
HAL Id: hal-03352573
https://univ-angers.hal.science/hal-03352573v1

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Declarative Set Constraint Models to “Good” SAT
Instances

Frédéric Lardeux, Eric Monfroy

To cite this version:
Frédéric Lardeux, Eric Monfroy. From Declarative Set Constraint Models to “Good” SAT Instances.
Artificial Intelligence and Symbolic Computation, 2014, Séville, Spain. pp.76-87, �10.1007/978-3-319-
13770-4_8�. �hal-03352573�

https://univ-angers.hal.science/hal-03352573v1
https://hal.archives-ouvertes.fr

From Declarative Set Constraint Models to
”Good” SAT Instances

Frédéric Lardeux1 and Eric Monfroy2

1 Université d’Angers, France. Frederic.Lardeux@univ-angers.fr
2 LINA, UMR CNRS 6241, TASC INRIA, Université de Nantes, France

Eric.Monfroy@univ-nantes.fr

Abstract. On the one hand, Constraint Satisfaction Problems allow
one to declaratively model problems. On the other hand, propositional
satisfiability problem (SAT) solvers can handle huge SAT instances. We
thus present a technique to declaratively model set constraint problems,
to reduce them, and to encode them into ”good” SAT instances. We
illustrate our technique on the well-known nqueens problem. Our tech-
nique is simpler, more expressive, and less error-prone than direct hand
modeling. The SAT instances that we automatically generate are rather
small w.r.t. hand-written instances.

1 Introduction

Most of combinatorial problems can be formulated as Constraint Satisfaction
Problems (CSP) [?]. A CSP is defined by some variables and constraints between
these variables. Solving a CSP consists in finding assignments of the variables
that satisfy the constraints. One of the main strength of CSP is declarativity
and expressiveness: variables can be of various types (finite domains, floating
point numbers, sets, . . .) and constraints as well (linear arithmetic constraints,
set constraints, non linear constraints, Boolean constraints, . . .). Moreover, the
so-called global constraints not only improve solving efficiency but also expres-
siveness: they propose new constructs and relations such as alldifferent (to en-
force that all the variables of a list have different values), cardinality (to link a
set to its size), . . .

On the other hand, the propositional satisfiability problem (SAT) [?] is re-
stricted (in terms of expressiveness) to Boolean variables and propositional for-
mulae. Coding set constraints directly into SAT is a tedious tasks (see for ex-
ample [?] or [?]). Moreover, when one wants to optimize its model in terms of
variables and clauses this quickly leads to very complicated and unreadable mod-
els in which errors can easily appear. However, SAT solvers can now handle huge
SAT instances (millions of variables). It is thus attractive to 1) encode CSPs into
SAT (e.g., [?,?]) in order to benefit from the declarativity and expressiveness of
CSP and the power of SAT, and 2) introduce more declarativity into SAT, e.g.,
with global constraints such as alldifferent [?], or cardinality [?].

Various systems of set constraints (either specialized systems [?], libraries
for constraint programming systems such as [?], or the set constraint library of

CHOCO [?]) have been designed and it has been shown that numerous problems
can easily be modeled with set constraints.

In this paper we are concerned with the transformation of set constraints into
SAT instances: we often refer to this transformation as ”encoding”. In [?], we
presented encoding rules that are directly applied on the CSP set constraints.
However, we have noticed that some supports of sets (i.e., elements that are
possibly in this set) could be reduced (some elements can be removed from
the supports without loosing any solution). Thus, the generated SAT instances
include non necessary information.

It is inconceivable to force the user to write reduced CSP models: first, be-
cause it is a tedious and error-prone task; and second, it may be impossible to see
all the relations between the sets (more especially when working on sets which
supports are not yet declared). Thus, our approach consists in providing:

– a simple but complete, declarative, and expressive set language for easily
modeling problems with constraints such as intersection, union, cardinal of
sets, . . .

– a set of reduction rules (⇒red) to reduce CSP models. In fact, these rules
define constraint propagation [?] for sets and elements and make the model
Generalized Arc Consistent [?].

– a set of encoding rules (⇔enc) that convert CSP constraints into SAT in-
stances.

In this paper, we illustrate our approach with the famous nqueen problem. More-
over, we have tried our technique on various problems (e.g., Social Golfer Prob-
lem [?], Sudoku, Car-sequencing) and the SAT instances which are automatically
generated have a complexity similar to the complexity of improved hand-written
SAT formulations, and their solving with a SAT solver (in our case Minisat [?])
is efficient compared to other SAT approaches.

