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A New Prenexing Strategy for Quantied Boolean Formulae with Bi-Implications

Most of the recent and ecient decision procedures for quantied Boolean formulae accept formulae in negation normal form as input or in an even more restrictive format such conjunctive normal form. But real problems are rarely expressed in such forms. For instance, in specication, intermediate propositional symbols are used to capture local results with always the same pattern. So, in order to use most of the state-of-the-art solvers the original formula has rstly to be converted in prenex form. A drawback of this preliminary step is to destroy completely the original structures of the formula. Furthermore, during the prenexing process, bi-implications are translated in such a way that there is a duplication of their sub-formulae including the quantiers. In general, this process leads to an exponential growth of the formula. In this work, we focus on this very common pattern of intermediate result. We introduce new logical equivalences allowing us to extract these sub-formulae in a way that can improve the performance of the state-of-the-art quantied Boolean solvers.

Introduction

The quantied Boolean formula (QBF) validity problem is a generalization of the Boolean formulae satisability problem. While the complexity of Boolean satisability problem is NP-complete, it is PSPACE-complete for the QBF validity problem. This is the price for a more concise representation of many classes of formulae. Many important problems in several research elds have polynomialtime translations to the QBF validity problem: AI planning [START_REF] Rintanen | Constructing conditional plans by a theorem-prover[END_REF][START_REF] Ayari | Qubos: Deciding Quantied Boolean Logic using Propositional Satisability Solvers[END_REF], Bounded

Model Construction [START_REF] Ayari | Qubos: Deciding Quantied Boolean Logic using Propositional Satisability Solvers[END_REF], Formal Verication (see [START_REF] Benedetti | Experience and Perspectives in QBF-Based Formal Verication[END_REF] for a survey).

Most of the recent and ecient decision procedures for QBF have formulae in negation normal form (NNF) as input or even more restrictive format such as formulae in conjunctive normal form (CNF). But problems are rarely expressed in such a form which destroyed completely their original structures.

It is much more natural to use the full expressivity of the QBF language: all the usual connectors (including implication, bi-implication and xor) and quantiers nested in the formula. Then translation schemas are required in order to use available QBF solvers. The NNF translation needs for QBF, as for rst order logic, ve steps: (i) replacement of the bi-implication and xor connectors by their denitions with implications, negations, conjunctions and/or disjunctions;

(ii) renaming of propositional symbols such that distinct quantiers bind occurrences of distinct propositional symbols; (iii) extraction of the quantiers; (iv) replacement of the implications by their denitions with negations, conjunctions and/or disjunctions; (v) application of the DeMorgan's laws. The CNF translation adds one more step to the NNF translation. This latter translation has been largely studied [START_REF] Plaisted | A Structure-Preserving Clause Form Translation[END_REF][START_REF] De La Tour | An Optimality Result for Clause Form Translation[END_REF][START_REF] Egly | On Dierent Structure-Preserving Translations to Normal Form[END_REF] since this normal form is used as input of most of the decision procedure for the SAT problem. The three rst steps of the above translation form the so-called prenexing translation. There is not a unique prenex QBF associated with a QBF and according to the chosen prenexing strategy, the computation time of the decision process is highly inuenced [START_REF] Egly | Comparing Dierent Prenexing Strategies for Quantied Boolean Formulas[END_REF]. As far as we know, there is no study for QBF about the extraction of quantiers nested in the bi-implications. It is an important issue since the usual elimination of biimplications duplicates the nested quantiers leading to an exponential growth of their numbers and the size of the formula.

The article is organized as follows: In Section 2, we present some preliminaries about propositional logic and quantied Boolean formulae. In Section 3, we analyse the links between prenexing and bi-implications, propose a methodology to extract the very common pattern of intermediate results and present one theoretical example and one practical example in order to evaluate our methodology. In Section 4, we report some experimental results for our methodology on our examples for state-of-the-art quantifed Boolean solvers. In Section 5, we conclude and draw some perspectives. 

(∃y F ) ≡ ([y ← ](F ) ∨ [y ← ⊥](F ))
and

(∀y F ) ≡ ([y ← ](F ) ∧ [y ← ⊥](F )).
A QBF F is valid if F ≡ . The Boolean satisability (SAT) of an unquantied Boolean formula corresponds exactly to the decision problem of the validity of its existential closure. The complexity of the QBF validity problem is PSPACEcomplete while it is NP-complete for the SAT problem.

