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Abstract. Constraint satisfaction problems (CSP) or Boolean satis-
fiability problem (SAT) are two well known paradigm to model and
solve combinatorial problems. Modeling and resolution of CSP is often
strengthened by global constraints (e.g., Alldiff constraint). This paper
highlights two different ways of handling specific structural information:
a uniform propagation framework to handle (interleaved) Alldiff con-
straints with some CSP reduction rules; and a SAT encoding of these
rules that preserves the reduction properties of CSP.

1 Introduction

During the last decades, two closely related communities have focused on the
resolution of combinatorial problems. On the one hand, the SAT community has
developed very efficient algorithms to handle the seminal Boolean satisfaction
problem which model is very simple: Boolean variables and CNF propositional
formulas. The complete resolution techniques (i.e., able to decide if an instance
is satisfiable or not) mainly rely on the DPLL procedure [6] whereas incomplete
algorithms are mostly based on local search procedures [11]. In addition, very
sophisticated techniques (e.g., symmetries detection, learning, hybrid heuristics)
were proposed to build very efficient solvers able to handle huge and very dif-
ficult benchmarks. On the other hand, the constraint programming community
has focus on the resolution of discrete constraint satisfaction problems (CSP).
This paradigm provides the user with a more general modeling framework: prob-
lems are expressed by a set of decision variables (which values belong to finite
integer domains) and constraints model relations between these variables. Con-
cerning the resolution algorithms, complete methods aim at exploring a tree by
enumerating variables and reducing the search space using constraint propaga-
tion techniques, while incomplete methods explore the search space according
to specific or general heuristics (metaheuristics). Again, much work has been
achieved to define very efficient propagation algorithms and search heuristics.
Concerning this resolution aspect, the two paradigms share some common prin-
ciples (see [5] for a comparative survey). Here, we focus on complete methods
that aim at exploring a tree by enumerating variables (finite domain variables



or Boolean ones) and reducing the search space using propagation techniques
(constraint propagation or unit propagation).
The identification of typical constraints in CSP (so-called global constraints) has
increased the declarativity, and the development of specialized algorithms has
significantly improved the resolution performances. The first example is certainly
the Alldiff constraint [15] expressing that a set of variables have all different val-
ues. This constraint is very useful since it naturally appears in the modeling of
numerous problems (timetabling, planning, resource allocation, ...). Moreover,
usual propagation techniques are inefficient for this constraint (due to limited do-
main reduction when decomposing the constraint into n∗(n−1)/2 disequalities)
and specific algorithms were proposed to boost resolution [18]. On the SAT side,
no such high level modeling feature is offered. As a consequence, benchmarks
(e.g., industrials ones) are often incomprehensible by users and sophisticated pre-
processings should be used to simplify their structures. Hence, it could be useful
to provide a more declarative approach for modeling problems in SAT by adding
an intermediate layer to translate high level constraints into propositional for-
mulas. Systematic basic transformations from CSP to SAT have been proposed
[9, 21, 8] to ensure some consistency properties to the Boolean encodings. Even
if some specific relationships between variables (e.g., equivalences) are handled
specifically by some SAT solvers, global constraints must be transformed into
clauses and properties can then be established according to the chosen encodings
[2, 3, 10, 12]. When modeling problems, the user has often to take into account
several global constraints, which may share common variables. Therefore, while
the global constraint approach was a first step from basic atomic constraints to
more powerful relations and solvers a recent step consists in handling efficiently
combinations of global constraints (e.g., [19, 20, 14]).
We focus on possibly interleaved (i.e., sharing variables) Alldiff constraints, such
as it appears in numerous problems (e.g., Latin squares, Sudoku [16]). Our pur-
pose is twofold. 1) We want to provide, on the CSP solving side, a uniform
propagation framework to handle possibly interleaved Alldiff constraints. From
an operational point of view, we define propagation rules to improve resolution
efficiency by tacking into account specific properties. 2) We also want to gener-
alize possible encodings of (multiple) Alldiff constraints in SAT (i.e., by a set of
CNF formulas). Our purpose is to keep the reduction properties of the previous
propagation rules. Therefore, our encodings are fully based on these rules. Our
goal is not to compare the efficiency of CSP reductions versus their SAT encod-
ings (nor to compete with existing solvers), but to generate CSP rules and SAT
encodings that are solver independent; if one is interested in better efficiency,
the solvers can then be improved (based on the CSP rules structures or on the
SAT formulas structures) to take advantage of their own facilities.