Compared to [?], the ⇒red reduction rules enable us:

– to simplify the encoding rules (⇔enc): indeed, some transformation cases
become unuseful; the encoding rules become even more simple and readable;

– to obtain even smaller SAT instances, in terms of clauses and variables; these
problems are solved faster;

– to tackle and solve larger problems that we were unable to encode using only
our previous encoding rules (for size reasons).

We can compare our work with SAT encoding techniques such as [?] and [?].
These works make a relation between CSP solving and SAT solving in terms of
properties such as consistencies for finite domain variables and constraints. In
this article, we are concerned with a different type of constraints (i.e., set con-
straints) and we try to obtain small SAT instances that are also well-suited for
standard SAT solvers. Our approach is similar to [?] in which alldifferent global
constraints and overlapping alldifferent constraints are handled declaratively be-
fore being encoded automatically in SAT using rewrite rules. Note also that we

use the work of [?] about the cardinality global constraint in order to perform
the encoding of set cardinality. Our goal is not to compete with standard set
solvers, but to introduce set constraints into SAT.

In the next section (Section ??) we present the CSP set constraint language.
In Section ?? we show the rules to reduce models. Section ?? presents our new
rule-based system for encoding set constraints into SAT. Section ?? illustrates
our approach on the nqueen problem. We finally conclude in Section ??.

2 Set Constraint

2.1 Universe and Supports

In order to encode set constraints into SAT, we consider 3 notions: universe,
support, and domain. Informally, the universe is the set of all elements that are
considered in a model of a given problem; the support F of a set F appearing
in this model is a set of possible elements of F (i.e., F is a superset of F); and
the domain of an element variable is a set of possible values for this element.

Definition 1. Let P be a problem, and M be a model of P in L, i.e., a descrip-
tion of P from the natural language to the language of constraints L.

– The universe U of M is a finite set of constants.
– The support F of the set F of the model M is a subset of the universe U . F

represents the constants of U that can possibly be elements of F :

F ⊆ F ⊆ U and F ∈ P(F)

where P(F) = {A|A ⊆ F} is the power set of F . We say that F is over F .
– The domain Dx of a variable element x is a subset of the universe U ; Dx

represents the elements of U that are possible values (i.e., constants) for x.

Note that each element of U \F cannot be an element of F . In the following,
we denote sets by upper-case letters (e.g., F) and their supports by calligraphic
upper-case letters (e.g., F). Variable elements are represented by lower-case let-
ters (e;g., x) and their domain by D indexed by the variable name (e.g., Dx).
When there is no confusion, we shorten ”the set F of the model M” to ”F”.

Consider a model M with a universe U , and a set F over F . For each element
x of F , we consider a Boolean variable xF which is true if x ∈ F and false
otherwise. We call the set of such variables the support variables for F in F . In
the following, we write xF for xF = true and ¬xF for xF = false.

Example 1. Let U = {x, y, z, t} be the universe of a model M , and F = {x, y, t}
be the support of a set F of M . Then, we have 3 Boolean variables xF , yF , and
tF corresponding respectively to x, y, and t to represent F . By definition, z 6∈ F
and there is no zF variable; and x, y, t can possibly be in F . Consider now that
F = {x, y}. Then, we have xF , yF , and ¬tF .

2.2 Syntax

In order to declare objects, we use the following declarations:

– Universe(U) is used to declare the universe as the set U ;
– Set(F,F): declares a set F together with its support F .;
– Element(x,Dx): creates a variable x of type element with its domain Dx.

Consider F , G, H, and Fi (i ranging from 1 to n) being sets, and x being an
element. We consider the following usual (CSP) set constraints:

element (dis)equality x = y (x 6= y)
(non)membership x ∈ F (x 6∈ F)
set (dis)equality F = G (F 6= G)
intersection H = F ∩G
union H = F ∪G
inclusion F ⊆ G
difference H = F \G
multi-intersection F =

⋂n
i=1 Fi

multi-union F =
⋃n

i=1 Fi

cardinality{=, <,>} |F | {=, <,>} k

More constraints could be defined, but they can be deduced from these basic
constraints. A model for a problem is given by:

1. a universe;
2. some sets together with their supports;
3. some variable elements with their domains;
4. some constraints between sets and elements.

3 Reducing supports

Support sizes are a crucial parameter for the sizes of generated SAT instances.
Moreover, it is quite complicated (and sometimes impossible) to write a model
with ”reduced” supports. For example, consider 3 sets: Set(G, {1, 2, . . . , 10000}),
Set(F, {9999, . . . , 20000}), and Set(H, {5000, . . . , 25000}). Latter in the model,
let consider that the constraint H = F ∪ G appear. Then, the support of H
can be reduced to {5000, . . . , 20000}, and the support of G can be reduced to
{5000, . . . , 10000}.

