 3412 52.90 1.79 36

dodecahedron.-
shuffled-as.sat03-
1429

30 80 1.00 0.00 0.007 1.00 0.00 0.008 1.00 0.00 0.009

ezfact64 1.shuf-
fled-as.sat03-1517

3073 19785 46.85 8.65 384 69.55 6.05 4999 18.00 3.11 129

genurq4Sat.shuf-
fled-as.sat03-1510

64 298 0.00 0.00 0.058 0.00 0.00 0.181 0.00 0.00 0.173

hypercube5.shuf-
fled-as.sat03-1435

80 512 1.00 0.00 0.010 1.00 0.00 0.012 1.00 0.00 0.015

hwb-n22-01-
S1917708524.shuf-
fled-as.sat03-1612

144 688 1.00 0.00 0.638 1.00 0.00 0.484 1.00 0.00 0.219

hwb-n32-01-
S1491788039.shuf-
fled-as.sat03-1637

226 1078 1.00 0.00 3.388 1.00 0.00 1.317 1.00 0.00 0.552

marg5x5.shuffled-
as.sat03-1455

105 512 1.00 0.00 0.040 1.00 0.00 0.027 1.00 0.00 0.024

par32-5.shuffled-
as.sat03-1540

3176 10325 5.25 0.89 2512 12.85 1.39 4288 7.40 1.24 216

pyhala-braun-
unsat-35-4-03.shuf-
fled-as.sat03-1543

7383 24320 80.15 53.88 2008 196.45 5.39 5229 33.05 2.40 324

SGI 30 80 18 90 3-
log.shuffled-
as.sat03-194

90 27978 1.05 0.22 51399 1.45 0.50 2073 3.70 0.46 449

SGI 30 60 28 50 8-
log.shuffled-
as.sat03-129

140 65504 4.55 0.50 492 5.05 0.22 3521 12.00 1.10 421

x1 36.shuffled-
as.sat03-1589

106 282 1.00 0.00 0.056 1.00 0.00 0.067 1.00 0.00 0.035

Table 10: SAT2003 competition handmade benchmarks: comparison among GASAT,
Walksat and UnitWalk. The running time is limited to 1 hour and the number of autho-
rized performed flips is 101× 105. GASAT obtains the best average rank.

cut-off limit used in the stop condition does not allow GASAT to reach the search
limit fixed by the number of flips (101 × 105). In order to check this hypothesis, we
re-ran the three algorithms on the four large instances with the same condition except
the ”one hour cut-off limit”. Therefore, these algorithms stop only when the limit of
101× 105 performed flips is reached. Results of this additional experiment are given in
Table 13. From this table, we observe that the results of GASAT are greatly improved

Evolutionary Computation Volume 14, Number 2 247

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

Benchmarks GASAT Walksat UnitWalk

instances var. cls. f.c. fl. f.c. fl. f.c. fl.
avg. s.d. ×103 avg. s.d. ×103 avg. s.d. ×103

