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Abstract. This work presents a dynamic island model framework for helping the
resolution of combinatorial optimization problems with evolutionary algorithms.
In this framework, the possible migrations among islands are represented by a
complete graph. The migrations probabilities associated to each edge are dynam-
ically updated with respect to the last migrations impact. This new framework is
tested on the well-known 0/1 Knapsack problem and MAX-SAT problem. Good
results are obtained and several properties of this framework are studied.

1 Introduction

Genetic algorithms (GAs) [8] are widely used to tackle NP-hard problems. They are
easy to implement and can provide good results on classic discrete and continuous
optimization problems in term of solutions quality and robustness. Nevertheless, the
efficiency of GAs mainly depends on the representation of configurations [15], the fit-
ness function [26], the mutation and crossover operators used [18] as well as global
parametrization (population size, mutation frequency, diversity control, selections, eli-
tism, . . . ) [10, 9, 22]. Even with a good effort to adapt an efficient GA to a given prob-
lem, one quickly observes on critical problem instances some limitations in terms of
general performance or scalability.

In order to make GAs more powerful, classic techniques include hybridizations with
local search (memetic algorithms [16]) and/or multi-island parallelization schemes [25],
which we are investigating in this paper.

Since twenty years and the first distributed evolutionary algorithms [23], island-
based genetic algorithms (or island models [25]) are more and more studied in the
community. The main problem is to define both the model topology and the migration
policies in order to slow down the general convergence of the population while preserv-
ing the global mixing of promising individuals. Araujo et al. give in [2] a nice review of
state-of-the-art island models, in particular concerning the question of migration poli-
cies. One can observe that an important number of topologies (Gustafson and Burke in
[11] or Rucinski et al. in [19] cite numerous topologies models like chains, rings, hy-
percube and many more) and policies [3, 6, 24, 5, 7, 1], greatly based on local or global
diversity measures, have been defined. In all cases, migration sizes and intervals remain



difficult to fix [21]. In his recent work, Skolicki [20] emphasizes the fondamental in-
teractions between the two levels of evolution in island models: intra-islands and inter-
islands. Ideally, a master intelligent evolution strategy should take advantage of these
interactions and maximize the benefits of migrations. But, depending on the current
intra- and inter-islands situations (traditionnally only with diversity and fitness mea-
sures), it is difficult to predict when individuals have to move, which ones and where,
and for which impact.

These considerations motivate us to develop a dynamic island model framework
which aims to auto-adapt topology and migration policies during the search in function
of some chosen indicators (typically subpopulations properties and previous migrations
effects). A particularity of our dynamic island model is to use a complete graph model-
ing. Nodes represent islands while edges symbolize possible migrations.

Section 2 contains both general and concrete descriptions of our dynamic island
model framework. In section 3, we apply our model to two benchmark problems: 0/1 KP
and MAX-SAT. Section 4 is a short discussion with additional experiments, with a view
to measure the influence of migrations. The conclusion includes future investigations.

2 Dynamic Island Model Framework

2.1 General description

As recalled by [2], several parameters specify an island model, like:

– the number of individuals undergoing migration,
– the frequency of migrations,
– the policy for selecting immigrants,
– the immigrant replacement policy,
– the topology of the communication among subpopulations, and
– the synchronous or asynchronous nature of the connection among subpopulations.

Now, let us propose an island model framework which generalizes all these param-
eters, while giving us the possibility to make the model dynamic.

The island model is materialised by a graph, where vertices symbolize islands (sub-
populations), while edges represent the possibilities of migrations. Each edge is ori-
ented, and valued with the probability for an individual to migrate from an island to
a destination one. The auto-adaptation of this modeling is made with a reward/penalty
mechanism. Migration probabilities (values of the edges) are updated after each mi-
gration cycle in function of the last migration effects. If the island which receives an
individual observes any improvement (resp. deterioration) of its population, then the
corresponding migration probability increases (resp. decreases). Here, the population
quality is impacted by the average fitness of individuals as well as their diversity if the
modeling imposes it.

