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Abstract

Despite many reports documenting its epidemicity, little is known on the interaction of Acinetobacter baumannii with its
host. To deepen our insight into this relationship, we studied persistence of and host response to different A. baumannii
strains including representatives of the European (EU) clones I–III in a mouse pneumonia model. Neutropenic mice were
inoculated intratracheally with five A. baumannii strains and an A. junii strain and at several days morbidity, mortality,
bacterial counts, airway inflammation, and chemo- and cytokine production in lungs and blood were determined. A.
baumannii RUH875 and RUH134 (EU clone I and II, respectively) and sporadic strain LUH8326 resulted in high morbidity/
mortality, whereas A. baumannii LUH5875 (EU clone III, which is less widespread than clone I and II) caused less symptoms.
A. baumannii type strain RUH3023T and A. junii LUH5851 did not cause disease. All strains, except A. baumannii RUH3023T

and A. junii LUH5851, survived and multiplied in the lungs for several days. Morbidity and mortality were associated with the
severity of lung pathology and a specific immune response characterized by low levels of anti-inflammatory (IL-10) and
specific pro-inflammatory (IL-12p40 and IL-23) cytokines at the first day of infection. Altogether, a striking difference in
behaviour among the A. baumannii strains was observed with the clone I and II strains being most virulent, whereas the A.
baumannii type strain, which is frequently used in virulence studies appeared harmless.
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Introduction

Multidrug-resistant Acinetobacter baumannii is a cause of severe

infections in critically ill patients and notorious for its ability to

spread epidemically. Three clonal lineages of A. baumannii,

European (EU) clone I, II and III, are implicated in outbreaks

worldwide [1,2]. Other Acinetobacter species, including the skin

colonizer A. junii [3], are only incidentally involved in infection

[4].

Various factors are assumed to contribute to the ability of A.

baumannii to colonize the hospital environment and patients [5–

11]. However, knowledge on the host’s response to A. baumannii is

limited. Recognition by Toll-like receptor 4 and CD14 [12] and

early recruitment of neutrophils [13,14] are important factors in

the host innate defence against respiratory A. baumannii infection in

mice. Others demonstrated the differential ability of clinical A.

baumannii isolates to induce severe infections in neutropenic mice

[15]. We previously showed in vitro that A. baumannii strains induce

significantly less inflammatory cytokine production in human

airway epithelial cells and cultured human macrophages than A.

junii strains do [5], emphasizing the role of the innate immune

system in A. baumannii infections.

The aim of the present study was to investigate the virulence of

and host innate immune response to well-characterized A.

baumannii strains, including representatives of clones I–III, and

an A. junii strain in a mouse pneumonia model.

Results

Morbidity and mortality
Mice infected with the different A. baumannii strains and the A. junii

strain (Table 1) were monitored daily for morbidity and mortality.

Mice infected with A. baumannii RUH3023T or A. junii LUH5851

showed virtually no signs of morbidity (Table 2). In contrast,

infection with A. baumannii clone I (RUH875) and clone II

(RUH134) caused high morbidity already at the first day of

infection, which remained high during the second day. Infection

with clone III (LUH5875) and sporadic isolate LUH8326 was

accompanied by significantly (p,0.01) less morbidity at the first day

of infection. For LUH8326, morbidity increased during the second

day of infection but for LUH5875 it remained low (Table 2).

Mice infected with RUH3023T or A. junii LUH5851 did not die,

whereas mortality was very high among mice infected with

LUH8326, RUH875, and RUH134 (52%, 72% and 86%,

respectively, Fig. 1). Less animals (28%) died after infection with

LUH5875 (p,0.05, Fig. 1). Most animals died within the first 2

days of infection with RUH875, RUH134 and LUH8326 and

between days 3–4 of infection with LUH5875. Of note, the results
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described in the next paragraphs are representative for the

surviving mice only.

Persistence of Acinetobacter strains in lungs and
extrapulmonary dissemination

After 24 h of infection, RUH875, RUH134, LUH5875 and

LUH8326 had multiplied in the lungs to approximately 16109 CFU/

g of lung (Fig. 2A). These strains persisted in the lungs up to day 3–4 of

infection (Fig. 2A). In contrast, RUH3023T was cleared from the lungs

already within the first day of infection. The levels of A. junii LUH5851

remained stable during the first day of infection, declined sharply

thereafter with complete clearance by day 3.