3

Prenexing and bi-implications

Motivations

In [START_REF] Egly | Comparing Dierent Prenexing Strategies for Quantied Boolean Formulas[END_REF] are dened strategies for prenexing according to an order over the extraction of quantiers. Some experiments have shown the high inuence of this extraction order on the computation time for QBF solvers. However, there exists no rule for the extraction of quantiers involved in a bi-implication (or xor). As pointed out in the introduction, the prenexing is decomposed in three steps that we detail more hereafter.

(i) The replacement of the bi-implication and xor connectors by their denitions with implications, negations, conjunctions and/or disjunctions is usually realized by the two following equivalences:

1) (A ↔ B) ≡ ((A → B) ∧ (B → A)) 2) (A ⊕ B) ≡ ((A ∨ B) ∧ ¬(A ∧ B))
One can remark that the two QBF A and B are duplicated.

(ii) The renaming of propositional symbols such that distinct quantiers bind occurrences of distinct propositional symbols may be done before the extraction of quantiers but may also be interleaved with this step.

(iii) The extraction of quantiers is usually based on the following classical rst order equivalences which still hold for QBF (F , G and H are QBF and x is a propositional symbol such that x ∈ FPS(H))

3) (∃x ¬F ) ≡ ¬(∀x F ) 5) (∀x F ) ≡ F , if x ∈ FPS(F ) 7) (∀x (F ∧ H)) ≡ ((∀x F ) ∧ H) 9) (∃x (F ∧ H)) ≡ ((∃x F ) ∧ H) 11) (∀x (F ∧ G)) ≡ ((∀x F ) ∧ (∀x G)) 13) (∀x (F → H)) ≡ ((∃x F ) → H) 15) (∀x (H → G)) ≡ (H → (∀x G)) 4) (∀x ¬F ) ≡ ¬(∃x F ) 6) (∃x F ) ≡ F , if x ∈ FPS(F ) 8) (∀x (F ∨ H)) ≡ ((∀x F ) ∨ H) 10) (∃x (F ∨ H)) ≡ ((∃x F ) ∨ H) 12) (∃x (F ∨ G)) ≡ ((∃x F ) ∨ (∃x G)) 14) (∃x (F → H)) ≡ ((∀x F ) → H) 16) (∃x (H → G)) ≡ (H → (∃x G))
Equivalences 13 to 16 for implication are easily deduced from equivalences 3 to 12. The extraction of quantiers is a process which applies these equivalences from right to left until a x-point corresponding to a prenex QBF is obtained.

Prenexing preserves validity but does not guarantee the preservation of the size of the QBF nor the associated search space. Let us remark that the expressivity of the bi-implication connector exceeds the simple equivalence between (A ↔ B) and ((A → B)∧(B → A)): a propositional symbol associated to a quantier in A or B is duplicated following the equivalences 1 and 13 to 16 in two propositional symbols: one associated to a universal quantier and another associated to an existential quantier, and so whatever is the original quantier. If this has no impact w.r.t. the validity, it is not the case w.r.t. the computation process. We show in the following examples that the increase of the size of the formula is not the only one problem with prenexing, even with simple QBF.

Let a be a propositional symbol, φ, φ 1 and φ 2 three QBF such that φ = (φ 1 ↔ (∃a φ 2 )) and a ∈ FPS(φ 1 ). By equivalence 1, the bi-implication is eliminated: ≡ ((∃a (φ 1 → φ 2 )) ∧ (∀a (φ 2 → φ 1 ))). Now, one occurrence of the propositional symbol a associated to a quantier has to be renamed in order to extract the quantiers from the conjunction. Let b be this new renaming propositional symbol and

φ 1 ≡ ((φ 1 → (∃a φ 2 )) ∧ ((∃a φ 2 ) → φ 1 )).
φ 2 = [a ← b](φ 2 ) then: φ 9,7 ≡ (∃a (∀b ((φ 1 → φ 2 ) ∧ (φ 2 → φ 1 )))).
The order of extraction of quantiers may be reversed to obtain: φ

7,9 ≡ (∀a (∃b ((φ 1 → φ 2 ) ∧ (φ 2 → φ 1 )))). In the general case, if F is a QBF, (∀y (∃x F )) is not equiv- alent to (∃x (∀y F )).
The possibility to permute these two quantiers in this special case is a useful information which could be used by solvers which is not the case as far as we know. Moreover, propositional symbols a and b come from the same propositional symbol of the non prenex QBF but nothing in the prenex QBF keeps this information.