The dynamic control of parameters like migration rate, can produce different size
islands (unless we specifically forbid it). This mechanism prevents poor-quality subpop-
ulations to require as many computational effort as promising ones, and manages the
merging of populations. If different islands represent different mutation operators, local
search effort or local parametrization, then the algorithm will dynamically provides a
well-adapted repartition of individuals considering the search progression.



2.2 Practical use of the framework

0.50

0.70

0.95

0.20

0.05

0.50 0

0.10

0
i1

i2

i3

0.50

0.70

0.95

0.20

0.05

0.50 0

0.10

0
i1

i2

i3

0.50

0.65

0.85

0.30

0.10

0.40 0.05

0.05

0.10
i1

i2

i3

a b c

Fig. 1. Communication among subpopulations with a complete graph representation

Figure 1 is an example of our Island Model framework with three islands (i1, i2 and
i3). Figure 1.a represents islands with their individuals as well as the migration values
(probabilities) from an island to another. In figure 1.b, the destination for each individ-
ual are chosen with respect to the values. Most of them remain in the same island (due
to the probability values close to 1) but several individuals migrate to other islands (two
individuals go from i1 to i2 and one from i3 to i2). After those migrations, on each
island, operators like crossover, migration, or local search, are applied on the individu-
als. If an offspring individual (i.e. an individual obtained by crossover) improves (resp.
deteriorates) the population, then its parents are used to update the migration values.
For each parent, the values of edges between the last visited island and the current one
are increased (resp. decreased) to take into account the impact of the migration. For
instance, on Figure 1.c, if we only observe i2 and a reward/penaly fixed to 5 points
(±0.05), several values are updated:

– (i1 → i2) decreases from 0.50 to 0.40, because the two indivduals becoming from
i1 have produced individual offspring deterioring the population of i2;

– (i2 → i2) decreases from 0.95 to 0.85, because individuals of island i2 do not
improve the population of i2;

– (i3 → i2) increases from 0.20 to 0.30, because the individual becoming from i3 has
produced individual offsprings improving the population of i2;

– due to normalization, other values in relation with i2 have to be adjusted.

3 Results

In this section we propose to measure the overall efficiency of the Dynamic Island
Model scheme (DIM), applied to two well-known NP-hard problems: 0/1 Knapsack
problem and MAX-SAT problem. For this study, the main goal is not to propose a
ready-to-use algorithm which outperforms best available softwares, but to measure the
global relevance of such a model. For this purpose, we compare for both problems the
performance of four basic configurations of the GA:



– A classic 1-island GA (GAclassic),
– A standard DIM algorithm (DIMstand),
– A specially-parametrized DIM algorithm with uni-directional ring topology DIMring,

which simulates a classic island-based GA with rotative migrations (at each migra-
tion process, best individuals migrate to the following populations),

– A parallel GA (GA�), with several islands but no migration.

Let us notice that a classic GA corresponds to an island-based GA where migration
intervals are minimal, while the parallel partitioned GA (GA�) is an island-based GA
with no migrations (i.e. infinite migration intervals).

3.1 Genetic algorithms characteristics

The four configurations of the GA have two types of characteristics. All the numerical
values are empirically obtained and confirmed by the REVAC method [17].

1. Intra-islands characteristics:
– type of population management: steady state
– elitism: yes
– selection: tournament
– mutation: random on offspring with probability 0.5
– crossover: uniform crossover

2. Inter-islands characterisics:
– islands number: 20
– total number of individuals: 600
– starting repartition: well-balanced (30 individuals per island)
– total number of crossovers: 216000 (360 × 600 individuals)
– initial migration probabilities: see below
– reward: 5 points
– penalty: 5 points

The number of crossovers in an island between two migrations is proportional to its
number of individuals. This choice ensures the same crossover rate per island, whatever
its size.