2 Encoding CSP vs. SAT

CSP: Basic Notions A CSP (X,C,D) is defined by a set of variables X =
{x1, · · · , xn} taking their values in their respective domains D = {D1, · · · , Dn}.



A constraint c ∈ C is a relation c ⊆ D1×· · ·×Dn. A tuple d ∈ D1×· · ·×Dn is a
solution if and only if ∀c ∈ C, d ∈ c. We consider C as a set of constraint (equiv-
alent to a conjunction). Usual resolution processes [1, 5] are based on two main
components: reduction and search strategies. Search consists in enumerating the
possible values of a given variable to progressively build and reach a solution.
Reduction techniques are added at each node to reduce the search space (local
consistency mechanisms): the idea is to remove values of variables that cannot
satisfy the constraints. This approach requires an important computational effort
and performances can be improved by adding more specific techniques, e.g., effi-
cient propagation algorithms for global constraints. We recall a basic consistency
notion (the seminal arc consistency is the binary subcase of this definition).

Definition 1 (Generalized Arc Consistency (GAC)). A constraint5 c on

variables (x1, · · · , xm) is generalized arc-consistent iff ∀k ∈ 1..m, ∀d ∈ Dk,
∃(d1, · · · , dk−1, dk+1, · · · dn) ∈ D1 × · · · ×Dk−1 ×Dk+1 × · · · ×Dn,
s.t. (d1, · · · , dm) ∈ c.

Domain Reduction Rules Inspired by [1], we use a formal system to pre-
cisely define reduction rules to reduce domains w.r.t. constraints. We abstract
constraint propagation as a transition process over CSPs. A domain reduction
rule is of the form:

(X,C,D)|Σ
(X,C,D′)|Σ′

where D′ ⊆ D and Σ and Σ′ are first order formulas (i.e., conditions of the
application of the rules) such that Σ∧Σ′ is consistent. We canonically generalize
⊆ to sets of domains as D′ ⊆ D iff ∀x ∈ X D′

x ⊆ Dx. Given a set of variables
V , we also denote DV the union

⋃

x∈V Dx. #D is the set cardinality.

Given a CSP (Xk, Ck, Dk), a transition can be performed to get a reduced CSP
(Xk+1, Ck+1, Dk+1) if there is an instance of a rule (i.e., a renaming without
variables’ conflicts):

(Xk, Ck, Dk)|Σk

(Xk+1, Ck+1, Dk+1)|Σk+1

such that Dk |=
∧

x∈X x ∈ Dk
x ∧Σk, and Dk+1 is the greatest subset of Dk such

that Dk+1 |=
∧

x∈X x ∈ Dk+1
x ∧Σk+1.

In the conclusion of a rule (in Σ), we use the following notations: d 6∈ Dx

means that d can be removed from the domain of the variable x (without loss
of solution); similarly, d 6∈ DV means that d can be removed from each domain
variables of V ; and d1, d2 6∈ Dx (resp. DV ) is a shortcut for d1 6∈ Dx ∧ d2 6∈ Dx

(resp. d1 6∈ DV ∧ d2 6∈ DV ).
Since we only consider here rules that does not affect constraints and variables,
the sets of variables will be omitted and we highlight the constraints that are
required to apply the rules by restricting our notation to < C,D >. We will say

5 This definition is classically extended to a set of constraints.



that < C,D > is GAC if C is GAC w.r.t. D. For example, a very basic rule to
enforce basic node consistency [1] on equality could be:

< C ∧ x = d,D > |d′ ∈ Dx, d
′ 6= d

< C ∧ x = d,D′ > |d′ 6∈ D′
x

This rule could be applied on < X = 2, {DX ≡ {1, 2, 3}} > with 3 ∈ DX , 3 6= 2
to obtain < X = 2, {DX ≡ {1, 2}} >; and so on.

