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Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on
their origin, the composition of microparticles varies and the subsequent message transported by them, such
as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles
are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we
have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis
and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased
when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients
induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor
type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles.
We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells
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leading to angiogenesis.
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1. Introduction

Obstructive sleep apnea syndrome (OSAS) is sleep-disordered
breathing associated with increased cardiovascular morbidity that
could result from intermittent hypoxia-related inflammation, oxidative
stress and endothelial dysfunction. Recently, circulating microparticles
(MPs), small vesicles of plasma membrane released during cell activation
and apoptosis [1], have been proposed to contribute to the pathogenesis
of vascular dysfunction in OSAS [2]. Thus, MPs from OSAS patients
decrease nitric oxide production without affecting reactive oxygen
species (ROS) generation in human endothelial cells [2]. Furthermore,
injection of OSAS MPs into mice results in a reduced endothelium-
dependent relaxation to acetylcholine [2] and an enhanced vascular
contraction to serotonin in the aorta [3]. Interestingly, MPs expressing
CD62L are positively correlated with the severity of OSAS according to
the apnea-hypoapnea index [2,3].

Among the possible mechanisms responsible for the cardiovascular
changes described in OSAS patients, activation of the endothelin-1 sys-
tem has been proposed (for review see [4]). A very recent study shows
single nucleotide polymorphisms in endothelin-1 gene, in which allelic
frequencies are significantly altered in children with OSAS [5]. In OSAS
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patients, plasma endothelin-1 levels are increased [6,7] and positively
correlated with the severity of nocturnal hypoxia, and decreased by pos-
itive airway pressure treatment [8]. However, another study shows that
whereas positive airway pressure treatment improves circulating levels
of inflammatory adhesion molecules such as ICAM-1 and plasminogen
activator inhibitor-1, enhanced levels of plasmatic endothelin-1 are
not corrected [9] suggesting that further treatments against OSAS
need to be developed [10]. Furthermore, in an animal model of OSAS,
rats exposed to chronic intermittent hypoxia display elevated levels of
endothelin-1 as well as decreased endothelium-dependent vasodilation
and increased vascular contraction to endothelin-1 which account for
the increase of arterial pressure [11,12]. In addition, pharmacological
treatment with bosentan abolishes deleterious consequences induced
by chronic intermittent hypoxia [13].

Very recent data suggest that intermittent hypoxia in OSAS patients
might be involved in the development of cancer [14]. Although the
exact mechanism implicated remains to be determined, it is possible
that the reoxygenation periods during intermittent hypoxia generate
changes in gene expression which may regulate the activity of some
transcription factors and signaling pathways involved in tumor
growth-inducing angiogenesis [14]. Among the plausible mechanisms in-
volved, an enhanced angiogenesis has been proposed in OSAS patients
(for review see [15]). Indeed, an increased coronary collateralization has
been described in OSAS patients [16]. In addition, upregulation of
proangiogenic vascular endothelial growth factor (VEGF) [17] has


http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2013.11.017&domain=pdf
http://dx.doi.org/10.1016/j.bbadis.2013.11.017
mailto:carmen.martinez@univ-angers.fr
http://dx.doi.org/10.1016/j.bbadis.2013.11.017
http://www.sciencedirect.com/science/journal/09254439

S. Tual-Chalot et al. / Biochimica et Biophysica Acta 1842 (2014) 202-207 203

been demonstrated in OSAS. One of the key features of MPs on cardiovas-
cular system is their ability to modulate angiogenic program [1]. There-
fore, the purpose of the present study was to determine whether MPs
from OSAS patients can modulate angiogenesis in human aortic
endothelial cells. To our knowledge, the study reported here is the first
to provide experimental evidence that circulating MPs from OSAS
patients are able to induce angiogenesis through the production of
endothelin-1 by human endothelial cells via a mechanism sensitive to
ETB receptor antagonist.