gencnf-k4-r9.88-
v200-c1976-03-S153-
9378038.shuffled-
as.sat03-1745

200 1976 1.00 0.00 75 1.00 0.00 43 3.85 1.56 4964

gencnf-k7-r88.7-v85-
c7539-01-S962370-
643.shuffled-as.sat03-
1783

85 7539 0.30 0.46 20312 0.50 0.50 2152 7.20 2.25 3740

gencnf-k8-r180-v61-
c10980-02-S893013-
537.shuffled-as.sat03-
1794

61 10980 1.00 0.00 16 1.00 0.00 65 5.15 0.85 1667

gencnf-k9-r357-v46-
c16422-03-S1437098-
472.shuffled-as.sat03-
1810

46 16422 0.00 0.00 29 0.00 0.00 108 0.85 1.42 766

gencnf-k10-r720-v38-
c27360-01-S1687864-
750.shuffled-as.sat03-
1718

38 27360 1.00 0.00 4 1.00 0.00 8 2.55 0.86 258

glassyb-v399-s732-
524269.shuffled-
as.sat03-1680

399 1862 5.00 0.00 360 5.55 0.50 2364 8.00 1.18 4174

hardnm-L19-02-
S125896754.shuffled-
as.sat03-916

361 1444 12.25 0.83 971 16.55 1.16 4064 4.15 0.65 3215

hardnm-L32-02-
S964513274.shuffled-
as.sat03-941

1024 4096 53.85 1.28 1078 78.60 2.91 4079 20.20 1.96 3481

hgen6-4-24-n390-02-
S1171124847.shuf-
fled-as.sat03-836

390 1653 1.30 0.95 48317 1.35 0.91 1852 4.65 2.54 5231

hgen8-n120-03-S196-
2183220.shuffled-
as.sat03-877

120 193 1.00 0.00 0.053 1.00 0.00 0.060 1.00 0.00 0.057

hidden-k3-s0-r5-
n700-03-S1609-
878926.shuffled-
as.sat03-972

700 3500 17.65 0.48 451 27.65 0.96 3340 46.45 4.89 4993

hidden-k3-s1-r6-
n500-03-S408319111.-
shuffled-as.sat03-
1022

500 3000 0.00 0.00 2.791 0.00 0.00 0.884 0.00 0.00 2.176

hidden-k3-s2-r4-
n500-01-S1373-
238829.shuffled-
as.sat03-1035

500 2000 0.00 0.00 92 0.00 0.00 3 0.00 0.00 23

Table 11: SAT2003 competition random benchmarks: comparison among GASAT,
Walksat and UnitWalk. The running time is limited to 1 hour and the number of autho-
rized performed flips is 101× 105. GASAT obtains the best average rank.

248 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Benchmarks GASAT Walksat UnitWalk

instances var. cls. f.c. fl. f.c. fl. f.c. fl.
avg. s.d. ×103 avg. s.d. ×103 avg. s.d. ×103

ferry11u.shuffled-
as.sat03-381

3480 25499 1.20 0.40 54731 0.80 0.40 1327 2.70 0.90 35

homer19.shuffled-
as.sat03-430

330 2340 8.00 0.00 0.135 8.00 0.00 0.167 8.00 0.00 0.171

k2fix gr 2p-
invar w9.shuf-
fled-as.sat03-436

5028 307674 174.55 10.50 553 88.25 8.99 4905 783.75 445.78 9090

am 4 4.shuffled-
as.sat03-360

433 1458 1.15 0.65 295 1.00 0.00 5 1.00 0.00 0.458

cnf-r4-b1-k1.1-
comp.shuffled-
as.sat03-416

2424 14812 20.80 2.98 135 20.95 1.43 4976 19.20 1.57 68

cnt10.shuffled-
as.sat03-418

20470 68561 163.65 22.39 966 32.50 5.79 5624 577.50 40.37 78

dp11u10.shuffled-
as.sat03-422

9197 25271 79.67 9.52 873 1.05 0.22 3158 14.15 2.01 113

frg1mul.miter.-
shuffled-as.sat03-
351

3230 20575 5.89 0.94 164 1.00 0.00 6 1.00 0.00 2

gripper11u.-
shuffled-as.sat03-
391

3084 26019 8.15 0.36 1710 2.95 0.38 2528 4.20 0.87 29

Table 12: SAT2003 competition industrial benchmarks: comparison among GASAT,
Walksat and UnitWalk. The running time is limited to 1 hour and the number of autho-
rized performed flips is 101× 105. Walksat obtains the best average rank.

Benchmarks GASAT Walksat UnitWalk

instances var. cls. f.c. fl. f.c. fl. f.c. fl.
avg. s.d. ×103 avg. s.d. ×103 avg. s.d. ×103

k2fix gr 2p-
invar w9.shuf-
fled-as.sat03-436

5028 307674 78.40 7.40 2586 88.25 8.99 4905 783.75 445.78 9090

cnt10.shuffled-
as.sat03-418

20470 68561 59.75 7.63 1028 32.50 5.79 5624 577.50 40.37 78

dp11u10.shuffled-
as.sat03-422

9197 25271 79.05 9.93 910 1.05 0.22 3158 14.15 2.01 113

frg1mul.miter.-
shuffled-as.sat03-
351

3230 20575 1.00 0.00 312 1.00 0.00 6 1.00 0.00 2

Table 13: Large SAT2003 competition industrial benchmarks where the GASAT search
power is restricted by the time. The running time is NOT LIMITED and the number of
authorized performed flips is 101× 105.

on three of the four instances. The results of Walksat and UnitWalk remain the same
since they had reached their maximum number of flips before the one hour cut-off limit.

All the instances:
The results presented in Tables 10, 11 and 12 show that GASAT behaves reliably

and that it provides competitive results on average. For the three tables, its overall rank

Evolutionary Computation Volume 14, Number 2 249

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

is 1.87 whereas Walksat obtains 1.98 and UnitWalk 2.15. A lot of studied instances are
not solvable and therefore GASAT appears very efficient for the MAX-SAT problem.

7.3 Remarks

Tables 8 and 11 show that evolutionary algorithms give very competitive results on
random instances with few variables in comparison with local search algorithms.
Evolutionary algorithms explore more quickly small search spaces with the crossover
process than the local search algorithms with their step by step process. But usually,
incomplete solvers are used on large instances since, due to the size of the problem,
complete solvers become impractical. GASAT is not compared with complete solvers
since some of the used instances are too large and seem to be UNSAT. For these
instances, we are more interested in solving the MAX-SAT problem in order to provide
fair comparisons with other incomplete solvers.