RUH875, RUH134, LUH5875, LUH8326 and A. junii

LUH5851 were found in blood and spleen after the first day of

infection (Fig. 2B, C). The bacterial load in the spleen after the first

day of infection was significantly (p,0.05) higher for RUH875 than

for LUH5875. A. junii LUH5851 disseminated into the blood and

spleen to a significantly (p,0.05) lower extent than RUH875,

RUH134, LUH5875 and LUH8326. For these A. baumannii strains,

levels in blood and spleen remained stable up to day 3–4, whereas A.

junii LUH5851 was cleared completely from blood and spleen

already at day 2 of infection. A. baumannii RUH3023T did not

disseminate into the blood and spleen. Overall, bacterial counts in

lungs correlated (p,0.01) to those in the bloodstream (r = 0.85) and

spleen (r = 0.85). Furthermore, morbidity and mortality were

associated (p,0.01) with bacterial counts in the lungs (r = 0.77

and r = 0.62, respectively), bloodstream (r = 0.86 and r = 0.75,

respectively) and spleen (r = 0.85 and r = 0.82, respectively).

Lung pathology
Histologic examination of the lungs of mice at the first day of

infection with RUH875, RUH134, LUH5875 and LUH8326

revealed hypercellularity due to increased numbers of lympho-

cytes, monocytes and macrophages, and thickened alveolar walls

Table 1. Strain characteristics.

Strain City (country) Year Specimen EU Clone* Outbreak{ MDR{

A. baumannii

UH875 Dordrecht (NL) 1984 urine I + +

RUH134 Rotterdam (NL) 1982 urine II + +

LUH5875 Utrecht (NL) 1997 blood III + +

LUH8326 Leiden (NL) 2002 wound - 2 2

RUH3023T (ATCC19606T) Atlanta (USA) 1965 urine - 2 2

A. junii

LUH5851 Leiden (NL) 1999 ear - 2 2

*Strain belonging to European clones I–III (+) or not belonging to these clones (2). All isolates have been identified to species by one or more genotypic methods
[1,33,34].
{Outbreak-associated (+) strain (i.e., common AFLP profile in .2 patients and with same time-space-origin) or (2) sporadic strain.
{Multidrug-resistant (+) strain (i.e., resistant to more than two of the following drug classes or combinations: cephalosporins, carbapenems, ampicillin-sulbactam,
quinolones and aminoglycosides) or (2) susceptible strain.

doi:10.1371/journal.pone.0030673.t001

Table 2. Morbidity and lung pathology associated with Acinetobacter respiratory infection.

A. baumannii A. junii

RUH875
(clone I)

RUH134
(clone II)

LUH5875
(clone III)

LUH8326
(sporadic) RUH3023T LUH5851

Clinical score*

Day 1 2.761.0 2.960.9 1.961.2 2.360.9 0.060.2 0.060.2

Day 2 3.260.6 2.761.2 2.261.2 3.360.5 0.0 0.160.2

Day 3 NA NA 1.961.3 1.561.7 0.0 0.0

Day 4 NA NA 0.260.4 NA 0.0 0.0

Lung pathology score{

Day 1 8.260.7 8.060.9 6.860.5 7.260.0 2.160.9 3.661.1

Day 2 8.060.9 8.360.8 6.961.5 7.160.3 2.160.6 3.061.2

Day 3 NA NA 7.360.6 7.561.2 2.260.2 2.760.6

Day 4 NA NA 6.761.0 NA 2.460.4 2.560.5

*Morbidity was recorded daily using a clinical score, which includes mobility, the development of conjunctivitis, and aspects of the hair and ranges from 0 for no clinical
symptoms to 4 for maximal symptoms.
{Sections of lungs of mice were stained with haematoxylin & eosin and lung tissue damage was assessed using the lung pathology score, which includes alveolar wall
destruction, leukocyte infiltration and hemorrhage and ranges from 0 for no pathology to 9 for severe pathology.