The transition relation using a rule R is denoted < C,D >→R< C,D′ >. →R ∗
denotes the reflexive transitive closure of →R. It is clear that →R terminates
due to the decreasing criterion on domains in the definition of the rules (see
[1]). This notion can be obviously extended to sets of rules R. Note also that we
require that the result of →R ∗ is independent from the order of application of
the rules [1] (this is obvious with the rules that we use). From a practical point
of view, it is generally faster to first sequence rules that execute faster.

SAT: Basic Notions An instance of the SAT problem can be defined by a pair
(Ξ, φ) where Ξ is a set of Boolean variables Ξ = {ξ1, ..., ξn} and φ is a Boolean
formula φ: {0, 1}n → {0, 1}. The formula is said to be satisfiable if there exists an
assignment σ:Ξ → {0, 1} satisfying φ and unsatisfiable otherwise. The formula
φ is in conjunctive normal form (CNF) if it is a conjunction of clauses (a clause
is a disjunction of literals and a literal is a variable or its negation).
In order to transform our CSP (X,D,C) into a SAT problem, we must define
how the set Ξ is constructed from X and how φ is obtained. Concerning the
variables, we use the direct encoding [21] : ∀x ∈ X, ∀d ∈ Dx, ∃ξdx ∈ Ξ (ξdx is true
when x has the value d, false otherwise).
To enforce exactly one value for each variable, we use the next clauses:

∧

x∈X

∨

d∈Dx
ξdx and

∧

x∈X

∧

d1,d2∈Dx
d1 6=d2

(¬ξd1
x ∨ ¬ξd2

x )

Given a constraint c ∈ C, one may add for all tuples d 6∈ c, a clause recording this
nogood value or use other encodings based on the valid tuples of the constraint
[2]. One may remark that it can be very expensive and it is strongly related to
the definition of the constraint itself. Therefore, as mentioned in the introduc-
tion, several work have addressed the encodings of usual global constraints into
SAT [3, 10, 12]. Here, our purpose is to define uniform transformation rules for
handling multiple Alldiff constraints, which are often involved in many problems.
From the resolution point of view, complete SAT solvers are basically based
on a branching rule that assign a truth value to a selected variable and unit
propagation (UP) which allows to propagate unit clauses in the current formula
[5]. This principle is very close to the propagation of constraints achieved by
reduction rules to enforce consistency. Therefore, we will study the two encodings
CSP and SAT from this consistency point of view. According to [21, 2], we say
that a SAT encoding preserves a consistency iff all variables assigned to false by
unit propagation have their corresponding values eliminated by enforcing GAC.
More formally, given a constraint c, UP leads to a unit clause ¬ξdx iff d is not
GAC with c (d is removed from Dx by enforcing GAC) and if c is unsatisfiable
then UP generates the empty clause (enforcing GAC leads to an empty domain).



Fig. 1. Application of [O2]

3 Alldiff Constraints: Reduction rules and Transformation

In the following, we classically note Alldiff(V ) the Alldiff constraint on a subset
of variables V , which semantically corresponds to the conjunction of n∗(n−1)/2
pairwise disequality constraints

∧

xi,xj∈V,i6=j xi 6= xj .

A Single Alldiff constraint We first reformulate a well known consistency
property [15, 18] w.r.t. the number of values remaining in the domain of the
variables. This case corresponds of course to the fact that if a variable has been
assigned then the corresponding value must be discarded from other domains.

[O1]
< C ∧ Alldiff(V ), D > |x ∈ V ∧ Dx = {d1}

< C ∧ Alldiff(V ), D′ > |d1 6∈ D′
V \{x}

Property 1. If < Alldiff(V ), D >→∗
[O1]< Alldiff(V ), D′ >, then the corre-

sponding conjunction
∧

xi,xj∈V xi 6= xj is GAC w.r.t. < D′ >. Note that enforc-

ing GAC on the disequalities with [O1] reduces less the domains than enforcing
GAC on the global Alldiff constraint.

