
HAL Id: hal-03350607
https://univ-angers.hal.science/hal-03350607v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interleaved Alldifferent Constraints: CSP vs. SAT
Approaches

Frédéric Lardeux, Eric Monfroy, Frédéric Saubion

To cite this version:
Frédéric Lardeux, Eric Monfroy, Frédéric Saubion. Interleaved Alldifferent Constraints: CSP vs.
SAT Approaches. 13th International Conference, AIMSA 2008, 2008, Varna, Bulgaria. pp.380-384,
�10.1007/978-3-540-85776-1_34�. �hal-03350607�

https://univ-angers.hal.science/hal-03350607v1
https://hal.archives-ouvertes.fr


Interleaved Alldifferent Constraints:

CSP vs. SAT Approaches

Frédéric Lardeux3, Eric Monfroy1,2, and Frédéric Saubion3

1 Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
2 LINA, Université de Nantes, France
3 LERIA, Université d’Angers, France

Abstract. In this paper, we want to handle multiple interleaved Alldiff
constraints from two points of view: a uniform propagation framework
with some CSP reduction rules and a SAT encoding of these rules that
preserves the reduction properties of CSP.

1 Introduction

When modeling combinatorial problems, a suitable solution consists in express-
ing the problem as a constraint satisfaction problem (CSP), which is classically
expressed by a set of decision variables whose values belong to finite integer do-
mains. Constraints are used to model the relationships that exist between these
variables. Another possibility is to encode the problem as a Boolean satisfiabil-
ity problem (SAT), where a set of Boolean variables must satisfy a propositional
formula.

The two paradigms share some common principles [2] and here, we focus on
complete methods that aim at exploring a tree by enumerating variables and
reducing the search space using propagation techniques.

On the CSP side, the identification of global constraints that arise in several
real-world problems and the development of very specialized and efficient algo-
rithms have considerably improve the resolution performances. The first example
was certainly the Alldiff constraint [4] expressing that a set of n variables have
all different values. Furthermore, one may notice that handling sets of distinct
variables is often a more general problem and that, in some cases, such Alldiff
constraints could be interleaved, leading to a high computational complexity.
Many Alldiff constraints overlap in various problems such as Latin squares and
Sudoku games. On the SAT side, no such high level modeling feature is offered
to the user, who has to translate its problem into propositional logic. Systematic
basic transformations from CSP to SAT have been proposed [3, 5] to ensure some
consistency properties to the Boolean encodings.

Here, we want to provide, on the CSP solving side, a uniform propagation frame-
work to handle Alldiff constraints and, in particular, interleaved Alldiff. We also
want to generalize possible encodings of Alldiff and multiple Alldiff constraints
in SAT (i.e., by a set of CNF formulas).



2 Encoding CSP vs. SAT

A CSP (X,C,D) is defined by a set of variables X = {x1, · · · , xn} taking their
values in their respective domains D = {D1, · · · ,Dn}. A constraint c ∈ C is a
relation c ⊆ D1 × · · · × Dn. A tuple d ∈ D1 × · · · × Dn is a solution if and only
if ∀c ∈ C, d ∈ c.

Usual resolution processes [1, 2] consists in enumerating the possible values of a
given variable in order to progressively build a variables assignment and reach
a solution. Reduction techniques are added at each node to reduce the search
tree (local consistency mechanisms) by removing values of variables that cannot
satisfy the constraints. We recall a basic consistency notion (the seminal arc
consistency is the binary subcase of this definition).

Definition 1 (Generalized Arc Consistency (GAC)). A constraint4 c on

variables (x1, · · · , xm) is generalized arc-consistent iff ∀k ∈ 1..m,∀d ∈ Dk,
∃(d1, · · · , dk−1, dk+1, · · · dm) ∈ Di × · · · × Dk−1 × Dk+1 × · · · × Dm,
s.t. (d1, · · · , dm) ∈ c.

Domain Reduction Rules
Inspired by [1], we abstract constraint propagation as a transition process over
CSPs:

(X,C,D)|Σ
(X,C,D′)|Σ′

where D′ ⊆ D and Σ and Σ′ are first order formulas (i.e., conditions of the
application of the rules) such that Σ∧Σ′ is consistent. We canonically generalize
⊆ to sets of domains as D′ ⊆ D iff ∀x ∈ X D′

x ⊆ Dx. Given a set of variables
V , we also denote DV the union

⋃

x∈V Dx. #D is the set cardinality.

Given a CSP (Xk, Ck,Dk), a transition can be performed to get a reduced CSP
(Xk+1, Ck+1, Dk+1) if there is an instance of a rule (i.e., a renaming without
variables’ conflicts):

(Xk, Ck,Dk)|Σk

(Xk+1, Ck+1,Dk+1)|Σk+1

such that Dk |=
∧

x∈X x ∈ Dk
x ∧Σk, and Dk+1 is the greatest subset of Dk such

that Dk+1 |=
∧

x∈X x ∈ Dk+1
x ∧ Σk+1.