Values are means 6 standard deviations for 8 mice except for LUH8326 at day 3, where n = 4. Values are representative for surviving mice only. NA, not assessable, due
to the high mortality associated with these strains.
doi:10.1371/journal.pone.0030673.t002

Host Response in Acinetobacter Baumannii Pneumonia
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(Fig. 3, Table 2). The lungs of mice infected with these strains were

highly consolidated and many areas had hemorrhagic lesions. The

severity of tissue damage remained stable over time for all strains

(Table 2). Alveolar wall destruction was more severe after the first

day of infection with RUH875 and RUH134 than with LUH5875

and after the second day of infection with RUH875 and RUH134

than with LUH8326. Infection with RUH3023T and A. junii

LUH5851 resulted in significantly (p,0.05) less lung damage

(Table 2).

Overall, severity of tissue damage was correlated (p,0.001) to

bacterial levels in the lungs (r = 0.81), morbidity (r = 0.81) and

mortality (r = 0.84).

Inflammatory response to Acinetobacter
After the first day of infection with A. baumannii strains

RUH875, RUH134, LUH5875 and LUH8326, levels of all

chemo- and cytokines in the lungs were substantially elevated

(p,0.05) as compared to basal levels. The levels of the chemokines

KC, MIP-1a, MIP-2, and the pro-inflammatory cytokines IL-1b,

IL-6 and TNFa further increased and peaked at day 2 of infection

(Table 3). The kinetics of production of the anti-inflammatory IL-

10 differed significantly in animals infected with the four strains

with a peak at day 1 in animals infected with LUH8326, at day 2

after infection with RUH134 and at day 3 after infection with

LUH5875. At the first day of infection, levels of IL-10 in lungs

were significantly (p,0.05) lower in mice infected with RUH875

and RUH134 as compared to infection with LUH5875 and

LUH8326. IL-10 levels remained lower after the second day of

infection with RUH875 and RUH134 as compared to LUH5875.

Moreover, levels of the anti-inflammatory IL-13 in lungs of mice

infected for 1 day with RUH875 tended to be lower (p = 0.1) than

with LUH5875. In addition to these anti-inflammatory cytokines,

lower (p,0.05) levels of the pro-inflammatory IL-12p40 and IL-23

were seen in lungs of mice infected for 1 day with RUH875 and

RUH134 than with LUH5875 and LUH8326. A. baumannii

RUH3023T and A. junii LUH5851 did not induce cyto- and

chemokine production (data not shown).

In serum, all cyto- and chemokine levels were elevated 1 day

after infection with RUH875, RUH134, LUH5875 and

LUH8326, except for IL-23 that was not detectable (Table S1 in

the online data supplement). For the majority of the cyto- and

chemokines measured (KC, MIP-1a, MIP-2, IL-1b, IL-6 and

TNFa), levels in the lungs corresponded to levels in serum.

However, the kinetics of the innate response in lungs and serum

differed, with some cyto- and chemokines peaking earlier (IL-1b
and IL-10) and some later (MIP-1a, MIP-2, RANTES and TNFa)

in serum than in the lungs of infected animals. No significant

differences in levels of inflammatory mediators were seen between

Figure 1. Survival associated with Acinetobacter respiratory
infection. Survival of mice after intratracheal infection with A.
baumannii clone I strain RUH875, clone II strain RUH134, clone III strain
LUH5875, sporadic strain LUH8326 and type strain RUH3023T, and A.
junii strain LUH5851. Results are expressed as percentage survival at
days 1–4 of infection. {, all mice dead/sacrificed.
doi:10.1371/journal.pone.0030673.g001

Figure 2. Persistence of Acinetobacter strains in the lungs and extrapulmonary dissemination. Levels of A. baumannii clone I strain
RUH875 (black circles), clone II strain RUH134 (black downward triangles), clone III strain LUH5875 (black squares), sporadic strain LUH8326 (black
upward triangles) and type strain RUH3023T (black crosses), and A. junii strain LUH5851 (gray circles) in the lungs (A), bloodstream (B) and spleen (C)
of mice at 1 to 4 days after intratracheal injection. Results are expressed as mean CFU per g of tissue (for lung and spleen) or CFU per ml (for blood) 6
standard errors of the mean of 8 mice except for LUH8326 at 3 days after infection, where n = 4. Values are representative for surviving mice only.
Dotted lines represent the lowest limit of detection.
doi:10.1371/journal.pone.0030673.g002