This rule can be generalized when considering a subset V ′ of m variables with
m possible values, 1 ≤ m ≤ (#V − 1):

[Om]
< C ∧ Alldiff(V ), D > |V ′ ⊂ V ∧ DV ′ = {d1, . . . , dm}

< C ∧Alldiff(V ), D′ > |d1, . . . , dm 6∈ D′
V \V ′

Consider m = 2, and that two variables of an Alldiff only have the same two
possible values. Then it is trivial to see that these two values cannot belong to
the domains of the other variables (see Figure 1).

Property 2. Given < Alldiff(V ), D >→∗
[Om]1≤m≤(#V −1)

< Alldiff(V ), D′ >,

then < Alldiff(V ), D′ > has the GAC property.

The proof can be obtained from [15]. Now, the Alldiff constraints can be trans-
lated in SAT, by encoding [O1] for a variable x with a set of #V ∗ (#V − 1)
CNF clauses:

[SAT −O1]
∧

x∈V

∧

y∈V \{x}(¬ξ
d
x ∨ (

∨

f∈Dx\{d}
ξfx) ∨ ¬ξdy)

This representation preserves GAC. Indeed, if ¬ξdx is false (i.e. when the variable
x is valued to d) and

∨

f∈Dx1\{d}
ξfx1

is false (i.e., when the variable x1 is valued

to d) then ¬ξdx2
must be true to satisfy the clause (x2 cannot be valued to d).



Generalized to a subset V ′ of m variables {x1, ..., xm} with m possible values
{d1, . . . , dm}, 1 ≤ m ≤ (#V − 1), the #(V \ V ′) ∗mm+1 clauses are:

[SAT −Om]
∧

y∈V \V ′

∧m

k=1

∧m

p1=1 . . .
∧m

pm=1

[

(
∨m

s=1 ¬ξ
dps
xs )∨

(
∨m

i=1

∨

f∈Dxi
\{d1,...,dm} ξ

f
xi

)

∨ ¬ξdk
y

]

Property 3.
⋃

1≤m≤#V−1[SAT −Om] preserves the GAC property.

Proof. As mentioned above, our transformation is directly based on consistency
rules and therefore Property 2 remains valid for the SAT encoding. This can be
justified through the propositional rewriting of the direct encoding of [Om] into
[SAT −Om] (not given here for lack of space). ¡

4 Multiple Overlapping Alldiff Constraints

In presence of several overlapping Alldiff constraints, specific local consistency
properties can be enforced according to the number of common variables, their
possible values, and the number of overlaps. To simplify, we consider Alldiff con-
straints Alldiff(V ) such that #V = #DV . This restriction could be weaken but
it is generally needed by classical problems (e.g., Sudoku or Latin squares). We
now study typical connections between multiple Alldiff. Therefore, we consider
simultaneously several constraints in the design of new rules to achieve GAC.

Several Alldiff connected by one intersection This is a simple propagation
rule: if a value appears in variables of the intersection of two Alldiff, and that it
does not appear in the rest of one of the Alldiff, then it can be safely removed
from the other variables’ domains of the second Alldiff.

[OI2]
< C ∧ Alldiff(V1) ∧ Alldiff(V2), D > |d ∈ DV1∩V2 ∧ d 6∈ DV2\V1

< C ∧ Alldiff(V1) ∧ Alldiff(V2), D
′ > |d 6∈ D′

V1\V2

[OI2] is coded in SAT as #DV1∩V2 ∗#(V1 ∩ V2) ∗#(V 1 \ V2) clauses:

[SAT −OI2]
∧

d∈DV1∩V2

∧

x1∈V1∩V2

∧

x2∈V1\V2

∨

x3∈V2\V1
(¬ξdx1

∨ ξdx2
∨ ¬ξdx3

)

[OI2] can be extended to [OIm] to handle m (m ≥ 2) Alldiff constraints
connected by one intersection. Let denote by V the set of variables appearing in
the common intersection: V =

⋂m

i=1 Vi

[OIm]
< C

∧m

i=1 Alldiff(Vi), D > |d ∈ DV ∧ d 6∈ DV1\V

< C
∧m

i=1 Alldiff(Vi), D
′ > |d 6∈

⋃m

i=2 D
′
Vi\V

Note that this rule can be implicitly applied to the different symmetrical possible
orderings of the m Alldiff.
[OIm] is translated in SAT as #DV ∗#V ∗

