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a b s t r a c t

3-Alkoxy-4-bromothiophenes were synthesized in three steps from the readily available methyl 2-car-
boxylate-3-hydroxythiophene and two isomers of bithiophenes based on the 3-bromo-4-methoxythi-
ophene moiety were regio-selectively prepared.

� 2011 Elsevier Ltd. All rights reserved.

Functionalized thiophenes on the 3 and 4 positions are attrac-
tive building blocks for the development of materials based on p-
conjugated systems usable as organic semiconductors in electronic
or optoelectronic devices or as electrode materials for sensors.1–7

In this field, the attachment of alkoxy groups to b-positions of thi-
ophene rings has emerged as a solution for developing polymers
with moderate bandgap, low oxidation potential, and good stabil-
ity of the conducting oxidized state.8 3-Alkoxythiophene deriva-
tives are usually prepared from 3-bromothiophene by the
aromatic nucleophilic substitution with alcoholate anion catalyzed
by Cu (I) halide.9 More recently a transetherification reaction from
3-methoxythiophene has allowed the preparation of various
alkoxythiophene derivatives.3,5 Efficient synthesis of 3,4-dialkoxy-
thiophenes was also described from ethyl 3,4-dihydroxy-2,5-thio-
phene-dicarboxylate obtained in one step by the condensation
between diethyl malonate and diethylthiodiglycolate, or from
3,4-dimethoxythiophene by the transetherification reaction.10,11

Cihaner and Onal reported the synthesis of 3-bromo-4-meth-
oxythiophene in 70% yield by the reaction of methanolate anion
on 3,4-dibromothiophene in the presence of CuO and KI.12

However, this protocol suffers from various drawbacks. Firstly
3,4-dibromothiophene is an expensive starting material, which is
synthesized in two steps from thiophene.13,14 Secondly the proce-
dure requires a long reaction time of about 3 days. We recently
reported that the reaction time can be effectively reduced to
30 min by carrying out the reaction in microwave.15 Although con-
venient for the preparation of 3-bromo-4-methoxythiophene, this

method is not adapted for grafting longer or branched alkoxy
chains. Thus attempts with alcoholate anion of hexan-1-ol or 2-
ethylhexan-1-ol gave yields inferior to 5%.

As part of our research aimed in the development of new
synthetic routes to substituted thiophenes, we have been develop-
ing the access to alkoxythiophene derivatives from easily avail-
able starting materials. We recently reported the synthesis of
3,4-dialkoxythieno[2,3-b]thiophenes,16 3,6-dialkoxythieno[3,2-
b]thiophenes,17 and 3-substituted thieno[3,2-b]furanes18 from b-
hydroxythiophene derivatives. As continuation in this approach,
we herein report a straightforward and general procedure for the
synthesis of 3-alkoxy-4-bromothiophene derivatives from the
readily accessible methyl 2-carboxylate-3-hydroxythiophene. The
selective synthesis of two regioisomers of dimers, namely 3,30-di-
bromo-4,40-dimethoxy-2,20-bithiophene and 4,40-dibromo-3,30-
dimethoxy-2,20-bithiophene is also described.
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The 3-alkoxy-4-bromothiophene derivatives were prepared in
four steps from 2-carboxylate-3-hydroxythiophene 1 according
to Scheme 1. The last can be easily obtained by the action of thio-
late anion of methyl thioglycolate on the methyl chloroacrylate as
described by Huddleston and Barker.19 Interestingly the commer-
cially available economically viable 2,3-dichloro propionate, which
generates in situ methyl chloroacrylate by using an excess of so-
dium hydrogenocarbonate20 can be also used in a simple protocol
in methanol. The regioselective bromination of compound 1 was
carried out by treating with 1 equiv of bromine in acetic acid to
give compound 2 in 76% yield.21 The O-alkylation of compound 2
was carried out with alkylating reagents, such as methyl iodide,
1-bromohexane, or 1-bromo-2-ethylhexane in the presence of
K2CO3 as base in DMF to give corresponding alkoxy derivatives 3
in 70–80% yields. Finally, decarboxylation of the acid resulting
from the saponification of compounds 3 at 200 �C in quinoline

under microwave irradiation in the presence of copper chromite
gave the target molecule 4 in 70–75% yields for the two steps.22

