
HAL Id: hal-03344693
https://univ-angers.hal.science/hal-03344693

Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The depolarized Raman 2 nu(3) overtone of CO2: A
line-mixing shape analysis

I.-A. Verzhbitskiy, A.-P. Kouzov, Florent Rachet, Michel Chrysos

To cite this version:
I.-A. Verzhbitskiy, A.-P. Kouzov, Florent Rachet, Michel Chrysos. The depolarized Raman 2 nu(3)
overtone of CO2: A line-mixing shape analysis. Journal of Chemical Physics, 2011, 134 (19), Non
spécifié. �10.1063/1.3580278�. �hal-03344693�

https://univ-angers.hal.science/hal-03344693
https://hal.archives-ouvertes.fr


The depolarized Raman 2ν3 overtone of CO2: A line-mixing shape analysis
I. A. Verzhbitskiy, A. P. Kouzov, F. Rachet, and M. Chrysos 
 
Citation: The Journal of Chemical Physics 134, 194305 (2011); doi: 10.1063/1.3580278 
View online: http://dx.doi.org/10.1063/1.3580278 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/134/19?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
CO2 isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential
and comparison with new measurements 
J. Chem. Phys. 140, 084308 (2014); 10.1063/1.4866449 
 
Molecular dynamics simulations for CO2 spectra. IV. Collisional line-mixing in infrared and Raman bands 
J. Chem. Phys. 138, 244310 (2013); 10.1063/1.4811518 
 
The isotropic spectrum of the CO2 Raman 2ν3 overtone: A line-mixing band shape analysis at pressures up to
several tens of atmospheres 
J. Chem. Phys. 134, 224301 (2011); 10.1063/1.3596750 
 
The isotropic remnant of the CO2 near-fully depolarized Raman 2ν3 overtone 
J. Chem. Phys. 134, 104310 (2011); 10.1063/1.3557820 
 
Are asymmetric stretch Raman spectra by centrosymmetric molecules depolarized?: The 2ν3 overtone of CO2 
J. Chem. Phys. 134, 044318 (2011); 10.1063/1.3535599 
 
 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.52.40.1 On: Tue, 03 May 2016

15:05:17

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1765179907/x01/AIP-PT/JCP_ArticleDL_011316/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=I.+A.+Verzhbitskiy&option1=author
http://scitation.aip.org/search?value1=A.+P.+Kouzov&option1=author
http://scitation.aip.org/search?value1=F.+Rachet&option1=author
http://scitation.aip.org/search?value1=M.+Chrysos&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.3580278
http://scitation.aip.org/content/aip/journal/jcp/134/19?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/140/8/10.1063/1.4866449?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/140/8/10.1063/1.4866449?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/138/24/10.1063/1.4811518?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/22/10.1063/1.3596750?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/22/10.1063/1.3596750?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/10/10.1063/1.3557820?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/134/4/10.1063/1.3535599?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 134, 194305 (2011)

The depolarized Raman 2ν3 overtone of CO2: A line-mixing shape analysis
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In a recent article we showed that the 2ν3 transition of CO2 gives rise to a Raman spectrum that is
almost entirely depolarized [M. Chrysos, I. A. Verzhbitskiy, F. Rachet, and A. P. Kouzov, J. Chem.
Phys. 134, 044318 (2011)]. In the present article, we go further forward in the study of this overtone
by reporting a first-principles shape analysis of its depolarized spectrum at room temperature. As a
first step in our analysis, a model assuming isolated Lorentzian line shapes was applied, which at low
gas densities turns out to be sufficient for qualitative conclusions. As the next step, a sophisticated
approach was developed on the basis of the extended strong-collision model in order to properly
account for the heavy line mixing between rotational lines. Whereas a marked deviation between
model and measured spectra was observed upon application of the simpler model, striking agreement
even at the highest CO2 density was found on applying the sophisticated one. Accurate calculated
data were used for the rotational line broadening coefficients without resort to arbitrary parameters.
Values for the vibrational shift scaling linearly with the density of the gas are given. © 2011 American
Institute of Physics. [doi:10.1063/1.3580278]

I. INTRODUCTION

Spectral lines in gases are merely the result of the interac-
tions between the gas molecules and an applied electromag-
netic field. Nonetheless, except at very low gas pressures, the
line shapes and their modeling can be greatly affected by the
collisions of gas particles. Efforts to develop models for line
shapes date back to Anderson’s seminal paper.1 Since then,
numerous emblematic works have appeared in an attempt to
interpret, describe and model molecular interactions. Among
such, the works by Baranger and co-workers2–6 are only a
few representative samples. In all those works, different ap-
proaches have been developed to mimic and interpret colli-
sionally broadened line or band shapes. To record the profiles
various spectral techniques are being employed, among which
is linear or nonlinear Raman scattering spectroscopy.