∑m

i=2

(

#(Vi \ V )
)

clauses:

[SAT −OIm]
∧

d∈DV

∧

x1∈V

∧m

i=2

∧

x3∈Vi\V

∨

x2∈V1\V
(¬ξdx1

∨ ξdx2
∨ ¬ξdx3

)



Fig. 2. [OI2]∗ reduces more than [OIm]

Property 4. Consider m > 2 Alldiff with a non empty intersection. Given <
C,D >→∗

[OIm]< C,D′ > and < C,D >→∗
[OI2]< C,D′′ >, then D′′ ⊆ D′.

The proof is straightforward (see illustration on Figure 2). Consider the appli-
cation of [OIm]: 9 ∈ V1 ∩ V2 ∩ V3, and 9 is not in the rest of V1; thus, 9 can be
removed safely from V2 and V3 (except from the intersection of the 3 Alldiff); no
other application of [OIm] is possible, leading to the second grid. Now, consider
the application of [OI2] on the initial grid: first between V1 and V2; 9 ∈ V1 ∩ V2

and 9 is not in the rest of V1; thus, 9 can be removed from V2; the same for 2;
[OI2] on V1 and V3 removes 9 from the rest of V3; applying [OI2] on V3 and
V2 does not perform any effective reduction; this leads to the 3rd grid which is
smaller than the second.
Although one could argue that [OIm] is useless (Prop. 4) in terms of reduction,
in practice [OIm] can be interesting in terms of the number of rules to be applied.
Moreover, [OIm] can be scheduled before [OI2] to reduce the CSP at low cost.

Several Alldiff connected by several intersections We first consider 4
Alldiff having four non-empty intersections two by two (see Figure 3). Vij

(respectively Vi,j) denotes Vi ∪ Vj (respectively Vi ∩ Vj). V now denotes the
union of the four intersections: V = V1,2 ∪ V2,3 ∪ V3,4 ∪ V1,4.

[SI4.4]

< C
∧4

i=1 Alldiff(Vi), D > |
V1,2 6= ∅ ∧ V2,3 6= ∅ ∧ V3,4 6= ∅ ∧ V1,4 6= ∅ ∧ d ∈ DV ∧ d 6∈ DV13\V24

< C
∧4

i=1 Alldiff(Vi), D
′ > |d 6∈ D′

V24\V13

d must at least be an element of 2 opposite intersections (at least d ∈ V1,2 ∩V3,4

or d ∈ V2,3 ∩ V1,4) otherwise, the problem has no solution. Our rule is still valid
in this case, and its reduction will help showing that there is no solution.
Translated in SAT, we obtain #DV ∗ #V ∗ #(V24 \ V13) clauses with V1,2 6=
∅ ∧ V2,3 6= ∅ ∧ V3,4 6= ∅ ∧ V1,4 6= ∅:

[SAT − SI4.4]
∧

d∈DV

∧

x1∈V

∧

x3∈V24\V13

∨

x2∈V13\V24
(¬ξdx1

∨ ξdx2
∨ ¬ξdx3

)



This rule can be generalized to a ring of 2m Alldiff with 2m non-empty in-
tersections. Let V be the union of the variables of the 2m intersections: V =
⋃2m

i=1 (Vi ∩ V(i mod 2m)+1). Vodd (respectively Veven) represents the union of the

Vk such that k is odd (resp. even):
⋃m−1

i=0 V2i+1 (resp.
⋃m

i=1 V2i).