Computation time:
For all the tests, we have noticed that GASAT needs more time to execute the same

number of flips than the other solvers. This may be due to the RCVF mechanism which
needs to compute the weight of each possible variable. To compare it with state-of-the-
art solvers, we have submitted it to the SAT 2004 competition where the execution time
is limited but not the number of moves. GASAT ranks fourth 7 (for random instances)
w.r.t. more than 50 SAT solvers, outperforming even UnitWalk and Walksat. Although
GASAT makes less flips than other solvers within the same time, it obtains very good
results in terms of quality.

8 Conclusion

In this paper, we presented the GASAT algorithm, a hybrid genetic algorithm for the
SAT (and MAX-SAT) problem. GASAT includes a crossover operator which relies on
the structure of the clauses and a Tabu Search with specific mechanisms. These two
processes are complementary and they allow GASAT to explore the search space and to
exploit particular interesting areas in a more effective manner. Moreover, some mech-
anisms have been added in order to insure a sufficient diversity in the involved popu-
lations. GASAT has been evaluated on both random and structured instances and has
been compared with evolutionary algorithms like FlipGA and with two state-of-the-
art algorithms: Walksat and UnitWalk. Experimental results show that GASAT is very
competitive compared with existing evolutionary algorithms, Walksat and UnitWalk.
GASAT also provides very interesting results and appears very effective for the MAX-
SAT problem. These performances were confirmed during the SAT 2004 competition.
Our future work will consist of developing a better understanding of GASAT be-

havior with respect to the different families of benchmarks. This will enable us to im-
prove our CC crossover with a dynamic approach and to develop more efficient in-
teractivity between crossovers and RTS. We are also working on other hybridizations
including complete resolution techniques.

Acknowledgments

The work presented in this paper is partially supported by the CPER COM program.
We would like to thank the referees of the paper for their useful comments and Claudio
Rossi who has provided us with the FlipGA source code.

7The first three algorithms were adaptnovelty, saps and walksatrnp and all based on local search.

250 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

References

Benhamou, B. and Sais, L. (1992). Theoretical study of symmetries in propositional
calculus and applications. In CADE’92, pages 281–294.

Beresin, M., Levine, E., andWinn, J. (1989). A chessboard coloring problem. The College
Mathematics Journal, 20(2):106–114.

Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (1999). Symbolic model
checking using SAT procedures instead of BDDs. In Proc. of the Design Automation
Conference (DAC’99), pages 317–320.

Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., and Price, K. V.,
editors (1999).New Ideas in Optimization (Part 4: Memetic Algorithms). McGraw-Hill.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397.

De Jong, K. A. and Spears, W. M. (1989). Using genetic algorithm to solve NP-complete
problems. In Proc. of the 3rd International Conference on Genetic Algorithms (ICGA’89),
pages 124–132, Virginia,USA.

Dubois, O., André, P., Boufkhad, Y., and Carlier, J. (1996). SAT versus UNSAT. In Second
DIMACS Implementation Challenge: Cliques, Coloring and Satisfiability, volume 26 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 415–
436.

Dubois, O. and Dequen, G. (2001). A backbone-search heuristic for efficient solving of
hard 3-SAT formulae. In Nebel, B., editor, Proc. of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI’01), pages 248–253, San Francisco, CA.

Eiben, A. E. and van der Hauw, J. K. (1997). Solving 3-SAT by GAs adapting constraint
weights. In Proc. of The IEEE Conference on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, pages 81–86.

Fleurent, C. and Ferland, J. A. (1996). Object-oriented implementation of heuristic
search methods for graph coloring, maximum clique, and satisfiability. In Cliques,
Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 619–
652.

Galinier, P. and Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379–397.

Garey,M. R. and Johnson, D. S. (1979). Computers and Intractability , A Guide to the Theory
of NP-Completeness. W.H. Freeman & Company, San Francisco.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

Gottlieb, J., Marchiori, E., and Rossi, C. (2002). Evolutionary algorithms for the satisfi-
ability problem. Evolutionary Computation, 10(1):35–50.

Gottlieb, J. and Voss, N. (2000). Adaptive fitness functions for the satisfiability problem.
In Hans-Paul Schwefel, M., editor, Parallel Problem Solving from Nature - PPSN VI
6th International Conference, Paris, France. Springer Verlag. LNCS 1917.

Evolutionary Computation Volume 14, Number 2 251

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

F. Lardeux, F. Saubion and J.-K. Hao

Gu, J. and Puri, R. (1995). Asynchronous circuit synthesis with boolean satisfiability.
IEEE Transactions on Computer-Aided Design, 14(8):961–973.