During the last decades Raman scattering has been the
subject of numerous experimental and theoretical investiga-
tions. These have helped scientists beef up spectroscopic
databases for a variety of electro-optical properties in gases
and mixtures. Such data serve a wide range of industrial ap-
plications and can play an important role in planetary and
interstellar physics. Carbon dioxide is the most potent green-
house gas in the atmosphere, and its spectroscopy has been at-
tracting a great deal of attention over the last few decades.7–12

However, the spectral region in which the 2ν3 transition of
CO2 appears has never been the subject of line shape analy-
sis so far. The extremely weak intensity of this transition—
millions of times smaller than the intensity of a typical
ν1 transition—makes the 2ν3 overtone band an appealing
benchmark for line shape models. The rich threefold branch

a)Electronic mail: michel.chrysos@univ-angers.fr

structure of its anisotropic Raman spectrum stands as an ex-
cellent representative for band shape studies.

One of the principal characteristics of MolTech-
Anjou Institute’s incoherent Raman equipment is its high
sensitivity—a property intended primarily to allow for mea-
surements of very weak collision-induced light scattering sig-
nals. (An overview of the collision-induced light scattering
processes can be found in Refs. 13 and 14.) In this respect,
the collision-induced simultaneous transition that we reported
recently in a series of papers15 is probably the weakest sig-
nal ever detected by our experiment and, to the best of our
knowledge, a Raman signal of unprecedented feebleness. To
give the reader a rough idea of what “weak” means, the afore-
mentioned signal (in counts per second) was about one billion
times weaker than that of a typical ν1 Raman transition, the
latter having served as a reference for comparisons.

It is obvious from above that this performance is higher
than what was necessary for the reliable detection of the
2ν3 overtone of CO2. In a preceding paper,16 the 2ν3 band
was readily measured for a wide range of CO2 pressures,
which permitted to deduce highly accurate values for cer-
tain electro-optical properties of CO2. The band turned out to
be 98% depolarized, so its spectrum was almost exclusively
anisotropic.16

Here, we present an exhaustive shape analysis of the
anisotropic spectrum of the overtone, at a range of CO2 den-
sities varying from 5 to 55 amagat. To this end, two mod-
els of quite different degrees of sophistication were em-
ployed. In the first, isolated Lorentzians were used. Albeit
simple, this model was sufficient for rough predictions, es-
pecially at low gas pressures, but it was insufficient for re-
fined quantitative analyses. The next step was to employ the
“extended strong-collision model” (ESCM) (Refs. 17 and 18)
—a device intended to consistently reproduce strong line

0021-9606/2011/134(19)/194305/8/$30.00 © 2011 American Institute of Physics134, 194305-1
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mixing effects. It is precisely these effects that render the
first model insufficient at high gas pressures. We show be-
low that, while the deviation between the former model and
the experiment is dramatically enhanced with the gas den-
sity, the response of the ESCM remains excellent over the
whole density range. For rotational broadening, reliably cal-
culated data were used,19 so we need not resort to fitting pa-
rameters. For vibrational broadening and shift, an adjustable
complex constant, γυ + iδυ , that was common to all the ro-
tational lines was introduced in the diagonal of the relax-
ation matrix, with the purpose to determine γυ and δυ through
adjustment of the model band shapes to the experimental
ones.

Our findings suggest that the ESCM is the most workable
compromise between simplicity and accuracy in the effort to
model strong line mixing effects.

II. EXPERIMENT

The 2ν3 band was detected in the Stokes side of the spec-
trum, in a frequency region that is near twice the frequency of
the asymmetrical stretching fundamental vibration. The band
was centered at the wave number 4673 cm−1 and recorded
over a range varying from 4515 to 4810 cm−1. In order to
cover properly such a wide domain, the 4515–4810 interval
was divided into four separated, partially overlapping inter-
vals. The green line (λL = 514.5 nm) of a 2 W-power Ar+

laser was used to excite the transition 0002 ← 0000. The ex-
periment was carried out with a 90◦ geometry setup. A double
monochromator and a nitrogen-cooled CCD chain were em-
ployed for analysis and detection. Owing to the instrumental
function, signal distortions were produced. These effects were
taken into account in our calculations by means of a near-
triangular 0.7 cm−1 FWHM slit. The exhaustive description
of the experimental setup can be found in Ref. 20. The gas
was kept at a constant temperature (294.5 K) with the density
covering the range 5-55 amagat. The upper gas density bound
was limited by the liquefaction properties of CO2.