To conclude this motivation section, we consider how a quantier has to be extracted from a sequence of bi-implications. We show in the following example that the choice of the position of the parenthesis can inuence the size of the result of the prenexing process. Let a be a propositional symbol φ r , φ l , φ 1 , φ 2 and φ 3 some QBF such that φ l = ((φ 1 ↔ φ 2 ) ↔ (∃a φ 3 )), φ r = (φ 1 ↔ (φ 2 ↔ (∃a φ 3 ))) with a ∈ F PS(φ 1 ) and a ∈ F PS(φ 2 ) then φ r ≡ φ l by associativity of the bi-implication. We compute a prenex form for φ l :

φ l 1 ≡ (((φ 1 ↔ φ 2 ) → (∃a φ 3 )) ∧ ((∃a φ 3 ) → (φ 1 ↔ φ 2 ))) φ l 16,13,9,7 ≡ ∃a∀b(((φ 1 ↔ φ 2 ) → φ 3 ) ∧ ([a ← b](φ 3 ) → (φ 1 ↔ φ 2 )))
and then for φ r :

φ r 1 ≡ (φ 1 ↔ ((φ 2 → (∃a φ 3 )) ∧ ((∃a φ 3 ) → φ 2 ))) φ r 1 ≡ ((φ 1 → ((φ 2 → (∃a φ 3 )) ∧ ((∃a φ 3 ) → φ 2 )))∧ (((φ 2 → (∃a φ 3 )) ∧ ((∃a φ 3 ) → φ 2 )) → φ 1 )) φ r 13,14,15,16,9,7 ≡ ∃a∃c∀b∀d ((φ 1 → ((φ 2 → φ 3 ) ∧ ([a ← b](φ 3 ) → φ 2 )))∧ (((φ 2 → [a ← d](φ 3 )) ∧ ([a ← c](φ 3 ) → φ 2 )) → φ 1 ))
Formulae φ l and φ r , although equivalent, have dierent numbers of propositional symbols and dierent sizes after prenexing. If we consider the formula

(φ 1 ↔ (φ 2 ↔ . . . (φ n ↔ (∃a φ n+1 ))
)), then 2 n propositional symbols are generated whose half of them are universally quantied. Formulae φ n and φ n+1 are recopied 2 n times, formula φ n-1 is recopied 2 n-1 times, and so on until φ 1 which is recopied two times. The size of the formula and the number of propositional symbols grow exponentially w.r.t. the number of crossed bi-implication. Any way, if every φ k has a quantier to extract, the worst case cannot be avoided.

Prenexing and intermediate results

Previous section shows how important is the issue of prenexing when quantiers occur in the scope of bi-implications. Since

(A ⊕ B) ≡ ¬(A ↔ B) ≡ (¬A ↔ B),
in what follows we only focus on bi-implication. This issue is, as far as we know, usually skipped in the process translating the specied problem in QBF to the equivalent CNF QBF given as input to a QBF solver. In this section, we focus on two very frequent cases which occur in the programming or specifying process:

the declaration of intermediate results and the declaration of domain. The rst case is based on the introduction of an existentially quantied propositional symbol in association with a conjunction in order to improve the readability of the specication or to capture the results of a calculus duplicated in many places. For QBF, by extension of a classical result of [START_REF] Tseitin | On the complexity of derivation in propositional calculus[END_REF], we are interested in the pattern (∃x ((x ↔ F ) ∧ G)), x being an intermediate propositional symbol not occurring in F ; it is easily proven from the semantics of the existential quantier that this pattern is equivalent to [x ← F ](G). The latter case is based on the introduction of a universally quantied propositional symbol in association with an implication in order to express the domain of the propositional symbol (ie: a property to be veried by the symbol). In both cases, we call (x ↔ F ) the denition of x. The following result shows that these two techniques are actually the same.

Theorem 1. Let F and G be two QBF and x a propositional symbol which represents an intermediate result F , with x ∈ FPS(F ), then the following equivalence holds:

(∃x ((x ↔ F ) ∧ G)) ≡ (∀x ((x ↔ F ) → G)).
The previous theorem is based on the following (propositional) equivalence:

((¬A ∨ B) ∧ (A ∨ C) ∧ (B ∨ C)) ≡ ((¬A ∨ B) ∧ (A ∨ C)).
By the previous theorem, we focus only on the existential pattern.

Since solvers usually have as input CNF QBF, the special status of the intermediate propositional symbols is completely lost and they are managed as the other propositional symbols of the problem. There is a simple way to get rid of these intermediate propositional symbols: we can simply apply the already

shown equivalence (∃x ((x ↔ F ) ∧ G)) ≡ [x ← F ](G)
but it can lead to an exponential growth of the size of the formula. Instead, we propose to extract these propositional symbols thanks to the following theorem.