We thus consider some reduction rules⇒red to reduce domains and supports
w.r.t. constraints. These rules remove elements of the supports and domains that
cannot participate in any solution to the problem. We first start with failure case,
i.e., cases that do not lead to any solution.

Failures: Rule ?? causes a fail when the domain of a variable is empty. Rule ??
leads to a fail when the imposed cardinality is higher than the size of the support

of the set. Rule ?? is similar for inequality about cardinal.

Dx = ∅ ⇒red fail (1)

|F | = k ⇒red fail if |F| < k (2)

|F | > k ⇒red fail if |F| ≤ k (3)

Domain reduction: Rule ?? reduces the domains of two equal variables. When
2 variables are disequal, Rule ?? reduces the domain of the second variable when
the domain of the first one is restricted to a singleton ({vx}). The domain of a
variable x is reduced by Rule ?? w.r.t. the support of a set F in which x must
appear (constraint x ∈ F):

x = y ⇒red

{
Dx ← Dx ∩Dy,
Dy ← Dx ∩Dy

(4)

x 6= y,Dx = {vx} ⇒red Dy ← Dy \ {vx} (5)

x ∈ F ⇒red Dx ← Dx ∩ F (6)

Support reduction: When 2 sets must be equal, Rule ?? reduces their supports
to their intersection. Intersection constraint enables to reduce the domain of the
set intersection (Rule ??) whereas union constraint may reduce the supports of
the 3 sets appearing in the constraint (Rule ??). Inclusion constraint only reduces
the support of the included set (Rule ??). Difference constraint may reduce 2
supports of the 3 sets (Rule ??). Rules ?? and ?? are similar to Rules ?? and ??
for multi-union and multi-intersection constraints.

F = G ⇒red F ← F ∩ G, G ← G ∩ F (7)

H = F ∩G ⇒red H ← H∩F ∩ G (8)

H = F ∪G ⇒red H ← H∩ (F ∪ G), F ← F ∩H, G ← G ∩H (9)

F ⊆ G ⇒red F ← F ∩ G (10)

H = F \G ⇒red H ← H∩F , F ← F ∩H (11)

H =

n⋃
i=1

Fi ⇒red H ← H∩ (

n⋃
i=1

Fi), ∀i ∈ [1..n] Fi ← Fi ∩H, (12)

H =

n⋂
i=1

Fi ⇒red H ← H∩ (

n⋂
i=1

Fi) (13)

Rule application: ⇒red rules can be seen as filtering (or reduction) functions
in constraint programming. They can thus be applied by a fixed-point algorithm
such as chaotic iterations [?,?,?]: since the rules have the required properties
(monotonic decreasing and idempotent), termination is ensured.

In fact, these rules define constraint propagation for sets and elements. More-
over, they enforce GAC (Generalised Arc Consistency [?]), i.e., the supports and
domains cannot be reduced anymore using a single constraint without loosing

solution local to this constraint. Since this is not the focus of this paper, we don’t
give here the proof, but just the basis: with respect to GAC, variable domains
(in terms of constraint programming) are the domains of the variable elements,
and the power-set of the supports for sets.

4 The ⇔enc Encoding Rules

We can now define the encoding of our CSP set constraints into SAT. In the
following, we consider three sets F ,G, andH respectively defined on the supports
F , G and H of the universe U , and for each x ∈ U the various Boolean variables
xF , xG , and xH as defined before. |G| denotes the cardinality of the set G.

Contrary to [?], we consider here that supports and domains are reduced
using ⇒red rules. Allowing the supports to be non reduced eases the modeling
process: indeed, one does not have to compute the reduced support and can use
a superset of it or the universe; then, supports are reduced automatically by the
⇒red rules and the ⇔enc encoding rules can generate smaller SAT instances.

The clauses that are generated by these rules are of the form ∀x ∈ F , φ(xF)
which denotes the |F| formulae φ(xF) built for each element x of the support
F of F (x refers to the element of the universe/support, and xF to the variable
representing x for the set F).

Element(x,Dx) and set(F,F) enable to create the required SAT variables:
as many variables as the support for a set, and as many as the domain for a
variable element. In the following, we present rules for set constraint encodings
with: first, the set constraint, then its encoding in SAT (i.e., some clauses linking
the SAT variables), and finally, the number of clauses generated.