In agreement with Atkins’ general assertion “vibrations
that are not totally symmetrical give rise to depolarized
lines,”21 our recent study showed16 that the spectrum of 2ν3 is
almost entirely depolarized. The depolarized spectrum, which
was by far the dominant spectral component of the overtone,
was extracted from two independent signal recordings, S‖ and
S⊥, depending on whether the electric field of the incident
beam was polarized in the direction parallel or perpendicular
to the scattering plane.

The integrated intensity of the depolarized spectrum was
found to scale with the gas density strictly linearly. This prop-
erty is evidence that the observed spectrum comes from the
interactions of photons with isolated CO2 molecules rather
than with clusters of molecules, which would otherwise have
altered the scaling law. As a consequence of this property,
a line shape model that focuses on the intrinsic CO2 polar-
izability only and that neglects any transient polarizabilities
that are induced during collisions between the radiator and
the perturber in a molecular ensemble, is fully justified.

III. ALLOWED RAMAN LINES

A. The frequency positions

The positions of the roto-vibrational lines, in the fre-
quency domain, are given from the following equation:22

νJ = ν00 + [B ′ J ′(J ′ + 1) − B J (J + 1)]

−{D′[J ′(J ′ + 1)]2 − D[J (J + 1)]2} (1)

+{H ′[J ′(J ′ + 1)]3 − H [J (J + 1)]3}.
Here, ν00 denotes the frequency νJ J ′ of the transition (υ ′, J ′

= 0) ← (υ, J = 0) and J (J ′) the rotational quantum number
of the initial (final) state. The symbol υ (υ ′) is an abbrevia-
tion for the sequence υ1υ

l
2υ3 (υ ′

1υ
′l ′
2 υ ′

3) of the initial (final)
state vibrational quantum numbers. The two sets of parame-
ters B, D, H and B ′, D′, H ′ refer to spectroscopic constants
for the initial and the final vibrational states, respectively. In
either set, B (B ′) is the leading order parameter; it is directly
related to the molecule’s moment of inertia, I (I ′), through
the expression B = ¯2/2I (B ′ = ¯2/2I ′). The constants D
and H appear because of centrifugal distortion of the bond
distances. In a description that goes beyond the rigid rotor ap-
proximation, this distortion cannot be neglected. For CO2, the
parameter values for B, D, and H , as well as for B ′, D′, and
H ′ were deduced from accurate near-infrared high-resolution
absorption measurements.23 For the transition 0002 ← 0000,
the values of the spectroscopic constants are gathered in
Table I.

B. The strengths

The intensity of the anisotropic Raman spectrum for a
transition between an initial state (υ; J ) and a final state
(υ ′; J ′) is directly proportional to the probability P that this
transition occurs. This probability reads

P = bJ ′
J |〈�υ,J |β|�υ ′,J ′ 〉|2. (2)

Here, β is the dipole polarizability anisotropy of CO2 and
bJ ′

J denotes (squared) Clebsh-Gordan coefficients. There are
three possibilities that are allowed for bJ ′

J (J ′ = J, J ± 2),
so the anisotropic spectrum consists of three branches. De-
pending on whether 	J (= J ′ − J ) = −2, 0, or 2, the three
branches are identified as O , Q, or S, respectively. The
rotation-vibration couplings are introduced in this description
through the matrix element 〈�υ,J |β|�υ ′,J ′ 〉. As was borne out
from our analysis, in the case of the 2ν3 band of CO2, these
couplings are so weak that they should simply be ignored for

TABLE I. Spectroscopic constants for the 0002 ← 0000 overtone transi-
tion. All quantities are in cm−1.

ν00 B B ′

4673.3253699(112) 0.390218949(36) 0.384066147(1)
D × 106 D′ × 106

0.1334088(186) 0.13270177(96)
H × 1012 H ′ × 1012

0.01918(250) 0.015008(214)
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the purposes of this study. The paragraph below outlines this
issue.