Theorem 2. Let F , G and H be three QBF and x be a propositional symbol which represents the intermediate result

F , with x ∈ F PS(H), x ∈ F PS(F ) then (H ↔ (∃x ((x ↔ F ) ∧ G))) ≡ (∃x ((x ↔ F ) ∧ (H ↔ G))).
The Algorithm 1 realizes the recursive application of this theorem by calling the three functions described below.

Function 1 def _search

In: A QBF F In: A set of propositional symbols Sps Out: A set of denitions switch F do case (∃x G)

return def _search(G, Sps ∪ {x}) case (G ∧ H) return def _search(G, Sps) ∪ def _search(H, Sps) case (x ↔ G) if x ∈ Sps then return {(x ↔ G)} else return ∅ end if default return ∅ end switch
Let (φ H ↔ φ) be a QBF, the def _search algorithm of Function 1 searches for all denitions matching (∃x ((x ↔ F )∧G)) in φ with the constraint x ∈ FPS(F ) relaxed. In fact the pattern can be embedded in an alternation of similar patterns thanks to equivalences 9 and (∃x (∃y F )) ≡ (∃y (∃x F )) and associativity and commutativity of conjunction. For instance

def _search((φ 1 ∧(∃a (∃b ((a ↔ φ a )∧((b ↔ φ b )∧φ 2 ))))), ∅) = {(a ↔ φ a ), (b ↔ φ b )}.
In what follows, S def denotes a set of denitions as {(a ↔ φ a ), (b ↔ φ b )} for instance . 

Function 2 def _extract

(φ 1 ∧ (∃a (∃b ((a ↔ φ a ) ∧ ((b ↔ φ b ) ∧ φ 2 ))))) ≡ (∃b ((b ↔ φ b ) ∧ (∃a ((a ↔ φ a ) ∧ (φ 1 ∧ φ 2 )))))
The def _applying algorithm of Function 3 actually applies Theorem 2 in two steps on the QBF φ for the list of denitions extracted by the def _extract algorithm. Firstly, the denitions are replaced by in the QBF since the denitions are conjunctively connected and are reintroduced at the top of the QBF:

for instance (φ 1 ∧ (∃a (∃b ((a ↔ φ a ) ∧ ((b ↔ φ b ) ∧ φ 2 ))))) is replaced by ((b ↔ φ b ) ∧ ((a ↔ φ a ) ∧ (φ 1 ∧ (∃a (∃b ( ∧ ( ∧ φ 2 ))))))) ≡ ((b ↔ φ b ) ∧ ((a ↔ φ a ) ∧ (φ 1 ∧ (∃a (∃b φ 2 ))))).
Secondly, the existential quantiers for the propositional symbols of the list of denitions are eliminated from the formula and reintroduced above it: for The rec_def _extraction algorithm of Algorithm 1 applies recusively the extraction of the pattern on all possible denitions in an inside/out process. By this way some denitions can cross many equivalences.

instance ((b ↔ φ b ) ∧ ((a ↔ φ a ) ∧ (φ 1 ∧ (∃a (∃b φ 2 ))))) is replaced by (∃b (∃a ((b ↔ φ b ) ∧ ((a ↔ φ a ) ∧ (φ 1 ∧ φ 2 ))))) ≡ (∃b ((b ↔ φ b ) ∧ (∃a ((a ↔ φ a ) ∧ (φ 1 ∧ φ 2 ))))).
It is not dicult to prove thanks to Theorem 2 the following correction theorem.

Theorem 3. Let F be a QBF then rec_def _extraction(F, ∅) ≡ F .

Bi-implication chains with intermediate results

We dene a theoretical example in order to evaluate the impact of our methodology as a chain of bi-implications th n = (ξ 1 ↔ (ξ 2 ↔ ...(ξ n-1 ↔ (ξ n )))) in which each ξ k contains an intermediate result as proposed in motivation section 3.1.