[SI2m.2m]

< C
∧2.m

i=1 Alldiff(Vi), D > |
∧2.m

i=1(Vi ∩ V(i mod 2m)+1 6= ∅) ∧ d ∈ DV ∧ d 6∈ DVodd\V

< C
∧2.m

i=1 Alldiff(Vi), D
′ > |d 6∈ D′

Veven\V

These are #DV ∗#V ∗#(Veven\V ) SAT clauses s.t.
∧2.m

i=1(Vi∩V(i mod 2m)+1 6= ∅):

[SAT − SI2m.2m]
∧

d∈DV

∧

x1∈V

∧

x3∈Veven\V

∨

x2∈Vodd\V
(¬ξdx1

∨ ξdx2
∨ ¬ξdx3

)

The reduction we obtain by applying rules for a single Alldiff and rules for several
Alldiff is stronger than enforcing GAC:

Property 5. Given a conjunction of constraints C =
∧k

i=1 Alldiff(Vi) and a

set of domains D. Given 2 sets of rules R′ =
⋃maxi{#Vi}

l=1 {[Ol]} and R ⊆
{[OI2], . . . , [OIm], [SI4.4], . . . , [SI2m.2m]}. Consider < C,D >→∗

R′< C,D′ >
and < C,D >→∗

R′∪R< C,D′′ > then < C,D′ > and < C,D′′ > are GAC and
moreover D′′ ⊆ D′.

The proof is based on the fact that
⋃maxi{#Vi}

l=1 {[Ol]} already enforces GAC and
that the [OIm], [SI2m.2m] preserves GAC.

Property 6. [SAT−OI2] (respectively [SAT−OIm], [SAT−SI4.4], and [SAT−
SI2m.2m]) preserves the consistency property of [OI2] (respectively [OIm],
[SI4.4], and [SI2m.2m]).

The proof is similar to the proof of [SAT-Om] ⇐⇒ [Om] of Property 3.

5 Evaluation

To evaluate these rules, we use them with the SAT and CSP approaches on the
Sudoku problem. The Sudoku is a well-known puzzle (e.g., [17]) which can be

Fig. 3. Example of [SI4.4]



easily encoded as a constraint satisfaction problem: it is generally played on a
9 × 9 partially filled grid, which must be completed using numbers from 1 to 9
such that the numbers in each row, column, and major 3×3 blocks are different.
More precisely, the n× n Sudoku puzzle (with n = m2) can be modeled by 3.n
Alldiff constraints over n2 variables with domain [1..n]:

– A set of n2 variables X = {xi,j |i ∈ [1..n], j ∈ [1..n]}
– A domain function D such that ∀x ∈ X , D(x) = [1..n]
– A set of 3.n variables subsets B = {C1...Cn, L1...Ln, B1,1, B1,2, . . . , Bm,m}

defined as ∀xij ∈ X , xij ∈ Cj , xij ∈ Li, xij ∈ B((i−1)÷m)+1,((i−1)÷m)+1

– A set of 3.n Alldiff : ∀i ∈ [1..n], Alldiff(Ci), ∀j ∈ [1..n], Alldiff(Lj),
∀k, k′ ∈ [1..m], Alldiff(Bkk′)

Sudoku puzzle is a special case (i.e., more constrained) of Latin Squares, which
do not require the notion of blocks nor the Alldiff constraints over the blocks.

SAT approach We now compute the size of the SAT model for a Sudoku of
size n by computing the number of generated clauses by each rule:

Number of clauses Complexity

Definition of the vari-
ables

n2 + n
3(n−1)

2
O(n4)

[SAT-Om]
∀m ∈ {1..n − 1} 3n

∑

n−1
m=1

(

(m
n
)2(n−m)mm+1

)

O(n3n+3)

[SAT-OIm] ∀m ∈ {2, 3} n3(9n− 4
√
n− 5) O(n4)

[SAT-SI2m.2m]
with m = 2

6n6 − 32n5 +
√
n
(

12n4 − 12n3
)

+ 34n4 − 8n3 O(n6)

In the following, we consider 9× 9 grids. To encode such a Sudoku of size 9, the
minimum number of clauses is 20493 (definition of the variables and [SAT-O1])
whereas encoding all the rules generates approximately 886× 109 clauses. This
increase of the number of clauses is mainly due to [SAT-Om] (see Figure 4).
Thus it is not practicable to generate Sudoku problems in SAT including initially
all the rules. To observe the impact of these rules on the behavior of SAT solvers,
we run Zchaff [13] on 9 Sudoku grids coded with:

– Definition of the variables + [SAT-O1]
– Definition of the variables + [SAT-O1] + [SAT-O2]
– Definition of the variables + [SAT-O1] + [SAT-OI2]
– Definition of the variables + [SAT-O1] + [SAT-O2] + [SAT-OI2]