Element variable This encoding rule enforces each element variable to have
one and only one value from its domain:

Element(v,Dv)⇔enc ∀x ∈ Dv,
∨

x∈Dv
(∧y∈Dv,x 6=y(¬yv) ∧ xv) |Dv|2 bin. clauses

Element variable (dis)equality let us recall that after application of ⇒red

rules on v = w, v and w have the same domain. This is not the case for v 6= w.

v = w ⇔enc ∀x ∈ Dv, xv ↔ xw 2.|Dv| binary clauses

v 6= w ⇔enc

{
∀x ∈ Dv, xv → ¬xw 2.|Dv| binary clauses
∀x ∈ Dw, xw → ¬xv 2.|Dw| binary clauses

Membership Constraint This constraint enforces the element v to be in the
set F : if x ∈ F (x is in the support of F), then the corresponding support
variable must be true (i.e., xF). The constraint x 6∈ F can be similarly defined.

v ∈ F ⇔enc ∀x ∈ Dv, xv → xF |Dv| binary clauses

v 6∈ F ⇔enc ∀x ∈ Dv ∩ F , xv → ¬xF ∧ xF → ¬xv 2.|Dv| binary clauses

Set (Dis)Equality Constraint After reduction, 2 equal sets G and F have
the same support. Thus, the encoding for the equality constraint is:

F = G ⇔enc ∀x ∈ F , xF ↔ xG 2.|F| binary clauses

The constraint F 6= G is satisfied when at least one variable of the intersection
of the 2 sets is different in F and G, or when a variable appearing in the support
of F and not in the one of G is true (and vice-versa):

F 6= G⇔enc (
∨

x∈F∩G xF ↔ ¬xG) ∨ (
∨

x∈F\G xF) ∨ (
∨

x∈G\F xG)

2.|F ∪G| clauses of size 2 + |F ∩ G| − |F ∪G|

Intersection Constraint Let H be the intersection of two sets G and F : the
reduced support of H is included in the intersection of the supports of G and F .

– for the elements of F ∩ G ∩H: a support variable of H is true if and only if
this variable is in F and G;

– for the elements of (F ∩ G) \ H: since such an element cannot be in H, it
must not be in F or in G.

F ∩G = H ⇔enc∀x ∈ F ∩ G ∩H, xF ∧ xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ (F ∩ G) \ H, ¬xF ∨ ¬xG |(F ∩ G) \ H| binary clauses

Union Constraint More cases must be considered for this constraints:

– for the elements of F ∩ G ∩H: a support variable of H is true if and only if
this variable is in F or in G; this is the trivial case;

– for the elements of (F ∩H) \ G: this case is a reduction of the previous one
but it is however equivalent; since such an element x is not in the support
of G then xG does not exist, and x is in H if and only if it is in F ; note that
the generated clauses are exactly the same removing xG ;

– for the elements of (G ∩ H) \ F : this is the symmetrical case for G;

F ∪G = H ⇔enc
∀x ∈ F ∩ G ∩H, xF ∨ xG ↔ xH

|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ (F ∩H) \ G, xF ↔ xH 2.|(F ∩H) \ G| binary clauses
∀x ∈ (G ∩ H) \ F , xG ↔ xH 2.|(G ∩ H) \ F| binary clauses

Inclusion Constraint Elements of F that are in F must also be in G:

F ⊆ G⇔enc ∀x ∈ F , xF → xG |F| binary clauses

Difference Constraint After reduction, F and H have the same support:

– for the elements of F ∩G ∩H: such elements are in H if and only if they are
in F and not in G;

– for the elements of F \ G: they are in H if and only if they are in F .

H = F \G ⇔enc∀x ∈ F ∩ G ∩H, xF ∧ ¬xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ F \ G, xF ↔ xH 2.|F \ G| binary clauses

Multi-union Constraint The multi-union constraint H =
⋃n

i=1 Fi is equiva-
lent to the n− 1 ternary constraints: F1,2 = F1 ∩ F2, F1,2,3 = F1,2 ∩ F3, . . . It is
not only a short-hand, but it also significantly reduces the number of variables
(only variables for H are required, not for each set F1,2,...) and generated clauses.
Indeed, elements of

⋂n
i=1 Fi are considered once in the multi-union constraint

whereas they are considered n−1 times in the corresponding n−1 binary union
constraints. the set {1, . . . , n}.