In the conclusion of a rule (in Σ), we use the following notations: d 6∈ Dx means
that d can be removed from the domain of the variable x (without loss of solu-
tion); similarly, d 6∈ DV means that d can be removed from each domain variables
of V ; and d1, d2 6∈ Dx (resp. DV ) is a shortcut for d1 6∈ Dx ∧ d2 6∈ Dx (resp.
d1 6∈ DV ∧ d2 6∈ DV ).

Since we only consider here rules that does not affect constraints and variables,
the sets of variables will be omitted and we highlight the constraints that are

4 This definition is classically extended to a set of constraints.



required to apply the rules by restricting our notation to < C,D >. We will say
that < C,D > is GAC if C is GAC w.r.t. D. The transition relation using a
rule R is denoted < C,D >→R< C,D′ >. →R ∗ denotes the reflexive transitive
closure of →R. It is clear that →R terminates due to the decreasing criterion
on domains in the definition of the rules (see [1]). This notion can be obviously
extended to sets of rules R. Note also that the result of →R ∗ is independent
from the order of application of the rules [1]: from a practical point of view,
it is thus generally faster to first sequence less complicated rules (or rules that
execute faster).

An instance of the SAT problem can be defined by a pair (Ξ,φ) where Ξ is a set of
Boolean variables Ξ = {ξ1, ..., ξn} and φ is a Boolean formula φ: {0, 1}n → {0, 1}.
The formula is said to be satisfiable if there exists an assignment σ:Ξ → {0, 1}
satisfying φ and unsatisfiable otherwise. The formula φ is in conjunctive normal
form (CNF) if it is a conjunction of clauses (a clause is a disjunction of literals
and a literal is a variable or its negation).
In order to transform our CSP (X,D,C) into a SAT problem, we must define
how the set Ξ is constructed from X and how φ is obtained. Concerning the
variables, we use the direct encoding [5]: ∀x ∈ X,∀d ∈ Dx,∃ξx,d ∈ Ξ (ξx,d is
true when x has the value d, false otherwise).
To enforce exactly one value for each variable, we use the next clauses:

∧

x∈X

∨

d∈Dx
ξx,d and

∧

x∈X

∧

d1,d2∈Dx
d1 6=d2

(¬ξx,d1
∨ ¬ξx,d2

)

Our purpose is to define uniform transformation rules for handling multiple
Alldiff constraints, which are often involved in many problems.
From the resolution point of view, complete SAT solvers are basically based
on a branching rule that assign a truth value to a selected variable and unit
propagation (UP) which allows to propagate unit clauses in the current formula
[2]. We will say that a SAT encoding preserves a consistency iff all variables
assigned to false by UP have their corresponding values eliminated by enforcing
GAC.

3 Alldiff Constraints: Reduction rules and Transformation

In the following, we classically note Alldiff(V ) the Alldiff constraint on a subset
of variables V , which semantically corresponds to the conjunction of n∗(n−1)/2
pairwise disequality constraints

∧

xi,xj∈V,i6=j xi 6= xj .

A Single Alldiff constraint We first reformulate a well known consistency
property [4] w.r.t. the number of values remaining in the domain of the variables.
This case corresponds of course to the fact that if a variable has been assigned
then the corresponding value must be discarded from other domains.

[O1]
< C ∧ Alldiff(V ),D > |x ∈ V ∧ Dx = {d1}

< C ∧ Alldiff(V ),D′ > |d1 6∈ D′
V \{x}



Property 1. If < Alldiff(V ),D >→∗
[O1]< Alldiff(V ),D′ >, then the corre-

sponding conjunction
∧

xi,xj∈V xi 6= xj is GAC w.r.t. < D′ >. Note that enforc-

ing GAC on the disequalities with [O1] reduces less the domains than enforcing
GAC on the global Alldiff constraint.

This rule can be generalized when considering a subset V ′ of m variables with
m possible values, 1 ≤ m ≤ (#V − 1):

[Om]
< C ∧ Alldiff(V ),D > |V ′ ⊂ V ∧ DV ′ = {d1, . . . , dm}

< C ∧ Alldiff(V ),D′ > |d1, . . . , dm 6∈ D′
V \V ′

Consider m = 2, and that two variables of an Alldiff only have the same two
possible values. Then, these two values cannot belong to the domains of the
other variables.

Property 2. Given < Alldiff(V ),D >→∗
[Om]1≤m≤(#V −1)

< Alldiff(V ),D′ >,

then < Alldiff(V ),D′ > has the GAC property.