According to Herman and Wallis,24 the quantity
|〈�υ,J |β|�υ ′,J ′ 〉|2 can be expressed as

|〈�υ,J |β|�υ ′,J ′ 〉|2 = Fυ ′
υ (m)|〈�υ,0|β|�υ ′,0〉|2, (3)

where Fυ ′
υ (m) is the homonymous factor. The latter takes the

form of a power series,

Fυ ′
υ = (1 + am + bm2 + · · ·)2, (4)

where m is a rotational line number; in our case, m takes the
values −2J ′ − 3 for 	J = −2, and 2J + 3 for 	J = 2.25

Except molecular hydrogen,26 the Herman-Wallis corrections
have only a very minor effect on the transitions 	J = 0,
so Fυ ′

υ = 1. This is true irrespective of whether it is the
anisotropic or the isotropic spectrum that is concerned by the
branch Q. For the specific problem at hand, we expect that
the 	J = ±2 transitions will display a similar behavior, so
Fυ ′

υ ≈ 1 for branches O and S, also. This stems as a con-
sequence of the fact that solely transitions involving moder-
ate values of J (� 20) were featured on the recorded spectra,
while the leading-order Herman-Wallis coefficient, a, of CO2

typically lies in the range of 10−4–10−3. The absence of any
systematic deviations between calculated and recorded spec-
tra in this range of J (see below) confirms a posteriori the
validity of the assumption Fυ ′

υ ≈ 1.
The integrated intensity (strength) of a Raman-allowed

rotational line is expressed in absolute units (cm2) through
the following equation:

IJ = 2

15
k4

s PJ bJ ′
J Fυ ′

υ (m)|〈�υ,0|β|�υ ′,0〉|2 . (5)

Here, ks(= 2π/λs = 2πνs) denotes the wave vector norm
for the scattered wave, where νs = νL − νJ and νL (= 1/λL )
is the laser wave number. The symbol PJ denotes the
population of the initial state, i.e., the state with en-
ergy Eυ and angular momentum J . This population is
expressed in terms of statistical weight factors gJ , as
PJ = gJ (2J + 1)Z−1 exp(−Eυ/kB T ). For the overtone band
of CO2, gJ = 1, for all the even J values, but for the odd ones,
it turns out that gJ = 0, which means that odd-J rotational
lines are absent. The symbol Z stands for the rotational parti-
tion function; classically, Z = kB T /2B. From the elements
given above, the rotational line strength of the anisotropic
overtone band of CO2 reads

IJ = 2

15
(2J + 1)k4

s bJ ′
J

2B

kB T
Fυ ′

0 (m) exp

(
− E0

kB T

)

× |〈�0,0|β|�υ ′,0〉|2, (6)

where J is meant to be restricted to its even values only.

IV. MODELING OF LINE SHAPES

A. The hot band

Figure 1 shows the stick spectrum of the anisotropic over-
tone component. In this spectrum, our simulations revealed
the presence of a contribution, hitherto hidden, centered at a
position close to 4648 cm−1 and identified as being due to

FIG. 1. Stick spectrum of the 2ν3 overtone anisotropic component. In addi-
tion to the 0002 ← 0000 transition of interest, the hitherto hidden contribu-
tion of the hot transition 0112 ← 0110 is now clearly visible. The horizontal
axis represents Raman shift, ν, in units of cm−1. The vertical axis repre-
sents intensity cJ /

∑
J cJ (no units) and cJ s are line δ-function strengths.

The spectrum is unit normalized. The slight prominences at the left-hand
and right-hand sides of the figure as well as in its middle refer to hot band’s
branches O , S, and Q, respectively. A zoom into the region of the hot band is
shown in the inset. The blue (dark grey) and green (light grey) sticks represent
sub-band e and sub-band f , respectively.

the hot transition 0112 ← 0110. Although weak, this contri-
bution is perceptible on the figure. A description of the hot
band structure is made below in a few sentences.

Although symmetry dictates that odd J lines of totally
symmetrical vibrational states in 12C16O2 are forbidden, the
coupling between vibrational angular momentum and rota-
tional angular momentum lifts the directional degeneracy of
the former vector (with respect to the direction of the molec-
ular axis). As a result, vibrational l-doubling occurs and the
hot band splits up in two sub-bands. These bands are referred
to as e or f, depending on whether the rotational lines are of
odd or even J values, respectively.

The rotational lines of the two sub-bands have their own
set of spectroscopic constants.23 These constants are gathered
in Table II.