Host Response in Acinetobacter Baumannii Pneumonia

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e30673



RUH875, RUH134, LUH5875 and LUH8326. Infection of mice

with RUH3023T and A. junii LUH5851 did not cause an increase

in inflammatory mediators in serum, except for a 5-fold increase of

RANTES and IL-1b levels (Table S1).

Overall, cyto- and chemokine levels in lungs and serum

correlated (p,0.05) to bacterial levels in lungs and blood,

respectively. We determined whether there was a correlation

between cyto- and chemokine production at day 1 and tissue

pathology, morbidity and mortality of mice at days 1–3 after

infection with A. baumannii RUH875, RUH134, LUH5875, and

LUH8326. Results revealed that low levels of IL-10 in lungs of

mice were associated with severe lung pathology (r = 20.70,

p,0.05) at the first day of infection. Morbidity was associated with

low IL-10 levels (r = 20.72, p,0.001), low IL-12p40 (20.37,

p,0.05) and IL-23 (r = 20.67, p,0.001) levels in the lungs.

Moreover, low levels of IL-10 in lungs at day 1 correlated to

mortality at days 2 (r = 20.77; p,0.05) and 3 of infection

(r = 20.72, p,0.01). A similar correlation was found between IL-

12p40 and IL-23 levels at day 1 and mortality at days 2 (r = 20.37,

p,0.05 and r = 20.71, p,0.01, respectively) and 3 (r = 20.35,

p,0.05 and r = 20.67, p,0.01, respectively).

Discussion

The outcome of pneumonia differed strikingly among A.

baumannii strains with clone I and II and the sporadic isolate

being highly virulent and the clone III strain (a clone less

widespread than clones I and II) being less virulent. Infection of

mice with type strain RUH3023T and A. junii LUH5851 did not

result in morbidity/mortality.

The clone I, II, III strains and the sporadic strain survived and

multiplied in the lungs and disseminated to the bloodstream at

high levels. Difference in mortality between clone III versus clone

I, II and the sporadic strain could not be attributed to bacterial

loads in lungs or blood, suggesting that proliferation in lungs and

extrapulmonary dissemination are not the only factors contribut-

ing to the virulence of these strains.

We previously demonstrated in vitro that A. junii strains induced a

stronger innate immune response in human cells than A. baumannii

strains, implying that A. junii may be quickly eliminated by the host

[5]. The finding that A. junii LUH5851 did not survive in our

pneumonia model supports this presumption, although experi-

ments focusing on the first hours of infection are necessary to assess

the relationship between clearance and the innate immune

response. Multiple factors play a role in clearance of pathogens

from the lungs, including phagocytosis and killing by neutrophils

and macrophages, by antimicrobial peptides and serum compo-

nents [16]. As we used neutropenic mice, other factors than

neutrophils contributed to the rapid clearance of the A. junii strain

and RUH3023T. It is of note that RUH3023T was more

susceptible to killing by human serum in vitro than A. baumannii

RUH875, RUH134, LUH5875 and LUH8326 (de Breij et al,

unpublished).

The type strain of A. baumannii (ATCC19606T) was used as a

model strain in several virulence studies [9,17–21]. The finding

that this strain, in contrast to other A. baumannii strains, did not

Figure 3. Light micrographs of lungs of mice infected with Acinetobacter. Sections of the lungs of mice at 1 day after infection with A.
baumannii clone I strain RUH875, clone II strains RUH134, clone III strain LUH5875, sporadic strain LUH8326, type strain RUH3023T or A. junii strain
LUH5851, stained with haematoxylin-eosin. Arrows indicate inflammatory cell infiltrates. Bars, 50 mm.
doi:10.1371/journal.pone.0030673.g003

Host Response in Acinetobacter Baumannii Pneumonia
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Table 3. Inflammatory response in lungs of mice infected with four virulent A. baumannii strains.