H =
⋃n

i=1 Fi ⇔enc

{
∀i ∈ N, ∀x ∈ Fi, xFi → xH

∑n
i=1 |Fi| binary clauses

∀x ∈ H, xH →
∨

i∈N,x∈Fi
xFi |H| m-ary clauses (m ≤ n)

Multi-intersection Constraint Similarly, we define the multi-intersection
constraints. As for the multi-union, the advantage is the gain of clauses and
variables in the generated SAT instance:

H =
⋂

i∈N Fi ⇔enc{
∀x ∈ H,

∧n
i=1 xFi

↔ xH 2.|H| (n+ 1)-ary clauses
∀x ∈ (

⋂n
i=1 Fi) \ H,

∨
i∈N (¬xFi

) |
⋂

i∈N Fi \ H| n-ary clauses

Cardinality Constraint This constraint has been studied for the encoding of
global constraints (see e.g., [?]). The very intuitive encoding is quite simple but
the generated clauses are too large. A more efficient encoding is based on the
unary representation of integers (an integer k ∈ [0..n] is represented by 1 k times
followed by 0 n− k times). We re-use this encoding [?] that we have chosen for
the unit clauses it generates, and thus, the simplifications that can be achieved
in the SAT instances. Consider the set G over the support G of size n, then the

set constraint |G| = k generates: n+
∑n

i=1 2uni (bu
n
i

2 c+ 1)(du
n
i

2 e+ 1)− (
un
i

2 + 1)
clauses and

∑n
i=1 u

n
i variables. with unn = 1,un1 = n and uni = un2i−1+2un2i+u

n
2i+1.

The cardinality le constraint can similarly be generated.

5 Application to the nqueen problem

Practically, the⇒red rules have been implemented as Constraint Handling Rules
(CHR [?]), and the ⇔enc rules with C++. To illustrate our approach, we have

chosen the nqueen problem for various reasons: it is not well suited for SAT
solvers; it scales well; it can be modeled in various ways with sets. We first give
an intuitive model and then a more efficient model of the nqueen problem.

nqB: Model with the Board as universe. The variables are the following:

– Universe: U = {x1,1, . . . , xn,n}, i.e., the set of cells of a n× n board
– Rows: ∀i ∈ [1..n], set(Ri, {xi,1, . . . , xi,n})
– Columns: ∀i ∈ [1..n], set(Ci, {x1,i, . . . , xn,i})
– 2.n− 3 East-West diagonals: set(D1, {x1,2, x2,1}), set(D2, {x1,3, x2,2, x3,1}),

. . . , set(D2.n−3, {xn−1,n, xn,n−1})
– 2.n − 3 West-East diagonals: set(D2.n−2, {xn−1,2, xn,1}), . . . , set(D4.n−6,
{x1,n−1, x2,n})

– the set of n queens: set(Q, {x1,1, . . . , xn,n})
– the n queens: ∀i ∈ [1..n], Element(q(i), {x1,1, . . . , xn,n})

The constraints are:

– Q is of size n: |Q| = n
– the n queens are in Q: ∀i ∈ [1..n], q(i) ∈ Q
– queen i is on row i: ∀i ∈ [1..n], qi ∈ Ri

– one and only one queen per column: ∀i ∈ [1..n], set(CQi, {x1,1, . . . , xn,n}),
CQi = Ci ∩Q, |CQi| = 1

– at most one queen per diagonal: ∀i ∈ [1..4.n− 6], set(DQi, {x1,1, . . . , xn,n}),
DQi = Di ∩Q, |DQi| < 2

Note that the support of each CQi (resp.DQi) could have been set to the support
of Ci (resp.Di). However, one does not have to care about this when modeling
since the ⇒red rules will reduce these supports. The solutions are contained in
Q: each element of Q is a queen, i.e., a cell of the board.

nqQ: Model with the queens as universe. Since the encoding is very cor-
related to the size of the support, we propose another model where the universe
is much smaller, i.e., the set of n queens:

– Universe: Q = {q1, . . . , qn}, i.e., the n queens to be placed on a n×n board;
– Rows: ∀i ∈ [1..n], set(Ri, {qi}); each row i is over queen i;
– the set of queens and columns are defined as above, but over the support Q;
– each cell Ci,j is defined as the intersection of row Ri and column Cj : ∀i, j ∈

[1..n], set(Ci,j ,Q), Ci,j = Ri ∩ Cj ;
– the 4.n− 6 diagonals are defined by unions of cells: set(D1,Q), D1 = C1,2 ∪
C2,1, set(D2,Q), D2 = C1,3 ∪ C2,2 ∪ C3,1, . . .

– Q is of size n: |Q| = n
– to enforce one queen per row: ∀i ∈ [1..n], |Ri| = 1;
– one and only one queen per column: ∀i ∈ [1..n], |Ci| = 1;
– a different queen on each column: Q =

⋃n
i=1 Ci

(or, ∀i, j ∈ [1..n], set(CCi,j ,Q), CCi,j = Ci ∩ Cj , |CCi,j | = 0);

– atmost one queen per diagonal: ∀i ∈ [1..4.n− 6], |Di| < 2.

Interpretation of the results: if cell Ci,j = {qk}, then queen qk is in i × j, else
Ci,j = ∅ and there is no queen in i× j.