Hansen, P. and Jaumard, B. (1990). Algorithms for the maximum satisfiability problem.
Computing, 44(4):279–303.

Hao, J.-K. and Dorne, R. (1994). A new population-basedmethod for satisfiability prob-
lems. In Proc. of the 11th European Conf. on Artificial Intelligence, pages 135–139,
Amsterdam.

Hao, J.-K., Lardeux, F., and Saubion, F. (2003). Evolutionary computing for the satisfi-
ability problem. In Applications of Evolutionary Computing, volume 2611 of LNCS,
pages 258–267, University of Essex, England, UK.

Hart, W. E., Krasnogor, N., and Smith, J. E., editors (2004). Recent Advances in Memetic
Algorithms and Related Search Technologies. Springer-Verlag.

Hirsch, E. A. and Kojevnikov, A. (2001). UnitWalk: A new SAT solver that uses local
search guided by unit clause elimination. PDMI preprint 9/2001, Steklov Institute
of Mathematics at St. Petersburg.

Jaumard, B., Stan, M., and Desrosiers, J. (1996). Tabu search and a quadratic relaxation
for the satisfiability problem. In Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 457–478.

Kautz, H. A. and Selman, B. (2001). Workshop on theory and applications of satisfia-
bility testing (SAT2001). In Electronic Notes in Discrete Mathematics, volume 9.

Li, C. M. (2000). Integrating equivalency reasoning into davis-putnam procedure. In
Proc. of the AAAI’00, pages 291–296.

Li, C. M. and Anbulagan, A. (1997). Heuristics based on unit propagation for satisfi-
ability problems. In Proc. of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI’97), pages 366–371.

Li, C. M., Jurkowiak, B., and Purdom, P. W. (2002). Integrating symmetry breaking into
a dll procedure. In Fifth International Symposium on the Theory and Applications of
Satisfiability Testing (SAT2002), pages 149–155.

Marchiori, E. and Rossi, C. (1999). A flipping genetic algorithm for hard 3-SAT prob-
lems. In Proc. of the Genetic and Evolutionary Computation Conference, volume 1,
pages 393–400.

Mazure, B., Sais, L., and Grégoire, E. (1997). Tabu search for SAT. In Proc. of the AAAI-
97/IAAI-97, pages 281–285, Providence, Rhode Island.

Merz, P. and Freisleben, B. (1997). Genetic local search for the TSP:New results. In IEEE-
CEP: Proc. of The IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computational Intelligence, pages 159–164.

Mitchell, D. G., Selman, B., and Levesque, H. J. (1992). Hard and easy distributions for
SAT problems. In Proc. of AAAI’92, pages 459–465.

252 Evolutionary Computation Volume 14, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

A Genetic Local Search Algorithm for SAT

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. (1999). Deter-
mining computational complexity from characteristic ‘phase transitions’. Nature,
400(8):133–137.

Rossi, C., Marchiori, E., and Kok, J. N. (2000). An adaptive evolutionary algorithm
for the satisfiability problem. In Proc. of the ACM Symposium on Applied Computing
(SAC ’00), pages 463–470. ACM press.

Selman, B., Kautz, H. A., and Cohen, B. (1994). Noise strategies for improving local
search. In Proc. of the AAAI’94, Vol. 1, pages 337–343.

Selman, B., Levesque, H. J., and Mitchell, D. G. (1992). A new method for solving hard
satisfiability problems. In Proc. of the AAAI’92, pages 440–446, San Jose, CA.

Simon, L., Berre, D. L., and Hirsch, E. A. (2002). The SAT2002 competition. Technical
report, Fifth International Symposium on the Theory and Applications of Satisfia-
bility Testing.

Spears, W. M. (1996). Simulated annealing for hard satisfiability problems. In Second
DIMACS Implementation Challenge: Cliques, Coloring and Satisfiability, volume 26 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 533–
558.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proc. of the 3rd Inter-
national Conference on Genetic Algorithms (ICGA’89), pages 2–9, Virginia, USA.

Van Gelder, A. (1993). Problem generator mkcnf.c. DIMACS, Challenge archive.

Zhang, H. (1997). SATO: An efficient propositional prover. In Proc. of the 14th Inter-
national Conference on Automated Deduction, volume 1249 of LNAI, pages 272–275,
Berlin.

Zhang, H. (2002). Generating college conference basketball schedules by a SAT solver.
In Proc. of 5th International Symposium on the Theory and Applications of Satisfiability
Testing, pages 281–291.

Evolutionary Computation Volume 14, Number 2 253

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/14/2/223/1493667/evco.2006.14.2.223.pdf by guest on 14 O
ctober 2021