RUH875
(clone I)

RUH134
(clone II)

LUH5875
(clone III)

LUH8326
(sporadic)

Chemokines Day

KC{ 1 386 (38–700)* 311 (198–474)* 377 (4–555)* 310 (28–493)*

basal: 17 (3–57) 2 326 (150–749)* 236 (16–306)* 186 (25–540)* 204 (7–1753)*

3 NA NA 52 (8–224) 45 (32–422)

4 NA NA 41 (4–45) NA

MIP-1a{ 1 142 (1–404) 114 (13–287)* 112 (13–217)* 147 (6–201)*

basal: 2 (1–5) 2 589 (118–888)* 319 (5–1076)* 760 (3–909)* 196 (2–765)*

3 NA NA 78 (12–654)* 124 (90–596)*

4 NA NA 114 (5–191)* NA

MIP-2{ 1 171 (4–246)* 145 (71–372)* 119 (3–257)* 137 (6–220)*

basal: 5 (1–45) 2 400 (200–755)* 342 (4–591)* 365 (6–546)* 312 (3–406)*

3 NA NA 79 (4–253)* 109 (86–219)*

4 NA NA 97 (3–202)* NA

RANTES{{ 1 1753 (975–5282)* 1682 (893–2708)* 2124 (1406–2452)* 1885 (996–3340)*

basal: 236 (221–501) 2 1229 (794–1760)* 1278 (671–1773)* 1559 (1475–1627)* 1000 (812–1381)*

3 NA NA 930 (691–1010)* 958 (665–2027)*

4 NA NA 834 (646–850)* NA

Pro-inflammatory cytokines

IL-1b{ 1 20 (5–60)* 19 (7–66)* 18 (5–31)* 30 (5–48)*

basal: 1 (1–2) 2 51 (13–264)* 33 (3–135)* 69 (6–268)* 24 (2–81)*

3 NA NA 19 (3–84)* 28 (12–75)*

4 NA NA 14 (4–20)* NA

IL-6{ 1 133 (3–217)* 67 (19–280)* 85 (2–181)* 119 (1–174)*

basal: 3 (2–11) 2 127 (43–670)* 76 (4–395)* 98 (0.4–376)* 72 (1–151)*

3 NA NA 10 (1–217) 6 (3–266)

4 NA NA 9 (1–14) NA

IL-12p40{{ 1 1901 (1202–3091)* 2249 (743–4130)* 2824 (1818–5251)* 3698 (1900–5365)*

basal: 203 (163–237) 2 1730 (377–2380)* 1513 (976–2644)* 1991 (1093–3005)* 1031 (834–1282)*

3 NA NA 669 (381–1853)* 760 (415–2210)*

4 NA NA 319 (116–494) NA

IL-23{ 1 99 (58–113)* 82 (48–122)* 150 (104–175)* 113 (98–150)*

basal: 11 (6–17) 2 73 (33–227)* 86 (59–108)* 79 (46–112)* 63 (36–89)*

3 NA NA 43 (19–135)* 59 (23–169)*

4 NA NA 26 (6–61) NA

TNFa{ 1 10 (0.1–17) 8 (1–22)* 11 (1–30)* 12 (0.4–17)*

basal: 0.4 (0.2–5) 2 15 (3–28)* 11 (0.4–32)* 15 (1–32)* 6 (0.4–21)*

3 NA NA 2 (0.3–35) 2 (2–23)

4 NA NA 4 (1–9) NA

Anti-inflammatory cytokines

IL-10{{ 1 824 (416–2126)* 991 (578–1724)* 2445 (1834–4053)* 2168 (1348–3753)*

basal: 273 (157–355) 2 792 (389–4168)* 1346 (568–1923)* 2016 (844–2741)* 876 (541–1837)*

3 NA NA 2923 (862–1234)* 1903 (862–3330)*

4 NA NA 3740 (1154–4051)* NA

IL-13{{ 1 976 (678–2073)* 1481 (567–3274)* 2739 (571–3691)* 1628 (531–3958)*

basal: 215 (173–251) 2 1456 (565–4134)* 792 (275–1145)* 1368 (282–1765)* 527 (244–959)*

3 NA NA 262 (207–490) 327 (194–592)

4 NA NA 338 (123–511) NA

Host Response in Acinetobacter Baumannii Pneumonia
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survive in the mouse pneumonia model and in a mouse thigh

infection model [22] (de Breij et al, unpublished), challenges the

relevance of this strain as representative for the A. baumannii

species. Altogether, noted differences in virulence among A.

baumannii strains, as also observed by others [15,23], underscore

that the choice of strain is a critical variable in virulence studies.