Now, the Alldiff constraints can be translated in SAT, by encoding [O1] with a
set of #V ∗ (#V − 1) CNF clauses:

[SAT − O1]
∧

x∈V

∧

y∈V \{x}(¬ξd
x ∨ (

∨

f∈Dx\{d} ξf
x) ∨ ¬ξd

y)

This representation preserves GAC. Indeed, if ¬ξd
x is false (i.e. when the variable

x is valued to d) and
∨

f∈Dx1
\{d} ξx1,f is false (i.e., when the variable x1 is valued

to d) then ¬ξx2,d must be true to satisfy the clause (x2 cannot be valued to d).
Generalized to a subset V ′ of m variables {x1, ..., xm} with m possible values
{d1, ..., dm}, 1 ≤ m ≤ (#V −1), the corresponding #(V \V ′)∗mm+1 clauses are:

[SAT − Om]
∧

y∈V \V ′

∧m

k=1

∧m

p1=1 . . .
∧m

pm=1

[

(
∨m

s=1 ¬ξ
dps
xs )∨

(
∨m

i=1

∨

f∈Dxi
\{d1,...,dm} ξf

xi

)

∨ ¬ξdk
y

]

Property 3.
⋃

1≤m≤#V −1[SAT − Om] preserves the GAC property.

Multiple Overlapping Alldiff Constraints In presence of several overlap-
ping Alldiff constraints, specific local consistency properties can be enforced
according to the number of common variables, their possible values, and the
number of overlaps. To simplify, we consider Alldiff constraints Alldiff(V ) such
that #V = #DV .
If a value appears in variables of the intersection of two Alldiff, and that it does
not appear in the rest of one of the Alldiff, then it can be safely removed from
the other variables’ domains of the second Alldiff.

[OI2]
< C ∧ Alldiff(V1) ∧ Alldiff(V2),D > |d ∈ DV1∩V2

∧ d 6∈ DV2\V1

< C ∧ Alldiff(V1) ∧ Alldiff(V2),D
′ > |d 6∈ D′

V1\V2



[OI2] is coded in SAT as #DV1∩V2
∗ #(V1 ∩ V2) ∗ #(V 1 \ V2) clauses:

[SAT − OI2]
∧

d∈DV1∩V2

∧

x1∈V1∩V2

∧

x2∈V1\V2

∨

x3∈V2\V1
(¬ξd

x1
∨ ξd

x2
∨ ¬ξd

x3
)

[OI2] can be extended to [OIm] to handle m (m ≥ 2) Alldiff constraints
connected by one intersection. Let denote by V the set of variables appearing in
the common intersection: V =

⋂m

i=1 Vi

[OIm]
< C

∧m

i=1 Alldiff(Vi),D > |d ∈ DV ∧ d 6∈ DV1\V

< C
∧m

i=1 Alldiff(Vi),D
′ > |d 6∈

⋃m

i=1 D′
Vi\V

Note that this rule can be implicitly applied to the different symmetrical possible
orderings of the m Alldiff.
[OIm] is translated in SAT as #DV ∗ #V ∗

∑m

i=2

(

#(Vi \ V )
)

clauses:

[SAT − OIm]
∧

d∈DV

∧

x1∈V

∧m

i=2

∧

x3∈Vi\V

∨

x2∈V1\V (¬ξd
x1

∨ ξd
x2

∨ ¬ξd
x3

)

Property 4. Consider m > 2 Alldiff with a non empty intersection. Given <
C,D >→∗

[OIm]< C,D′ > and < C,D >→∗
[OI2]< C,D′′ >, then D′′ ⊆ D′.

Other rules can be defined for several Alldiff connected by several intersections.

4 Conclusion

We have defined a set of consistency rules for general Alldiff constraints that can
be easily implemented in usual constraint solvers. Recent works deal with the
combination of several global constraints. Nevertheless, theses approaches re-
quire some specialized and complex algorithms for reducing the domains, while
our approach allows us to simplify and unify the presentation of the propaga-
tion rules and attempts at addressing a wider range of possible combinations of
Alldiff. The basic encodings of CSP into SAT have been fully studied to preserve
consistency properties and induce efficient unit propagation in SAT solvers. Our
transformation is based on the reduction rules and extended to multiple con-
nected Alldiff. As some of these works we proved that it is correct w.r.t. GAC.
This work provides then an uniform framework to handle interleaved Alldiff and
highlights the relationship between CSP and SAT in terms of modeling and
resolution when dealing with global constraints.

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
2. L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satisfiability and constraint

programming: A comparative survey. ACM Comput. Surv., 38(4):12, 2006.
3. I. Gent. Arc consistncy in SAT. Technical Report APES-39A-2002, University of

St Andrews, 2002.
4. J.C. Régin. A filtering algorithm for constraint of difference in csps. In National

Conference of Artificial Intelligence, pages 362–367, 1994.
5. T. Walsh. SAT v CSP. In Proc. of CP 2000, volume 1894 of LNCS, pages 441–456.

Springer, 2000.