We have chosen some ξ k of the form (∃x k ((

x k ↔ (c ∨ b)) ∧ (x k ∧ a))
), with x k the intermediate result and a, b and c propositional symbols which are in some other links of the bi-implication chain. Formula th n , for n ≥ 4 is of the form:

th n = ∃e 0 ...∃e n-2 ∀u 0 ∀u 1 ∀u 2 ( (∃x n ((x n ↔ (e n-4 ∨ e n-3 )) ∧ (x n ∧ e n-2 ))) ↔ ( (∃x n-1 ((x n-1 ↔ (e n-5 ∨ e n-4 )) ∧ (x n-1 ∧ e n-3 ))) ↔ ... ( (∃x 4 ((x 4 ↔ (e 0 ∨ e 1 )) ∧ (x 4 ∧ e 2 ))) ↔ ( (∃x 3 ((x 3 ↔ (u 2 ∨ e 0 )) ∧ (x 3 ∧ e 1 ))) ↔ ( (∃x 2 ((x 2 ↔ (u 1 ∨ u 2 )) ∧ (x 2 ∧ e 0 ))) ↔ (∃x 1 ((x 1 ↔ (u 0 ∨ u 1 )) ∧ (x 1 ∧ u 2 ))) ) ) )...)) For all n, th n is not valid.
The nesting of quantiers and bi-implications leads to an exponential explosion of the size of th n in CNF w.r.t. n which is not the case with our methodology. For instance, with n = 7, the CNF converted QBF has 1148 propositional symbols (98 are universally quantied) and 3038 clauses whereas the QBF obtained by application of the rec_def _extraction algorithm and then converted into CNF has only 33 propositional symbols (3 are universally quantied) and 82 clauses. For n = 18, the CNF converted QBF has not been decided by any of the state-of-the-art solvers in one hour whereas for n = 6000 the QBF obtained by application of the rec_def _extraction algorithm and then converted into CNF has been decided in less than one hour.

Hardware verication: the n-bit ripple-carry adder

We also evaluate our methodology on a more simple (with only one bi-implication crossed by some denitions) and classical example of hardware verication: the nbit ripple-carry adder. We follow the approach of bounded model construction [START_REF] Ayari | Bounded model construction for monadic second-order logics[END_REF] which is a method for generating models for a monadic formula by reducing its satisability problem to a QBF validity problem [START_REF] Ayari | Structural and behavioral modeling with monadic logics[END_REF][START_REF] Ayari | Qubos: Deciding Quantied Boolean Logic using Propositional Satisability Solvers[END_REF]. The example is about a parametrized family of ripple-carry n-bits adders. For a given number n, one has to verify the equivalence of the digital circuit with its specication. Hereafter, the QBF add impl represents the implementation of the adder and add spec the specication, (n represents the size of the ripple-carry adder, A and B represent n-bit input vectors, S represents the n-bit output and the Booleans c i and c o are the carry-in and carry-out respectively). By this way, the validity of the following QBF add n ensures the correctness of the physical n-bit ripple-carry adder.

add n = ∀A∀B∀S∀c i ∀c o (add impl (n, A, B, S, c i , c o ) ↔ add spec (n, A, B, S, c i , c o ))
We give an example for the n-bit adder with n = 1: QBF

add 1 = ∀A 0 ∀B 0 ∀S 0 ∀c i ∀c o (add impl (1, A 0 , B 0 , S 0 , c i , c o ) ↔ add spec (1, A 0 , B 0 , S 0 , c i , c o )) with add impl (1, A 0 , B 0 , S 0 , c i , c o ) = [∃x 1 ∃x 2 ((D 1 (x 1 ) ∧ D 2 (x 2 )) ∧ (∃x 3 ∃x 4 ∃x 5 (D 3 (x 3 ) ∧ C 1 (x 3 , x 1 ) ∧ D 4 (x 4 )∧ D 5 (x 5 , x 1 , x 3 ) ∧ C 2 (x 2 , x 5 , x 4 ))))] add spec (1, A 0 , B 0 , S 0 , c i , c o ) = [∃x 6 ∃x 7 (D 1 (x 6 ) ∧ D 2 (x 7 ) ∧ C 3 (x 6 , x 7 ) ∧C 4 (x 6 ))]
encodes the check of the adder for n = 1 with the following Boolean functions:

D 1 (x) = (c i ↔ x), D 2 (x) = (c o ↔ x), D 3 (x) = (x ↔ (A 0 ⊕ B 0 )), D 4 (x) = (x ↔ (A 0 ∧ B 0 )), D 5 (x, y, z) = (x ↔ (y ∧ z)), C 1 (x, y) = (S 0 ↔ (x ⊕ y)), C 2 (x, y, z) = (x ↔ (y ∨ z)), C 3 (x, y) = ((((A 0 ∧ B 0 ) ∨ (A 0 ∧ x)) ∨ (B 0 ∧ x)) ↔ y), C 4 (x) = (((A 0 ↔ B 0 ) ↔ S 0 ) ↔ x).
Functions C k , 1 ≤ k ≤ 4, represent the core of the implementation and specication of the n-bit ripple-carry adder. Formulae add impl and add spec contain instances of functions D k , 1 ≤ k ≤ 5, which are denitions that we will extract. The hereafter QBF add 1 is the initial QBF add 1 translated by the classical prenexing algorithm (propositional symbols y k come from the x k by recopy of the two subformulae of the bi-implication). Universal quantiers are rst extracted from both parts of the bi-implication in order to minimize the alternation of quantiers.