B. Boltzmann statistics for 0112 ← 0110
and 0002 ← 0000

The relative effects of the 0112 ← 0110 and 0002
← 0000 transitions on the spectrum are calculated through

TABLE II. Spectroscopic constants for the 0112 ← 0110 hot transition.
All quantities are in cm−1.

e ν00 B B ′

4648.3333031(91) 0.390639109(15) 0.384547434(10)
D × 106 D′ × 106

0.1353930(122) 0.1341937(38)
f ν00 B B ′

4648.3333031(91) 0.391254698(20) 0.385128989(26)
D × 106 D′ × 106

0.1361606(170) 0.1361785(250)
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Boltzmann statistics. In this respect, the population of the
hot-band ground state 0110, relatively to the population of
the truly ground state 0000, reads 2 exp(−ν2/kB T ). Here,
the factor 2 accounts for the fact that there are two sub-
bands; ν2(= 667.4 cm−1) is the frequency of the bend-
ing fundamental vibration. Note that the proportion of
molecules that undergo each of the two hot-doublet transi-
tions is [exp(−ν2/kB T )]/[1 + 2 exp(−ν2/kB T )]; the propor-
tion of molecules that undergo the transition 0002 ← 0000 is
1/[1 + 2 exp(−ν2/kB T )]. The denominator, common to both
expressions, counts the total population in the two ground
states 0000 and 0110. It follows that the transition 0002 ←
0000 contributes 92.8% of the total spectrum and that each
hot sub-band makes a contribution of 3.6%.

In view of the above analysis, two important questions
arise and need to be answered: “Is the 2ν3 spectrum, the
spectrum of the 0002 ← 0000 transition alone?” “And
if not, what does then 2ν3 truly mean?” The answer to
the first question is definitely “no.” As for the second
one, “the 2ν3 has a spectrum, which is nothing but the
combined spectrum of the two transitions 0002 ← 0000
and 0112 ← 0110.” This important remark is in accor-
dance with our recent study,16 in which the combined
(0002 ← 0000) + (0112 ← 0110) spectrum was recorded,
reported, and interpreted, without explicit distinction between
its main band component 0002 ← 0000 and its hot band
0112 ← 0110. Since the right-hand side of
the formula for the vibrational matrix element
〈υ1, υ2, υ3 + 2 |β| υ1, υ2, υ3〉, given in Ref. 27, does
not contain the vibrational quantum numbers υ1 or
υ2 [see Eq. 5 in Ref. 16], one has 〈0112|β|0110〉
≈ 〈0002|β|0000〉. Strikingly, only the combined
(0002 ← 0000) + (0112 ← 0110) spectrum has a spec-
tral moment Mani

0 that is temperature independent,

Mani
0 = 1

1 + 2 exp
(
− ν2

kB T

) [|〈0002|β|0000〉|2

+ 2 exp

(
− ν2

kB T

)
|〈0112|β|0110〉|2]

≈ |〈0002|β|0000〉|2. (7)

For the purposes of this study, the transition
0112 ← 0110 was properly incorporated in our simula-
tions and the spectral anomaly was completely removed.

C. The spectrum function

The general expression for a band spectrum function is

�(ω) = 1

π
Re〈〈A|R−1|A〉〉. (8)

In this expression, A designates the irreducible spheri-
cal tensor polarizability component of rank two; for linear
molecules, this component reads (α‖ − α⊥)C (2)(�), where
β(= α‖ − α⊥) is the anisotropy of CO2 and C (2)(�) the
second-rank Racah harmonic. R is a matrix defined as R
= −i (ωI − L) + �, with � and L the relaxation matrix and

the molecular Liouvillian, respectively. The latter is diagonal
in the line-space basis |m〉〉 and obeys the eigenvalue equation
L |m〉〉 = ωm |m〉〉, where ωm are the self frequencies ω f i of
the allowed transitions f ← i in the free molecule. I is the
identity matrix. The “−i” convention used in the definition of
R is consistent with the definition used in Forster’s general
treatment28 for a complex-valued response function S(ω) (see
also the footnote29).

By inserting the unit operator
∑

m |m〉〉 〈〈m | twice into
Eq. (8), one obtains

�(ω) = 1

π
Re

∑
m,m ′

Am Am ′ {[−i (ωI − L) + �]−1}m,m ′ .

(9)

This way to express the spectrum function is general
enough to allow one to account for rotational pressure ef-
fects. These are stored in the diagonal elements of �, with γm

= Re�m,m and δm = Im�m,m being identified as the pressure-
induced width and shift of line m, respectively. The integrated
intensity of line m is given by A2

m .
Henceforward, we will assume that the spectrum is unit

normalized, i.e.,
∑

m A2
m = 1, and that the process is Marko-

vian, so any frequency dependence in the relaxation matrix
will be disregarded.