Initial migration probabilities To give the same attractive power to each island, the
initial migration probabilities must be symmetric. At the beginning, we fix a highest
probability to stay on the same island than to move to another one, in order to exploit
initial populations. For instance, the initial matrix corresponding to an island model
with three islands can be the next one:

Destination
i1 i2 i3

Source
i1 0.75 0.125 0.125
i2 0.125 0.75 0.125
i3 0.125 0.125 0.75



3.2 Experimental Settings

Algorithms used in our experiments are applied 10 times for each instance. To be sure
that the difference of behaviours is not due to the initial populations and other stochastic
factors, 10 distinct random seeds are used by each algorithm. Results presented in the
tables are averages; standard deviations are not mentioned since they are very low.

3.3 0/1 Knapsack Problem

The Knapsack Problem (KP) is a well-known combinatorial problem. Given n items
whose weights wi and values vi are known (xi ∈ {1, . . . , n}), the goal is to find a
subset of items of maximal value such that the total weight is less than a given capacity
W . In the most common 0/1 KP, each item can be selected only once (xi ∈ {0, 1},
where xi is the number of selected copies of object i).

More precisely, 0/1 KP is shortly formulated as an optimization problem by:

maximize
n∑

i=1

vixi, s.t.
n∑

i=1

wixi ≤ W,xi ∈ {0, 1}

For more information on 0/1 KP, we invite the reader to refer to [12].
Island-based algorithms DIMstand and DIMring, as well as edgeless topologies

GAclassic and GA�, have been tested on five 0/1 KP instances. Instances have been
generated according to the definition given by [4] and the generator proposed in [13],
with the following parameters:

– number of items ∈ {100, 250, 500, 1000, 2000}
– range of coefficient: 10000
– type: avis subset-sum
– number of tests in series: 1000

Experiments have shown that only the three last instances (those with resp. 500,
1000 and 2000 items) are representative for comparison, the two first ones appearing
too much easy to solve, with similar results for all algorithms. Consequently, we only
focus on three random instances: n500, n1000 and n2000.

Table 1 shows the efficiency of each method on these instances. It is not surprising
that the Dynamic Island Model outperforms traditional GAs. However, performance
differences are quite important, taking into account that last improvements are partic-
ularly hard to find for knapsack problems. An interesting point is that, in this experi-
ment, the classic rotative scheme (DIMring) is not competitive; comparatively, the clas-
sic GA works even better for the two hardest instances. The main reason is probably the
relatively-small size of islands (20 individuals), which is adaptative in DIMstand while
it remains unchanged during the entire process in DIMring.

3.4 MAX-SAT Problem

In order to test the DIM framework with an other problem, we try to handle the MAX-
SAT problem. Given a Boolean formula in CNF (conjunction of clauses which are dis-
junctions of literals), the aim is to provide an assignment to the Boolean variables such



Instance GA DIMstand DIMring GA�
n500 755 626.54 760 620.50 755 818.38 748 230.25
n1000 1 485 393.86 1 502 549.22 1 483 248.36 1 465 757.47
n2000 2 866 752.92 2 910 891.46 2 853 072.50 2 832 290.37

Table 1. Comparison between DIM and classic GAs

that the number of true clauses is maximum. The formula is satisfiable iff it exists an
assignment which makes true all the clauses.

Three instances are used for our experiments:

– f600: random instance with 600 variables and 2550 clauses;
– f1000: random instance with 1000 variables and 4250 clauses;
– qg1-7.suffled: latin square instance with 686 variables and 6816 clauses.

All these instances are satisfiable thus there is an assignment of the Boolean vari-
ables satisfying all the clauses.

Instance Nb Clauses GA DIMstand DIMring GA�
f600 2550 2513.80 2533.40 2518.70 2357.20
f1000 4250 4174.20 4208.90 4174.10 3890.50
qg1-7.shuffled 6816 6756.30 6787.00 6776.50 6211.70

Table 2. Comparison between DIM and classic GAs

In table 2, we observe that DIMstand provides the best results on the three instances.
GA� is the worst and GA obtains a little less interesting results than DIMring. The
results for DIMstand and DIMring are computed with the best migration frequency
empirically found. In the next section, a more detailled study of this parameter is given.