2. Materials and methods
2.1. Patients

Consecutive male patients (19 to 70 years old) investigated by
polysomnography in the Sleep Unit of the Department of Respiratory
Medicine of Angers University, for suspected OSAS were screened for
the study. Exclusion criteria were previous treatment for OSAS, body
mass index (calculated as weight in kilograms divided by height in
meters squared) >35 kg/m?, history of coronary artery disease, heart
failure, stroke, hypertension, diabetes mellitus, dyslipidemia, and treat-
ment with any drug known to affect endothelial function. Patients with
an apnea-hypoapnea index of > 5 events per hour were included in the
OSAS group. Patients with an apnea-hypoapnea index <5 were included
in the non-0SAS (N-OSAS) group. All the patients underwent evaluation
of clinical profile and daytime sleepiness using the Epworth Sleepiness
Scale [18]. Standard in-laboratory overnight polysomnography was
performed as previously described [19] using a computerized recording
system (CID 102; Cidelec, Angers, France) with the following channels:
electroencephalogram, electrooculogram, chin electromyogram, arterial
oxygen saturation (finger oximetry), nasal-oral airflow (pressure cannu-
la), tracheal sound (suprasternal microphone), electrocardiogram, chest
and abdominal wall motion (piezo electrodes), bilateral tibialis electro-
myogram, and body position. Respiratory events were scored manually
using recommended criteria [20]. Hypopneas had to be associated
with >4% oxygen desaturation. The University of Angers ethics com-
mittee approved the study, and patients gave their informed consent.

2.2. MP isolation and characterization

MP characterization was performed in the morning after sleep
recording, at approximately 7 or 8 am, before breakfast. Routine labora-
tory tests, including glucose, glycated hemoglobin, triglycerides, total
cholesterol, high-density lipoprotein cholesterol, low-density lipopro-
tein cholesterol, and blood cell count, were also performed using a
morning blood sample. For MP isolation, blood samples were collected
in EDTA tubes (Vacutainer; Becton Dickinson, Le Pont de Claix, France)
from a peripheral vein using a 21-gage needle to minimize platelet acti-
vation and were processed for assay within 2 h. Samples were centri-
fuged for 20 min at 270 g, and plasma was then harvested and
centrifuged for 20 min at 1500 g to obtain platelet-free plasma (PFP).
Two hundred microliters of PFP was frozen and stored at — 80 °C until
use. As previously described [2,3], the remaining PFP was subjected to
two series of centrifugation at 21,000 g for 45 min to eliminate plasma
and to pellet MPs for studies, and supernatant was replaced by 0.9%
NaCl saline solution. Finally, MP pellets were suspended in 150 pL of
0.9% saline salt solution and were stored at 4 °C until subsequent use.

MP subpopulations were discriminated into PFP according to the
expression of membrane-specific antigens by flow cytometry. MPs de-
rived from platelets, lymphocytes, and endothelial cells were identified
using anti-CD41, anti-CD45, and anti-CD146 antibodies, respectively.
Anti-CD62L antibody was used to identify MPs derived from activated
L-selectin™ leukocytes. Irrelevant human IgG was used as an isotype-
matched negative control for each sample. Five microliters of PFP was
incubated with 5 pL of specific antibody (Beckman Coulter, Villepinte,
France), and after 45 min of incubation, samples were diluted in

300 pL of 0.9% NaCl. Annexin V-FITC (BioVision Research Products,
Mountain View, CA) binding was used to count phosphatidylserine-
expressing MPs. To determine the MP concentration, equal volumes of
sample and FlowCount beads were then added to calculate the MP con-
centration, and samples were analyzed using a 500 MPL system flow
cytometer (Beckman Coulter). Regions corresponding to MPs were
identified in forward and side-angle light scatter intensity dot plot
representation set at logarithmic gain, depending on their diameter
(0.1 to 1.0 pm). Sample analysis was stopped after counting 10,000
events.

2.3. Cell culture

Human aortic endothelial cells (HA0OECs) (Promocell, Heidelberg,
Germany) were cultured (37C, 5% CO,) in Endothelial Cell Growth Me-
dium MV2 (Promocell) complemented with the supplements according
to the manufacturer's instructions. All ECs were used at <10 passages.
Cells were treated for 24 h in the absence or presence of N-OSAS or
OSAS MPs at the circulating levels of MPs detected in the plasma of
each patients (OSAS group; range, 3885 to 69,480 MPs per microliter
of plasma; N-OSAS group; range, 2,887 to 8,5725 MPs per microliter of
plasma), as previously described for other pathologies [21,22].