D. The isolated Lorentzian model

An isolated spectral line model was first adopted, and
the rotational lines were assumed to have the same func-
tional form and to provide additive contributions. Mathemat-
ically, this model follows from Eq. (9) upon neglecting the
off-diagonal � matrix elements, so a simple spectrum func-
tion is obtained that is a sum of Lorentzians,

�(ω) = 1

π
Re

∑
m

A2
m[−i(z − ωm) + �m,m]−1

= 1

π

∑
m

A2
m

γm + γυ

(ω − ωm − δm − δυ)2 + (γm + γυ)2
.

(10)

Note that, here, the variable ω was continued to the
complex variable z = ω + i(γυ + iδυ), where the parameter
γυ + iδυ was used to ad hoc describe vibrational pressure
broadening and shift.29 The latter constants, along with the
rotational pressure broadening and shift, form what in line
shape theory is termed “the pressure-induced coefficients.” In
this paragraph, we make the assumption that the line shifts
δm (which are usually much smaller than the line widths γm)
were negligible. This model will be referred to as A.

Figure 2 shows the theoretical spectrum, as it was cal-
culated with model A, in comparison with the experimental
spectrum. The spectra are unit normalized. The abscissa rep-
resents Raman frequency shift (in cm−1 units). The gas den-
sity is 5 amagat. The excellent agreement between the two
spectra, at this density, is evidence of the adequacy (at least as
seen with the naked eye) of model A.

On increasing the gas density, the situation is seen to
change dramatically. Figure 3 illustrates the two spectra at a
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FIG. 2. Calculated [thin red (thin light grey) line] and recorded [thick black
(thick dark grey) line] spectrum intensities I/Iint (= I/

∫
I dν), in cm units,

as a function of Raman shift, ν, in units of cm−1. Model A was employed for
the calculations. The gas temperature is 294.5 K. The gas density is 5 amagat.
Both spectra are unit normalized. Inset: zoom into the region of the anomaly
to better appreciate the quality of the simulation.

density of 30 amagat [panel (a)], and then at 55 amagat [panel
(b)]. The strong overlap between rotational lines makes the ro-
tational structure of Fig. 2 completely disappear from Fig. 3.
In both figures the widths of the Lorentzians were assumed
to scale linearly with the gas density. While the recorded
band shape is still reproduced qualitatively, an excess inten-
sity is progressively accumulated in the wings of the S and O
branches at the expense of the central region of the Q branch.
At the higher gas density, the disagreement between theoreti-
cal and experimental shapes becomes striking. This observa-
tion provides evidence for the inadequacy of model A.

In a more realistic simulation, the latter model should be
replaced by a more elaborate one, in order to account for the
substantial line mixing and the thereby generated intensity
transfer. Let us briefly discuss the two most important such
models.

E. The strong-collision model

Among the various steps that marked the development
of band shape modeling, the quantum strong-collision model
(SCM) (and its by-products) (Ref. 30) is probably the most
important one.

The SCM’s main assumption is that

�m,m ′ = �(δm,m ′ − Am Am ′). (11)

Since A2
m 
 1, all the rotational lines within this model

have approximately the same width, �m,m ≈ �. The param-
eter � denotes the effective collision rate. The assumption of
Eq. (11) is in accordance (see Appendix, Part I) with two con-
ditions for the relaxation matrix that arise in performing ma-
trix operations in the line space. These conditions are funda-
mental to the correct description of a band shape because they
are responsible for the transfer of spectral intensity from the
edge of the band to its center. They are called “sum rules”

FIG. 3. Calculated [thin red (thin light grey) line] and recorded [thick black
(thick dark grey) line] spectrum intensities I/Iint (= I/

∫
I dν), in cm units,

as a function of Raman shift, ν, in units of cm−1. Model A was employed
for the calculations. The gas temperature is 294.5 K. The gas density is:
30 amagat [panel (a)]; 55 amagat [panel (b)]. All spectra are unit
normalized.

and read31∑
m ′

Am ′�m,m ′ =
∑

m

Am�m,m ′ = 0. (12)

It follows from the sum rules that the spectral band gets
narrowed as the frequency of the collisions is increased. At
higher gas densities, the line structure coalesces and a quasi-
Lorentzian line tends to emerge as the result of line mixing.
Analogous to Dicke narrowing, this line is getting sharper
with increasing gas density. This is known as the motional
narrowing effect.