4 Discussion

As seen in section 3.3 and 3.4, DIMstand provides very promising results with respect
to the other GAs. The difference between DIMstand and DIMring is only concerning
the type of migration, whereas the difference among GA�, GA and DIMstand is the
migrations periodicity. This periodicity is given by a mean number of crossovers per
individuals. Then, the number of crossovers between two migrations differs from an
island to another and depends on their size (number of individuals).

GA can be considered as an island model with a very weak migrations periodicity
and GA� with a very strong migrations periodicity (recall that a weak periodicity cor-
responds to a high frequency). Between these two algorithms, a dynamic island model
can use different frequencies which provide different algorithm behaviours. In figure 2,
one can observe the impact of the migrations periodicity on all the studied 0/1 KP and
MAX-SAT instances in this paper.
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Fig. 2. Powerfull of the DIM with several values of migrations periodicity

It is interesting to see that, when the migrations periodicity is higher than 8 crossovers
per individual, DIMstand and DIMring provide equivalent results. A possible explana-
tion of this behavior is that the population is converging before the first migration.
Indeed, in our experiments, 240 crossovers are applied on the population of each island
before the first migration. If each population only contains clones after these crossovers,
then rotative migration provides the same effect than the complete graph migration
scheme. Let us precise that in this study, we have deliberately not regulated the diver-
sity of the population, in order to observe more precisely the behaviour of the models.
That is the reason for which scores are lower than those shown in Table 2.



An other observation is the weak difference among the results obtained by DIMring

for all values of migrations periodicity. Except for instance qg1-7.suffled, where
results are better with a small periodicity, this parameter seems not determinant for the
rotative migration scheme.

With a migrations periodicity smaller than 8, the complete graph migration scheme
is clearly better than the rotative one. For the 0/1 KP instances, value 6 seems to be
the best periodicity. For MAX-SAT instances, a small periodicity provides very good
results. The reason is probably that a small periodicity avoid the convergence of all the
populations.

It is clear that the migration periodicity is an important parameter for DIMstand. A
next work will be to control it with autonomous mechanism like in [14].

5 Conclusion

In this work, we have introduced a dynamic island model framework, which aims both
to generalize migration toplogies and to auto-regulate migration policies. First, the com-
plete graph modeling allows every definition of topologies, from edgeless graphs (stan-
dard sequential or parallel genetic algorithms) to well-studied island model topologies
like uni-directional or bi-directional rings, lattices, hypercubes, full topologies or any-
thing else. If the dynamic regulation is activated, then the topology is evolving during
the search following the rewards and penalties due to previous migration effects. Con-
trary to traditional island model mechanisms, where migrations are evaluated a priori
in measuring divergence between individuals (which is much more a guided repartition
of individuals to provide diversity, but a nonsense in a nature-inspired algorithm), we
encourage (resp. dissuade) moves of which previous executions and produced mixing
yield good (resp. weak) offsprings, in term of fitness and/or diversity. During the search,
this auto-regulation of migration probabilities makes the model more or less dynamic in
terms of number of migrations, which favouring either diversification, or intensification.

Experiments realized on two major combinatorial problems like 0/1 KP and MAX-
SAT show that this dynamic scheme, even with basic parametrization, provides good
results, notably if we compare its performance with a classic uni-directional ring mi-
gration topology.

The most promising prospect of our ongoing and future works is to parametrize
differently each island. One can imagine that different islands can work with their own
rules in terms of mutation or crossover operators, selection or replacement criterions for
instance. In particular, considering local search operators, if different islands working
with different operators, or different parametrizations of the search (more intensive or
more stochastic), are coexisting within a dynamic island model, it would be interesting
to observe the evolution of each island activity during the search. We think that such a
model can provide an adaptative operator selection as well as a diversity regulation due
to the island topology.
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