As said before, our goal is not to compete with arithmetic solvers or set
solvers, but to be able to declaratively, expressively, and error-prone model prob-
lems into SAT. Table ?? presents the results for the two models (model with the
board as universe and model with the queens as universe). Column ”q” repre-
sents the queens number and others columns represent the number of variables
(var) and clauses (cl) for the generated SAT instance, the encoding time (time
⇔enc), the reduction time (time ⇒red) and the solving time by the Minisat
solver [?] (minisat). When have limited the running time to 600 seconds for each
combination of processes. No result is written if this value is reached. When only
the Minisat column is empty this means that the instance exceed the memory
size (4GB).

We can observe that the reduction rules ⇒red permit to significantly reduce
the size of the SAT instances. Thereby, instances which are unsolvable (due to the
size) before reduction are now solved by MiniSat (q=30 for model nqB and q=120
for model nqQ). This result shows that contrary to some reduction rules such as
breaking symmetry [?], our reduction rules do not make the search more difficult.
Finally we can also note that the cumulative running time (encoding+resolution
or reduction+encoding+resolution) is better when reduction is applied: always
for the nqB model and from q=30 for the nqQ model.

We have tried our technique on various problems (e.g., Social Golfer Prob-
lem [?], Sudoku, Car-sequencing) and the SAT instances which are automatically
generated have a complexity similar to the complexity of improved hand-written
SAT formulations, and their solving with a SAT solver (in our case Minisat) is
efficient compared to other SAT approaches.

6 Conclusion

We have presented a technique for encoding set constraints into SAT: the model-
ing process is achieved using some very declarative and expressive set constraints;
they are then reduce by our ⇒red rules before being automatically converted
(⇔enc) into SAT variables and clauses. We have illustrated our approach on the
nqueen problem and shown some good results with the application of reduction
and encoding rules. The advantages of our technique are the following:

– the modeling process is simple, declarative, expressive, and readable. More-
over, it is solver independent and independent from CSP or SAT solvers;

– the technique is less error-prone than hand-written SAT encodings;
– the SAT instances which are automatically generated are smaller in terms

of number of variables and clauses;
– finally, with respect to solving time, adding reduction process permits to

reduce the cumulative running time (reduction+encoding+resolution);
– the generated SAT instances also appeared to be well-suited for Minisat.