The SCM’s main advantage is that the inversion R−1 [see
Eq. (8)] can be done analytically. Therefore, construct a task
to calculate a band shape can be as simple as to calculate �(ω)
with a diagonal relaxation matrix. Moreover, this model gives
a reasonable approximation overall to coalesced band spectra,
especially for heavy linear molecules. The most significant
shortcoming with the SCM is that it fails to describe isolated
line profiles, since it predicts widths that are practically the
same for all the lines. This is by no means true at low gas
pressures.
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How to improve the SCM in the low pressure regime is
treated in the next paragraph.

F. The extended strong-collision model

In the effort to improve the SCM, an ESCM was
developed,17 which still retains all the advantages of the SCM.
Among the various problems of spectroscopy that were solved
with the ESCM, the interpretation of the isotropic CARS
spectrum of the CO2 hot transition 1110 ← 0110 is proba-
bly the most challenging one.11 This model will be referred
to henceforward as B.

By contrast with Eq. (11), here, the relaxation matrix
reads

�m,m ′ = γ ′
m

(
δm,m ′ − γ ′

m ′

〈γ ′〉 Am Am ′

)
. (13)

The primed quantities γ ′
m are effective line widths appearing

as diagonal elements of a matrix γ ′. The latter is a diagonal
matrix, γ ′

m,m ≡ γ ′
m , defining the spectral shape. The appear-

ance of 〈γ ′〉 here is to ensure the fulfillment (see Appendix,
Part II) of the sum rules of Eq. (12). This quantity has the
meaning of some average line broadening over the band and
reads 〈γ ′〉 = ∑

m A2
mγ ′

m .
Since for heavy molecules line intensity amplitudes are

small (A2
m 
 1), there is only a little difference between the

(primed) effective quantities γ ′
m and the (unprimed) measured

halfwidths γm[= �m,m = γ ′
m(1 − A2

mγ ′
m/〈γ ′〉)], so a few iter-

ations in Eq. (13) suffice for convergence. The thereby ob-
tained set of γ ′

m’s permits the exact description of the band at
a low gas pressure.

Thanks to the simple single-term form of the off-diagonal
part of �, significant simplifications in the expression of the
spectrum function are possible. In this respect, one of us has
worked out the following analytic expression:18

�(ω) = 1

π
Re

[
〈〈A|R−1

d |A〉〉 + 〈〈A|R−1
d γ ′|A〉〉2

〈γ ′〉 − 〈〈A|R−1
d γ ′2|A〉〉

]
.

(14)

In this expression, Rd = −i(zI − L) + γ ′, so Rd is diagonal.
This property, along with the expression for Rd , allows one
to derive simple and general analytic formulas for the spectral
sums 〈〈A|R−1

d γ ′n|A〉〉 (n = 0, 1, 2). These formulas read

〈〈A|R−1
d γ ′n|A〉〉 =

∑
m

A2
m

γ ′n
m

−i(z − ωm) + γ ′
m

. (15)

As before with model A, here again z = ω + i(γυ + iδυ),
with the parameter γυ + iδυ intended to account for vibra-
tional pressure effects through adjustment of the model shapes
to the experiment.

The expression of Eq. (14) was used to independently
simulate the (unit normalized) shapes of the 0002 ← 0000
and 0112 ← 0110 bands. The computed spectra were then
weighted according to their relative initial-state populations
and summed to form the overtone spectrum. To this purpose,
a FORTRAN code was developed. As input values for the ro-
tational broadening coefficients, infrared spectroscopic data19

FIG. 4. Calculated [thin red (thin light grey) line] and recorded [thick black
(thick dark grey) line] spectrum intensities I/Iint (= I/

∫
I dν), in cm units,

as a function of Raman shift, ν, in units of cm−1. Model B (ESCM) was em-
ployed for the calculations. The gas temperature is 294.5 K. The gas density
is 5 amagat. Both spectra are unit normalized. Inset: zoom into the region of
the anomaly to better appreciate the quality of the simulation.

were taken. A 0.7 cm−1 FWHM triangular function was used
to mimic the slit function of the experiment.

Figure 4 shows the ESCM spectrum along with the ex-
perimental one, as a function of Raman frequency shift (in
cm−1 units). The gas density is 5 amagat. As before, the in-
tensity is unit normalized. The theoretical spectrum is hardly
distinguishable from the recorded one.

Figure 5 illustrates the ESCM spectrum along with the
recorded one for a gas density ρ = 30 amagat [Fig. 5(a)] and
55 amagat [Fig. 5(b)]. The excellent response of the ESCM is
clear from the figures. This performance was seen to persist
at all the gas densities. By comparison with the response of
model A (see Fig. 3), this is evidence of a major improvement
in the band shape modeling.