Figure 5 illustrates the encoding impact on the behavior of Zchaff. For some in-
stances, [SAT-O2] improves the results. We suppose that the performances using
the other [SAT-Om] could be better. These results confirm Property 5 because
[SAT-OI2] does not improve the behavior if [SAT-O2] is present. We can observe
that the worst performances are obtained when [SAT-OI2] is combined to the
basic definition of the problem. This rule is probably rarely used but its clauses
may disrupt the heuristics. Nevertheless, the costly but powerful could be added
dynamically, during the resolution process in order to boost unit propagation.
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Fig. 4. Number of clauses generated by [SAT-Om] for each value of m with n = 9

CSP approach From a CSP point of view, we have few rules to manage. How-
ever, the combinatoric/complexity is pushed in the rule application, and more
especially in the matching: the head of the rule must be tried with all possible
configurations of the constraints, and the guard must be tested. Implementing
our rules in CHR (SWI-Prolog version) as propagation rules is straightforward
but a generic implementation is rather inefficient: the matching of the head of
the rule is too weak, and a huge number of conditions have to be tested in the
guard. We thus specialized the CHR rules for arrays of variables, which is thus
well suited for problems such as Latin Squares and Sudoku. The rules are also
scheduled in order to first apply less complex rules, i.e., the rules that are faster
to apply (strong matching condition and few conditions in the guard), and which
have more chance to effectively reduce the CSP. However, we are still working
on the implementation to improve the matching. For example, by particularizing
[O7] to the Sudoku, we obtained a speed up of up to 1000 for some Sudokus. We
also implemented some rules as new propagators in GeCode. The preliminary
results are promising, and we plan to improve propagation time with a better
scheduling of propagators, such as applying complex rules when all standard
propagators have already reached a fixed point.

6 Related Work and Conclusion

Global constraints in CSP Recent works deal with the combination of sev-
eral global constraints. [19] presents some filtering algorithms for the sequence
constraint and some combinations of sequence. [20] studied the conjunction of
open global cardinality constraints with specific restrictions. [14] describes the
cardinality matrix constraint which imposes that the same value appears p times
in the variables of each row (of size n), and q times in the variables of each col-
umn (of size m). Consider some Alldiff constraints on the rows and columns of a
matrix, this is a special case of the cardinality matrix constraint with p = q = 1.
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However, this constraint forces each Alldiff to be of size n or m while with our
rules, they can be of different sizes.

Nevertheless, theses approaches require some specialized and complex algorithms
for reducing the domains, while our approach allows us to simplify and unify the
presentation of the propagation rules and attempts at addressing a wider range
of possible combinations of Alldiff.

From the modeling point of view, [16] evaluate the difficulty of the Sudoku prob-
lem. To this end, various modelings using different types of constraints are pro-
posed (e.g., the Row/Column interaction is described by the cardinality matrix
global constraint; together with the row/block interaction this should compared
to the application of our rule [OI2] on all intersections of a column and a row,
and block and row (or column)). In our approach, we use only the classical model
and do not change it: we only add more propagation rules. Moreover, our rules
can be used with other problems.

Global constraints in SAT The basic encodings of CSP into SAT have been
fully studied [2, 4, 9, 21, 8, 7] to preserve consistency properties and induce effi-
cient unit propagation in SAT solvers. The specific encodings of global constraint
has been also addressed, e.g., Cardinality [3, 12], Among [2] or Alldiff [10]. Our
transformation is based on reduction rules and extended to multiple connected
Alldiff. As some of these works we proved it correctness w.r.t. GAC.

Conclusion We have defined a set of consistency rules for general Alldiff con-
straints that can be easily implemented in usual constraint solvers. These rules
have also been used to encode the same constraints in SAT, preserving some
propagation properties through unit propagation. This work provides then an



uniform framework to handle interleaved Alldiff and highlights the relationship
between CSP and SAT in terms of modeling and resolution when dealing with
global constraints.
We now plan to investigate other rules that could be handled in our framework,
in order to solve new combinations of global constraints.
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