Table 1. Experimental results

q

M
o
d
e
l
w
it
h

th
e
B
o
a
rd

a
s
u
n
iv
e
rs
e

M
o
d
e
l
w
it
h

th
e
q
u
e
e
n
s
a
s
u
n
iv
e
rs
e

⇔
e
n
c

⇒
r
e
d
+
⇔

e
n
c

⇔
e
n
c

⇒
r
e
d
+
⇔

e
n
c

v
a
r

c
l

ti
m
e
m
in
is
a
t

ti
m
e

v
a
r

c
l

ti
m
e
m
in
is
a
t

v
a
r

c
l

ti
m
e

m
in
is
a
t

ti
m
e

v
a
r

c
l

ti
m
e
m
in
is
a
t

⇔
e
n
c

⇒
r
e
d

⇔
e
n
c

⇔
e
n
c

⇒
r
e
d

⇔
e
n
c

5
3
6
9
6

2
2
7
4
9

0
,0
7

0
,0
1

0
,0
2

5
6
4

2
0
5
5

0
,0
1

0
,0
0

4
7
5

1
4
8
6

0
,0
1

0
,0
0

0
,0
3

2
6
7

7
9
6

0
,0
1

0
,0
0

1
0

4
2
9
5
6

6
3
5
8
7
4

2
,1
9

0
,3
8

0
,0
6

2
8
7
6

1
8
6
5
4

0
,0
9

0
,0
3

3
0
0
0

1
1
1
6
6

0
,0
7

0
,0
0

0
,0
5

1
3
3
2

4
9
3
6

0
,0
3

0
,0
1

1
5

1
7
0
6
1
1

4
6
5
2
1
6
4

1
6
,6
4

2
,9
4

0
,2
1

7
2
4
3

7
5
4
1
3

0
,2
5

0
,1
3

8
5
8
5

3
5
5
6
6

0
,1
6

0
,0
2

0
,1
9

3
3
4
7

1
4
4
7
6

0
,0
7

0
,0
1

2
0

4
4
9
1
1
6

1
9
3
3
6
1
5
4

5
6
,9
0

1
8
,0
7

0
,4
2

1
3
9
2
4

2
1
2
8
5
0

0
,6
8

0
,6
5

1
8
3
0
0

8
1
3
2
6

0
,3
7

0
,0
5

0
,3
4

6
4
2
8

3
1
3
9
8

0
,1
3

0
,0
4

2
5

9
4
2
1
4
1

5
8
6
3
7
3
0
9
1
8
3
,6
7

8
8
,1
2

0
,7
5

2
2
9
7
7

4
8
6
0
8
1

1
,6
1

2
,9
2

3
2
8
3
5

1
5
4
3
2
6

0
,7
2

0
,0
9

0
,6
1

1
0
6
2
3

5
7
5
4
8

0
,2
1

0
,0
7

3
0

1
7
1
5
2
9
6
1
4
5
4
4
1
4
7
4
4
8
5
,8
2

0
,7
8

3
4
3
9
2

9
6
5
0
8
6

3
,7
7

8
,3
7

5
2
8
7
0

2
6
0
4
2
6

1
,2
0

0
,1
6

0
,9
2

1
5
9
1
8

9
4
6
4
8

0
,3
4

0
,0
9

3
5

1
,9
3

4
8
4
8
6

1
7
3
5
4
9
9

6
,7
0

1
8
,5
4

7
9
6
6
5

4
0
6
6
4
6

1
,8
4

0
,2
6

1
,3
7

2
2
4
3
9

1
4
4
7
0
0

0
,5
0

0
,1
6

4
0

2
,7
9

6
5
3
1
6

2
8
9
7
4
3
4

1
2
,5
6

4
3
,2
3

1
1
4
0
0
0

5
9
9
0
4
6

2
,8
1

0
,3
5

2
,0
9

3
0
2
6
4

2
0
9
6
1
0

0
,6
9

0
,2
4

4
5

4
,0
0

8
4
6
4
6

4
5
6
5
4
1
9

1
9
,6
5

8
9
,7
2

1
5
6
3
3
5

8
4
3
0
4
6

3
,7
9

0
,5
1

3
,0
2

3
9
3
3
9

2
9
1
0
2
0

0
,9
4

0
,3
2

5
0

5
,3
2
1
0
6
9
2
8

6
8
7
0
3
5
8

3
2
,0
6

1
6
6
,8
0

2
0
7
4
2
0

1
1
4
4
6
4
6

5
,2
0

0
,6
8

4
,1
3

4
9
6
6
4

3
9
0
6
8
0

1
,2
4

0
,4
5

5
5

7
,1
6
1
3
1
7
8
3

9
9
5
6
4
9
3

5
0
,2
3

3
0
3
,3
5

2
6
8
0
0
5

1
5
0
9
8
4
6

6
,8
7

0
,9
6

5
,4
2

6
1
2
3
9

5
1
0
3
4
0

1
,5
9

0
,5
8

6
0

9
,1
8
1
5
9
1
8
8
1
3
9
8
3
7
7
8

7
6
,8
3

5
1
4
,0
4

3
3
8
8
4
0

1
9
4
4
6
4
6

8
,8
0

1
,2
4

7
,0
8

7
4
0
6
4

6
5
1
7
5
0

2
,0
0

0
,7
3

6
5

4
2
0
9
9
5

2
4
5
5
6
8
6

1
1
,1
7

1
,6
7

9
,4
5

8
8
2
0
7

8
1
6
7
9
6

2
,5
4

0
,9
5

7
0

5
1
6
3
3
0

3
0
5
1
1
8
6

1
3
,6
3

1
,9
5

1
1
,9
1
1
0
3
9
6
2
1
0
0
7
8
1
6

3
,1
5

1
,1
8

7
5

6
2
4
4
1
5

3
7
3
4
7
8
6

1
6
,9
7

4
,5
4

1
6
,7
0
1
2
1
1
1
7
1
2
2
6
1
3
6

3
,7
7

1
,4
4

8
0

7
4
6
0
0
0

4
5
1
2
4
8
6

2
0
,3
2

2
,8
1

2
0
,8
0
1
3
9
6
7
2
1
4
7
3
5
0
6

4
,4
3

1
,7
7

8
5

8
8
1
8
3
5

5
3
9
0
2
8
6

2
4
,2
0

3
,7
4

2
5
,9
0
1
5
9
6
2
7
1
7
5
1
6
7
6

5
,3
7

2
,1
2

9
0

1
0
3
2
6
7
0

6
3
7
4
1
8
6

2
8
,7
1

4
,1
6

3
2
,0
0
1
8
0
9
8
2
2
0
6
2
3
9
6

6
,1
0

2
,5
8

9
5

1
1
9
9
2
5
5

7
4
7
0
1
8
6

3
3
,8
2

9
,5
7

3
7
,8
0
2
0
3
7
3
7
2
4
0
7
4
1
6

7
,0
9

3
,0
6

1
0
0

1
3
8
2
3
4
0

8
6
8
4
2
8
6

4
5
,0
3

1
7
,6
3

4
0
,5
0
2
2
7
8
9
2
2
7
8
8
4
8
6

8
,4
7

3
,4
6

1
0
5

1
5
8
2
6
7
5
1
0
0
2
2
4
8
6

4
6
,0
8

8
,5
4

5
2
,0
0
2
5
3
4
4
7
3
2
0
7
3
5
6

9
,5
5

4
,2
2

1
1
0

1
8
0
1
0
1
0
1
1
4
9
0
7
8
6

5
3
,0
0

1
4
2
,3
3

6
1
,0
0
2
8
0