Our calculations showed that vibrational broadening had
too weak an effect to sizably change the simulated line shapes.
It is a rather general feature of the anisotropic spectra to ex-
hibit values of γυ that are much smaller than (and completely
masked by) the line widths γm . This feature hindered the ob-
servation of vibrational broadening in our analysis. This is by
no means the case with the vibrational shift, δυ . As mentioned
earlier in this article, rotational line shifts δm(
 γm) are negli-
gible, so they do not mask the presence of δυ . Accurate δυ val-
ues were extracted from the recorded spectra, by using model
B, which were found to scale linearly with the gas density as

δυ(cm−1) = −34(3) × 10−3ρ(amagat).

It is remarkable that the value 0.034(3) given above is
three and six times greater than the values −δυ/ρ ≈ 0.01 and
0.005 cm−1/amagat obtained for the Raman allowed low and
high frequency components of the CO2 doublet ν1 : 2ν0

2 Fermi
resonance, respectively.7, 11

V. SYNOPSIS

We reported a line shape analysis of the anisotropic
Raman 2ν3 overtone spectrum of CO2 at room temperature
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FIG. 5. Calculated [thin red (thin light grey) line] and recorded [thick black
(thick dark grey) line] spectrum intensities I/Iint (= I/

∫
I dν), in cm units,

as a function of Raman shift, ν, in units of cm−1. Model B (ESCM) was
employed for the calculations. The gas temperature is 294.5 K. The gas den-
sity is: 30 amagat [panel (a)]; 55 amagat [panel (b)]. All spectra are unit
normalized.

and for a range of gas densities varying from 5 to 55 am-
agat. The calculation of the spectrum was based mainly
on the ESCM, which is a semi-analytical quantum me-
chanical model. Striking agreement at any density was ob-
served between the ESCM spectra and the experiment,
which permitted the successful interpretation of the exper-
iment and a better understanding of the substantial line
mixing effects. The presence of a hot band affecting the
spectrum by about 7% was revealed. Calculated input data
for the rotational broadening coefficients were employed,
which were then used to derive the vibrational shift of
the band by globally adjusting the ESCM spectra to the
experiment.

Our work appears as the last word on an issue as timely
as the advanced line shape theory of carbon dioxide. The
ESCM adopted here appears as the most viable compromise
between performance and effort. The elegance of its formal-
ism and its easy numerical implementation are also aspects to
stress.

APPENDIX: SUM RULES IN THE SCM AND ESCM

1. Part I

The SCM assumes that �m,m ′ = �(δm,m ′ − Am Am ′). In
order to check the validity of the sum rules under this assump-
tion, let us calculate the expressions (i)

∑
m ′ Am ′�m,m ′ and

(ii)
∑

m Am�m,m ′ . For (i) we find∑
m ′

Am ′�m,m ′ = �
∑
m ′

Am ′(δm,m ′ − Am Am ′)

= �

[ ∑
m ′ �=m

Am ′(δm,m ′ − Am Am ′)

+ Am
(
1 − A2

m

)]

= �Am

⎡
⎣−

⎛
⎝ ∑

m ′ �=m

A2
m ′

⎞
⎠ + (

1 − A2
m

)⎤⎦

= �Am

[
1 −

∑
m ′

A2
m ′

]
= 0; (A1)

likewise for (ii).

2. Part II

In the ECSM, the assumption is �m,m ′ = γm[δm,m ′

− (γm ′/〈γ 〉)Am Am ′ ]. We will check the validity of the two
sum rules (i)

∑
m ′ Am ′�m,m ′ and (ii)

∑
m Am�m,m ′ under this

assumption. For (i) we find,

∑
m ′

Am ′�m,m ′ = γm

∑
m ′

Am ′

(
δm,m ′ − γm ′

〈γ 〉 Am Am ′

)

= γm

[ ∑
m ′ �=m

Am ′

(
δm,m ′ − γm ′

〈γ 〉 Am Am ′

)

+ Am

(
1 − γm

〈γ 〉 A2
m

) ]

= γm Am

⎡
⎣−

⎛
⎝ ∑

m ′ �=m

γm ′

〈γ 〉 A2
m ′

⎞
⎠+

(
1− γm

〈γ 〉 A2
m

)⎤
⎦

= γm Am

(
1 − 1

〈γ 〉
∑
m ′

γm ′ A2
m ′

)
= 0, (A2)

where use of the definition 〈γ 〉 = ∑
m ′ γm ′ A2

m ′ was made;
likewise for (ii).
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