The reference strains of EU clones I and II that are associated with

outbreaks worldwide were highly virulent in our study. It is

important to further assess whether this is a general feature of these

clones as this might have implications for clinical diagnostics

[24,25].

Eveillard et al [15] described a significant increase in TNFa and

MIP-2 levels in lungs of mice after infection with five different A.

baumannii strains. They showed that MIP-2 levels were higher in

mice after the second day of infection with two virulent strains

than with three less-virulent strains. Further to this, we found a

clear association with the severity of infection and levels of the

anti-inflammatory cytokine IL-10. The effects of IL-10 during

bacterial infections are complex. During an overwhelming

infection, as in our mouse studies, the anti-inflammatory effects

of IL-10 are most likely beneficial to the host by down-regulating

inflammation and its unfavourable effects [26,27]. However, IL-10

also hampers the appropriate pro-inflammatory response to the

bacteria, and then it can be hazardous for the host [28,29].

Indeed, we also found that low levels of IL-12p40 and IL-23 were

associated with a poor outcome, which is in agreement with

Happel et al, who demonstrated the critical roles of IL-12p40 and

IL-23 in host survival in a murine model of Klebsiella pneumoniae

infection [30]. Others reported that increased levels of IL-12p40 as

well as TNFa and IL-4 in neutropenic mice infected with

Cryptococcus neoformans were associated with survival of these mice

but not with a decreased fungal burden [31]. IL-23 is a cytokine

together with enhanced IL-1b and IL-6 production known to drive

an IL-17-producing T cell population in mice [32] that enhance

epidermal defence and neutrophil influx. However, it is uncertain

whether this cytokine plays a crucial role in host defence against A.

baumannii as IL-17 depletion did not increase mortality in A.

baumannii infected mice [23].

In conclusion, a striking difference in morbidity and mortality

associated with A. baumannii strains was noted, with EU clone I and

II strains being the most virulent. Furthermore, the outcome of

experimental A. baumannii pneumonia is associated with IL-10 and

IL-12p40/IL-23 levels. Future studies will have to clarify whether

this response influences the impact of A. baumannii strains in the

human host. If so, levels of these mediators may have predictive

values or be targets for treatment.

Materials and Methods

Bacteria
Five A. baumannii strains, including reference strains of EU

clones I–III, the type strain (RUH3023T = ATCC19606T) and a

sporadic isolate (LUH8326), and one A. junii strain were

investigated (Table 1). Bacteria were preserved in glycerolbroth

at 280uC. Prior to experiments, strains were rendered virulent by

a single passage in mice.

Animals
Specific pathogen-free female C3H/HeN mice weighing 18–

20 g were housed fifteen per cage and had ad libitum access to chow

and water throughout the experiments. Animal studies were

approved by the Animal Experimental Committee of the Angers

University Hospital (permit C49007002) and complied with

relevant laws related to the conduct of animal experiments.

Mouse pneumonia
The survival of Acinetobacter strains after intratracheal infection of