add 1 = ∀A0∀B0∀S0∀ci∀co∀y1∀y2∀y3∀y4∀y5∀y6∀y7∃x1∃x2∃x3∃x4∃x5∃x6∃x7 [[(D1(y1) ∧ D2(y2) ∧ D3(y3) ∧ C1(y3, y1) ∧ D4(y4) ∧ D5(y5, y1, y3) ∧ C2(y2, y5, y4)) → (D1(x6) ∧ D2(x7) ∧ C3(x6, x7) ∧ C4(x6))]∧ [(D1(y6) ∧ D2(y7) ∧ C3(y6, y7) ∧ C4(y6)) → (D1(x1) ∧ D2(x2) ∧ D3(x3) ∧ C1(x3, x1) ∧ D4(x4) ∧ D5(x5, x1, x3) ∧ C2(x2, x5, x4))]]
The order of the quantiers highly inuences the eciency of the solvers [START_REF] Egly | Comparing Dierent Prenexing Strategies for Quantied Boolean Formulas[END_REF].

During the prenexing process of add 1 into add 1 , the order of the propositional symbols is only constrained by the partial order induced by the fact that the universal quantiers of the initial propositional symbols have to precede the existential quantiers.

The hereafter QBF add t 1 is the initial QBF add 1 translated by our algorithm rec_def _extraction and then translated into a prenex form according to the classical algorithm.

add t 1 = ∀A 0 ∀B 0 ∀S 0 ∀c i ∀c o ∃x 1 ∃x 2 ∃x 3 ∃x 4 ∃x 5 ∃x 6 ∃x 7 [D 1 (x 1 ) ∧ D 2 (x 2 ) ∧ D 3 (x 3 ) ∧ D 4 (x 4 ) ∧ D 5 (x 5 , x 1 , x 3 ) ∧ D 1 (x 6 ) ∧ D 2 (x 7 )]∧ [[C 1 (x 3 , x 1 ) ∧ C 2 (x 2 , x 5 , x 4 )] ↔ [C 3 (x 6 , x 7 ) ∧ C 4 (x 6 )]]
The obtained matrix of the QBF is composed of two parts: the denition of the intermediate propositional symbols followed by the core of the equivalence between the implementation and the specication of the adder which uses these intermediate propositional symbols. [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF] Experimental Results

In order to evaluate the impact of our new methodology, we have developed a Prolog program to generate instances of chains of bi-implications with intermediate results th n as described in subsection 3.3 and instances of the n-bit ripple-carry adder add n as described in subsection 3.4. The applied prenexing process does not search for an optimal order of the quantiers. The order of the denitions in the matrix has not been optimized either. The CNF conversion is computed thanks to the introduction of intermediate existentially quantied

propositional symbols. This CNF conversion only polynomially increases the size of the QBF. The experiments have been realized on an Intel(R) Xeon(R) (2.83

GHz) with 4GB of memory. For our experiments we used the following QBF solvers: sKizzo v0.8.2-beta [START_REF] Benedetti | skizzo: a suite to evaluate and certify QBFs[END_REF] which is based on symbolic skolemization [START_REF] Benedetti | Evaluating QBFs via Symbolic Skolemization[END_REF]; Quantor 3.0 [START_REF] Biere | Resolve and Expand[END_REF] which combines Q-resolution [START_REF] Büning | Resolution for quantied boolean formulas[END_REF], to eliminate an innermost existential quantier, and expansion, to eliminate an innermost universal quantier;

QuBE-BJ1.2 [START_REF] Giunchiglia | QuBE++: an ecient QBF solver[END_REF] which extends to QBF the Davis-Logemann-Loveland [START_REF] Davis | A machine program for theoremproving[END_REF] procedure with backjumping and two more recent versions, QuBE6.5 (resp.

QuBE6.1), which integrates (resp. does not integrate) as preprocessing the Q-resolution [START_REF] Bubeck | Bounded Universal Expansion for Preprocessing QBF[END_REF];

qpro [START_REF] Egly | A Solver for QBFs in Nonprenex Form[END_REF] which is a decision procedure for non prenex QBF in negation normal form (i.e. QBF only with conjunction, disjunction, literals and quantiers) based on a sequent calculus for QBF, the GQBF calculus.