24. Plasmatic VEGF

Measurement of plasmatic VEGF was performed on PFP using a com-
mercially available ELISA assay (Pierce Biotechnology, Rockford, IL).

2.5. VEGF expression by Western Blotting

MPs (30 pg of proteins) were separated on a 4-12% NuPAGE gels
(Invitrogen, Carlsbad, CA). Blots were probed with anti-VEGF (Santa
Cruz Biotechnology, Santa Cruz, CA). Tubulin (Santa Cruz Biotechnology)
was used to visualize protein gel loading. The membranes were then
washed at least three times in Tris buffer solution containing 0.05%
Tween and were incubated for 1 h at room temperature with the
appropriate horseradish peroxidise-conjugated secondary antibody
(Amersham Biosciences, Piscataway, NJ). The protein—-antibody com-
plexes were detected by enhanced chemiluminescence plus reagent
(Amersham Biosciences) according to the manufacturer's instructions.

2.6. Apoptosis measurement by flow cytometry

HAOECs were exposed to MPs or actinomycinD (1 uM as positive
control; Sigma-Aldrich, St. Louis, MO) for 24 h and then fixed in 70 %
ethanol at 4 °C for at least 4 h. After a centrifugation at 15,000 g for
5 min, cells were re-suspended in PBS containing 0.05 mg/mL RNase
(Sigma-Aldrich) and 10 pug/mL propidium iodide (Sigma-
Aldrich). Cellular DNA content was analyzed on a Cytomics FC 500
MPL flow cytometer (Beckman Coulter). In all cases at least 10,000
events were collected for analysis.

2.7. Cell adhesion assay

Evaluation of adherent cells was performed using crystal violet
staining. Then, 5 x 10* cells per well were seeded into 96-well plates
and were treated for 24 h. After incubation, the plate was shacked for
15 s. The supernatant with non-adherent cells was removed by three
washes with washing buffer (0.1% BSA in medium without serum). At-
tached cells were fixed with 4 % of paraformaldehyde for 15 min at
room temperature. Cells were rinsed two times with washing buffer,
stained with crystal violet (Sigma-Aldrich) (1 mg/mLin 2 % of ethanol)
for 10 min at room temperature and extensively washed with distilled
water. Then, sodium dodecyl sulfate 2% was added and incubated for
30 min at room temperature. Absorbance was then evaluated using a
microplate reader at 550 nm (Synergy HT, Biotek).
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2.8. Cell proliferation assay

Effects of MPs on HAOECs proliferation were analyzed by using
CyQUANT® Cell Proliferation Assay Kit (Molecular Probes, Eugene,
OR). Briefly, 5 x 10* cells per well were seeded into 96-well plates
and allowed to attach overnight and then cells were treated with MPs
for 24 h. After growth medium removal, dye-binding solution was
added into each microplate well and cells were incubated at 37 °C for
30 min. The fluorescence levels were read on a fluorescent microplate
reader (Synergy HT, Biotek) with filters for 485 nm excitation and
530 nm emission.

2.9. In vitro capillary network formation on Matrigel®

HAOECs, preincubated for 45 min or not with endothelin-1 receptor
antagonist BQ-788 (5 pM, Sigma-Aldrich), were treated for 24 h with
either VEGF (20 ng/mL) or in the absence or in the presence of N-
OSAS or OSAS MPs at the circulating levels of MPs detected in the plas-
ma of each patient [2,3]. Then, cells were detached with trypsin-EDTA
and seeded with a density of 150 x 10 cells per well precoated with
Matrigel® (Sigma-Aldrich). Briefly 150 pL of ECM gel® substrate diluted
with FBS-free medium (1:1 dilution) was added into a four-well plate
and allowed to solidify for 1 h at 37 °C. Then 75 pL of Matrigel® sub-
strate was added and allowed to solidify for another 1 h at 37 °C.
Then, cells were incubated with medium and allowed to adhere for
1 h after which the different stimuli were added. Tube formation was
examined by phase-contrast microscopy (MOTIC AE21; 100 x magnifi-
cation) after 24 h and was quantified using Image] software. The capil-
lary length was counted in five randomly selected microscopic fields for
each experiment.