mice was assessed according to Eveillard et al [15]. To favour the

onset of infection, mice were rendered transiently neutropenic by

intraperitoneal injection with 150 mg of cyclophosphamide per kg

of body weight (in 100 ml of saline) at days 4 and 3 prior to

infection. Bacteria from an overnight culture on blood agar were

suspended into saline to an optical density of 0.5 McFarland,

corresponding to a concentration of approximately 108 colony

forming units (CFU)/ml. Mice were anesthesized by isoflurane in

conjunction with oxygen and 50 ml of the bacterial suspension

were injected intratracheally via a cannula. Immediately after

inoculation, two animals were sacrificed, lungs were homogenized

and vital count was performed to verify the infection inoculum

(range 5.96105–4.76106 CFU/g lung tissue). At 1, 2, 3 and 4 days

after infection, if possible 8 mice per strain were anesthesized and

blood was collected by intracardiac puncture, after which mice

were sacrificed by cervical dislocation. Serum was obtained by

centrifugation of blood samples and stored at 280uC for cytokine

analysis. Spleens and part of the lungs were removed, weighed and

homogenized in 3 ml of phosphate buffered saline (pH 7.4) using

the GentleMACS Dissociator (Miltenyi Biotec, Germany). Vital

counts in blood, lung and spleen homogenates were performed to

assess the number of viable bacteria (lowest limit of detection:

20 CFU/ml). Lung homogenates were stored at 280uC for

cytokine analysis.

A semi-quantitative analysis of mice morbidity was performed

using a clinical score ranging from 0 for no clinical symptoms to 4

for maximal symptoms based on the following criteria: mice

mobility (0, spontaneous; 1, only after stimulation; 2, absent), the

development of conjunctivitis (0, absent; 1, present), and the aspect

of the hair (0, normal; 1 ruffled). Mortality was assessed daily and

analyzed by Kaplan-Meier survival curve.

Histological analysis of lung inflammation
Lungs of mice at day 1–4 after inoculation were analyzed by

histological examination as described [15]. A semi-quantitative

analysis of the lung tissue damage was performed by grading five

random 206 fields of hematoxylin/eosin-stained sections accord-

ing to the following criteria: alveolar wall destruction [absent (0);

,25% (1), 25–75% (2), .75% (3) of alveoli destructed],

Mice were intratracheally infected with A. baumannii RUH875, RUH134, LUH5875 or LUH8326 for 1–4 days. Levels of inflammatory mediators were determined in the
lung homogenates of mice directly after instillation (basal values), and 1–4 days after instillation. Results are medians and ranges for 8 mice, except for LUH8326 at 3
days after infection, where n = 4. Values are representative for surviving mice only. NA, not assessable, due to the high mortality associated with these strains.
*, significantly (p,0.05) different from basal level.
{, results in ng/g of lung tissue;
{{, results in pg/g of lung tissue.
doi:10.1371/journal.pone.0030673.t003
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infiltration by leukocytes [absent (0); ,20 (1), 20–50 (2), .50 (3)

per field] and hemorrhage [absent (0); mild (1); moderate (2);

severe(3)]. The sum of scores represents the lung pathology score

ranging from 0 for no pathology to 9 for severe pathology.

Determination of inflammatory mediators
Levels of interleukin (IL)-1b, IL-6, IL-10, IL-12p40, IL-13, IL-

23, keratinocyte-derived chemokine (KC), macrophage inflamma-

tory protein (MIP)-1a, MIP-2, regulated upon activation, normal

T cell expressed and secreted (RANTES) and tumor necrosis

factor (TNF)a in serum and lung homogenates were determined

using multiplexing xMAP technology (Luminex Corporation

Austin, USA). Multiplex kits were from Millipore (Millipore

Corporation, USA).

Statistical analysis
Data were analyzed using the Kruskal-Wallis one-way analysis

of variance and Wilcoxon rank sum test (SPSS 17.0). Mortality

data were analyzed by Cox-regression. Spearman rank correlation

coefficients were calculated to evaluate associations between

parameters. P#0.05 were considered significant.

Supporting Information

Table S1 Inflammatory response in serum of mice
infected with Acinetobacter. Mice were intratracheally

infected with A. baumannii RUH875, RUH134, LUH5875,

LUH8326, RUH3023T or A. junii LUH5851 for 1–4 days. Levels

of inflammatory mediators were determined in the serum of mice

directly after instillation (basal values), and 1–4 days after

instillation. Results are median and ranges for 8 mice, except for

LUH8326 at 3 days after infection, where n = 4. Values are

representative for surviving mice only. NA, not assessable, due to

the high mortality associated with these strains. *, significantly

(p,0.05) different from basal level.
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