Experiments have been done rstly with the default settings of the dierent solvers (in particular, sKizzo is set with the Q-resolution preprocessing). None of the tested QBF solvers has succeeded in deciding if th n is valid or not for n > 17 without translation by our rec_def _extraction algorithm (QuBE6.5 succeeds in 2657 seconds for n = 15 but computation time exceeded the 3600 seconds for n = 16, Quantor succeeds in 0.1 second for n = 5 but computation space exceeded the available memory space for n = 6, sKizzo succeeds in 31.9 seconds for n = 7 but computation space exceeded the available memory space for n = 8, qpro succeeds in 1145.8 seconds for n = 17 but computation time exceeded the 3600 seconds for n = 18). Due to the lack of space and since sKizzo without our methodology failed to decide for n = 8 and succeeds to decide with our methodology for n = 2000, we do not report more results about sKizzo with or without our methodology. For the same reason, since Quantor failed to decide for n = 5 and succeeds to decide with our methodology for n = 6000, we do not report more results about Quantor with or without our methodology. Figure 1 reports the results for QuBE 6.5 and qpro with or without our methodology.

Chains of bi-implications with intermediate results

Computation time axis is in log scale. Figure 2 reports the results for the tested QBF solvers on the QBF translated by our rec_def _extraction algorithm (and then converted in prenex CNF for sKizzo, QuBE and Quantor and non prenex NNF for qpro). The axes are both in log scale.

The n-bit ripple-carry adder

Results of the evaluation for the n-bit ripple-carry adder are summarized in Table 1, computation times are in seconds, T (for time out) means that the computation time exceeded 3600 seconds, M means that the computation space exceeded the available memory space. These results show that the translated QBF have almost always the best results. For all the solvers but sKizzo the results are clear. For sKizzo, with n < 12 the improvement is substantial, but speedup decreases for ripple-carry adder with larger size. The result of the translation penalizes sKizzo on the largest instances: it may be observed thanks to the trace that sKizzo, by the Q-resolution preprocessing, removes some intermediate results (canceling part of our translation). Since QuBE6.5, which integrates a Qresolution preprocessing, has results worse than those obtained by QuBE-BJ1.2, we think that Q-resolution has a great impact on this problem. In Table 1 

Conclusion

In this work, we proposed dierent logical equivalences allowing to deal with intermediate results involved in bi-implications or xor inside a non prenex QBF.

One consequence of the use of these equivalences is to keep the size of the original QBF, and its number of propositional symbols, during a prenexing process to extract internal quantiers. It is also possible to choose the nature of the quantier of the intermediate propositional symbol and then to reduce the number of alternations of quantiers.

To evaluate the practical impact of our present work, we realized two kinds of experiments. Firstly, we used an articial example exhibited in our motivation section to illustrate that in some cases the usual prenexing process leads to a QBF with an exponential size. Our experimental results show that our new prenexing strategy avoids this exponential growing of the prenex formula. So, an immediate consequence of our contribution is that available QBF solvers are now able to deal with such large QBF, when they were unable to solve very small ones. Secondly, we chose a practical and realistic example: the formal verication of a digital circuit that has to conform to a given specication. The results show the positive impact of our new prenexing strategy. It is worth noting that if Qresolution is used by the solver then the eciency decreases. So, one interesting topic of research may be to study if the eciency of Q-resolution can be restored if it is not applied on intermediate results.

In our future works, we plan to extend our results to the general case of quantiers involved in bi-implications or xor, and not only for intermediate re- and propositional symbols only dedicated to the encoding. Then, we would be able to exploit more information and to evaluate the impact of heuristics, like Q-resolution, on these dierent kinds of propositional symbols.

Formulae φ 1

 1 and φ 2 have been duplicated. Then the quantiers are extracted from the implications: φ 16,13

  In: A set of denitions S def In: A set of propositional symbols Sps Out: A list of denitions L d := nil while there exists (e ↔ d) ∈ S def such that FPS(d) ⊆ Sps do S def := S def without all the denitions on e Sps := Sps ∪ {e} L d := •((e ↔ d), L d ) end while return L d The def _extract algorithm of Function 2 applies the constraint x ∈ FPS(F ) on the set of denitions obtained from the def _search algorithm thanks to a topological sort which extracts a list of denitions. Not all the denitions of the set are inserted in the list: for instance if a ∈ FPS(φ b ), b ∈ FPS(φ a ) and S ps is a set of propositional symbols such that a ∈ S ps nor b ∈ S ps then def _extract(S def , S ps ) = nil otherwise if a ∈ FPS(φ b ) but b ∈ FPS(φ a ) then def _extract(S def , S ps ) = •((b ↔ φ b ), •((a ↔ φ a ), nil)) since

Figures 1 and 2

 2 Figures 1 and 2 report computation time in seconds for th n the chains of biimplications with or without our methodology and converted in prenex CNF for sKizzo, QuBE 6.5 and Quantor and in non prenex NNF for qpro. Actually, the size of the QBF converted in CNF or NNF grows exponentially with n.