We next focused our attention toward the synthesis of two
regioisomers of bithiophene derivative from 3-bromo-4-methoxy-
thiophene. Firstly lithiation of compound 4a was carried out by
treating with 1.0–1.2 equiv of lithium diisopropylamide (LDA) fol-
lowed by the treatment with chlorotrimethylsilane (Scheme 2).
The reaction led to a mixture of mono 5 and di-silylated 6 deriva-
tives in 60% and 22% yields, respectively. As revealed by 1H NMR of
compound 4a, the difference between the chemical shifts of the
two aromatic protons is an indication of their highly different acid-
ity. The deshielding of proton adjacent to bromine atom
(7.18 ppm) is associated with a stronger acidity and the reaction
with LDA allowed the deprotonation at 2-position. A second lithi-
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ation of 5 with LDA followed by the treatment with a slight excess
of CuCl2 afforded bithiophene derivative 7 in 25% yield. Finally the
treatment of 7 with fluorine anion led to the formation of one of
the regioisomers of bithiophene 8 in 70% yield.23

The synthesis of another regioisomer of bithiophene 10 with
methoxy groups in the external positions was attempted by the di-
rect copper catalyzed coupling reaction of the 2-lithio derivative of
4a, which afforded the target molecule only in 5% yield. However,
an alternate procedure for the synthesis of bithiophene 10 from
compound 3a is depicted in Scheme 3. The treatment of 3a with
1 equiv of LDA and CuCl2 afforded bithiophene 9 in 55%, which
on further saponification and the decarboxylation reaction in quin-
oline in the presence of Cr2Cu2O5 upon microwave irradiation gave
10 in 30% yield.24 Compound 10 was found to be very sensitive to
light and temperature and its stability was very low, which turned
slowly to a dark brown solid in 1 h at room temperature after puri-
fication. However, we found that the solid was stable for several
days when stored at �20 �C in dark.

The comparison of the UV–vis absorption spectra of compounds
8 and 10 revealed the predominant role of the relative position of
the methoxy groups and bromine atoms on the conformation
adopted by the two bithiophene isomers (Fig. 1). For compound
10 a structureless absorption band with a kmax at 270 nm was ob-
served whereas for isomer 8 a red shifted well resolved absorption
band with a kmax at 328 nm was observed. These marked differ-
ences indicate that derivative 8 with the methoxy groups in the
internal position allows the conjugated systems to adopt more ri-
gid and more planar structure.25 As already demonstrated for bithi-
ophene derivatives substituted with alkoxy groups, the planar
conformation is stabilized by S� � �O intramolecular interactions.8

In contrast the structures of bithiophenes substituted by bromine
atoms at the 3 and 30-positions are known to present a large tor-
sion between the two thiophene rings.26

This was later supported by the results of X-ray diffraction stud-
ies of the single crystals of 7 obtained by slow evaporation from
CHCl3 solution.27 As shown in Figure 2 the two thiophene cycles
adopt a planar anti conformation with a dihedral angle inferior
to 1�. The interatomic S–O distances of 2.92 Å was found to be con-
siderably shorter than the sum of the Van der Waals radii of sulfur
and oxygen (3.35 Å), thus conforming the occurrence of non cova-
lent S� � �O intramolecular interactions, which stabilize the planar
conformation.

In conclusion, we have described a convenient and effective
synthesis of 3-alkoxy-4-bromothiophene derivatives. Additionally
the synthesis of two isomers of bithiophene, based on 3-bromo-

4-methoxythiophene moiety by playing on the regio selective syn-
thesis of monosilylated derivative, was presented. The role of the
relative position of the substituents on the thiophene moieties
and its impact in the UV absorption spectra were also demon-
strated. Further utilization of the synthesized 3-alkoxy-4-bromo
thiophene in the synthesis of low band gap polymers is under pro-
gress in our laboratory.
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