4
0
2
3
6
6
5
7
7
6

1
1
,1
5

4
,6
8

1
1
5

2
0
3
8
0
9
5
1
3
0
9
5
1
8
6

6
0
,1
3

6
1
,7
3

7
0
,8
0
3
0
8
7
5
7
4
1
6
5
4
9
6

1
2
,7
2

5
,4
6

1
2
0

2
2
9
4
6
8
0
1
4
8
4
1
6
8
6

6
9
,3
6

8
2
,0
0
3
3
8
5
1
2
4
7
0
8
2
6
6

1
4
,3
9

6
,1
2

1
5
0

4
3
0
2
0
8
0
2
8
6
7
3
5
6
6
1
3
2
,9
6

1
8
5
,0
0
5
5
0
7
3
2
8
9
7
5
5
1
6

2
6
,4
0

1
2
,9
8

2
0
0

9
7
3
5
6
8
0
6
7
1
5
0
5
6
6
3
1
6
,9
0

5
2
5
,0
0

In the future, we plan to use our set constraints encoding for formalizing
finite domain variables. We also plan to combine set constraints with arithmetic
constraints, and we want to define the corresponding combining SAT encoding.
To this end, we will need to add some new constraints and to complete our⇔enc

and ⇒red rules.

References

1. Choco. http://www.emn.fr/z-info/choco-solver/.
2. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
3. Fahiem Bacchus. Gac via unit propagation. In Proc. of CP 2007, volume 4741 of

LNCS, pages 133–147. Springer, 2007.
4. O. Bailleux and Y. Boufkhad. Efficient cnf encoding of Boolean cardinality con-

straints. In Proc. of CP 2003, volume 2833 of LNCS, pages 108–122. Springer,
2003.

5. Christian Bessière, Emmanuel Hebrard, and Toby Walsh. Local consistencies in
sat. In Selected Revised Papers of SAT 2003., volume 2919 of LNCS, pages 299–314.
Springer, 2004.

6. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proc. of SAT 2003,
volume 2919, pages 502–518, 2003.

7. T. Früwirth. Constraint Handling Rules. Cambridge University Press, 2009.
8. Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide

to the Theory of NP-Completeness. W.H. Freeman & Company, 1979.
9. Ian Gent and Ines Lynce. A sat encoding for the social golfer problem. In IJCAI’05

workshop on modelling and solving problems with constraints, 2005.
10. Carmen Gervet. Conjunto: Constraint propagation over set constraints with finite

set domain variables. In Proc. of ICLP’94, page 733. MIT Press, 1994.
11. F. Lardeux, E. Monfroy, B. Crawford, and R. Soto. Set constraint model and

automated encoding into sat: Application to the social golfer problem. submitted
to Annals of Operations Research.

12. Frédéric Lardeux, Eric Monfroy, Frédéric Saubion, Broderick Crawford, and Carlos
Castro. Sat encoding and csp reduction for interconnected alldiff constraints. In
Proc. of MICAI 2009, volume 5845 of LNCS, pages 360–371, 2009.

13. Bruno Legeard and Emmanuel Legros. Short overview of the clps system. In Proc.
of PLILP’91, volume 528 of LNCS, pages 431–433. Springer, 1991.

14. A. Mackworth. Encyclopedia on Artificial Intelligence, chapter Constraint Satis-
faction. John Wiley, 1987.

15. E. Monfroy. A coordination-based chaotic iteration algorithm for constraint prop-
agation. In Proc of ACM SAC’2000 (1), pages 262–269. ACM, 2000.

16. E. Monfroy, F. Saubion, and T. Lambert. On hybridization of local search and
constraint propagation. In Proc. of ICLP 2004, volume 3132 of LNCS, pages 299–
313. Springer, 2004.

17. Steven Prestwich and Andrea Roli. Symmetry breaking and local search spaces.
volume 3524 of Lecture Notes in Computer Science, pages 273–287. Springer Berlin
Heidelberg, 2005.

18. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

19. Markus Triska and Nysret Musliu. An improved sat formulation for the social
golfer problem. Annals of Operations Research, 194(1):427–438, 2012.