Fig. 1 .

 1 Fig. 1. Computation time in seconds for thn the chains of bi-implications for QuBE 6.5 with and without intermediate results translated by rec_def _extraction algorithm and converted in prenex CNF and for qpro with and without intermediate results translated by rec_def _extraction algorithm and converted in non prenex NNF.

Fig. 2 .

 2 Fig. 2. Computation time in seconds for thn the chains of bi-implications with intermediate results translated by rec_def _extraction algorithm and converted in prenex CNF for sKizzo, QuBE 6.5 and Quantor and in non prenex NNF for qpro.

  sults. Another improvement of our present work would be to compare dierent variants of our prenexing strategy since our experimental results show that the nature of the chosen quantier may importantly inuence the resolution time.Moreover, having observed that procedures inside QBF solvers use, more and more often, a structure of quantiers and a non prenex clausal form of QBF, it would be interesting to work directly on the original (non prenex non CNF) encoding of the problem to solve. So, we plan to study how to translate a non prenex non CNF QBF in a non prenex CNF QBF, to sort the propositional symbols in dierent categories: problem propositional symbols, intermediate results

  is the formula obtained from G by replacing each occurrence of the propositional symbol x by the formula F . This denition is also extended as usual for the substitution of a formula by another formula. A valuation v is a function from PS to {true, false} ; the extension to PROP is denoted v * . Propositional satisfaction is denoted |= (v |= F means v * (F ) = true, the propositional formula F is satised by v and v is a model of F ). Logical equivalence is denoted ≡.

	2	Preliminaries
	2.1 Propositional logic.

The set of propositional symbols is denoted by PS. Symbols ⊥ and are the propositional constants. Symbol ∧ stands for conjunction, ∨ for disjunction, ¬ for negation, → for implication, ↔ for bi-implication and ⊕ for xor. A literal is a propositional symbol or the negation of a propositional symbol. Denitions of the language of propositional formula PROP and semantics of all the Boolean symbols are dened in standard way. A formula is in negation normal form (NNF) if it is only constituted of conjunctions, disjunctions and literals. A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals. A substitution is a function from propositional symbols to PROP. This denition is extended as usual to a function from PROP to PROP:

[x ← F ](G)

  2.2 Quantied Boolean Formulae.The symbol ∃ stands for the existential quantier and ∀ stands for the universal quantier (q stands for any quantier). The set QBF of quantied Boolean formulae is dened inductively as follows: if F is in PROP then it is also in QBF; if F is in QBF and x is a propositional symbol then (∃x F ) and (∀x F ) are also in QBF; if F is in QBF then ¬F is also in QBF; if F and G are in QBF and • is in {∧, ∨, →, ↔, ⊕} then (F • G) is in QBF. The set of propositional symbols of a formula F is denoted PS(F ). If a propositional symbol x is not under the scope of a quantier (as in qx), then it is a free propositional symbol. The set of free propositional symbols of a QBF F is denoted FPS(F ). A QBF is closed if its set of free propositional symbols is empty. A binder is a string q 1 x 1 . . . q n x n with x 1 , . . . , x n distinct propositional symbols and q 1 . . . q n quantiers. The empty string is denoted by ε. is the formula obtained from G by replacing free occurrences of the propositional symbol x by the formula F . The semantics of QBF is dened as follows: for every propositional symbol y and every QBF F

A QBF is in prenex form if it is constituted of a binder and a propositional formula called the matrix. A QBF is in conjunctive normal form if it is a prenex QBF and its matrix is in conjunctive normal form. The denition of substitution is extended to QBF as follows: [x ← F ](G)

Table 1 .

 1 Computation time in seconds for the n-bit ripple-carry adder with intermediate results translated by rec_def _extraction algorithm and converted in prenex CNF for sKizzo, QuBE and Quantor and in non prenex NNF for qpro.

	are

also reported the experiments for sKizzo, but without Q-resolution, for which we obtain the best results of our experiments. The improvement provided by our new translation is very substantial.