2.10. Measurement of endothelin-1 concentration

After incubation with MPs, endothelin-1 concentration was mea-
sured in cells using Human Endothelin-1 Immunossay (R&D Systems,
Minneapolis, MN) according to the manufacturer's instructions.

2.11. Statistical analysis

Data were analyzed using GrapPad Prism Software (San Diego, CA).
Data are expressed as mean 4+ SEM, and n = number of patients or
experiments performed. Statistical analyses were performed with non-
parametric Mann-Whitney U or 2 tests as appropriate. P < 0.05 was
considered to be statistically significant.

3. Results
3.1. Characterization of patients

Thirty five male patients (19 to 70 years old) were included in this
study. According to the apnea-hypoapnea index, 20 patients were in-
cluded in the OSAS group and 15 in the N-OSAS group. As shown in
Table 1, there was no statistically significant difference between OSAS
and N-OSAS patients for age, BMI, Epworth Sleepiness Scale, lipid me-
tabolism, glucose metabolism and percentage of current smokers
(Table 1). For all experiments OSAS and N-OSAS groups were matched
for age, BMI and biological data.

3.2. Circulating MPs harbor the pro-angiogenic factor, VEGF

As previously described [2], total number of circulating MPs was not
significantly different between the two groups. In contrast, CD62L" MP
levels were enhanced in OSAS patients when compared to N-OSAS
group (Table 1). Other subtypes of MPs were not significantly different
between the two groups (not shown). These results confirm that OSA

Table 1
Characterization of population included in the study.

N-OSAS OSAS p value
n 15 20
Age, years 40 £33 46.5 + 2 NS
Body mass index, kg/m? 253 + 0.8 27.8 + 0.8 NS
Weight (kg) 80 + 36 84.6 £+ 3.1 NS
Current smokers, n (%) 2(13) 6(30) NS
Plasma glucose, mmol/L 52 +03 53+ 0.1 NS
Total cholesterol, mmol/dL 58 +£03 56 £ 0.2 NS
Triglycerides, g/L 13 +£0.2 14 +£ 0.1 NS
HDL cholesterol, g/dL 13+ 0.1 13+ 0.1 NS
LDL cholesterol, g/dL 39+ 02 36+ 02 NS
Epworth sleepiness scale 88+ 13 10+1 NS
Apnea-hypoapnea index, events/h 2.2 + 0.5 228 +£3.7 <0.0001
Mean Sa0,, % 942 4 04 932403 0.038
4% oxygen desaturation index, 08 +03 197 + 34 <0.0001

events/h

Total circulating MPs/uL 17,533 + 6,031 21,591 + 3,780 NS
CD62L" MPs/pL 146 + 35 255 + 31 <0.01

N-OSAS: non-obstructive sleep apnea patients; OSAS: obstructive sleep apnea patients;
HDL: high density lipoprotein; LDL: low density lipoprotein; SaO,: oxygen saturation;
MPs: microparticles. Values expressed as mean + SEM.

patients included in the present study display the same characteristics
concerning MP levels than those previously described.

VEGF was 2.5-fold increased in platelet-free plasma from OSAS
patients (Fig. 1A). Both N-OSAS MPs and OSAS MPs carried VEGF, inter-
estingly the MPs from OSAS patients displayed a greater VEGF expres-
sion (Fig. 1B).

3.3. Circulating MPs from OSAS patients favor angiogenesis through the
endothelin-1 release

Neither N-OSAS MPs nor OSAS MPs modified the apoptosis in
HAOECs indicating that MPs did not affect cell viability (Fig. 2A).
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Fig. 1. Analysis of vascular endothelial growth factor (VEGF) expression. (A) Quantifica-
tion by ELISA assay of VEGF levels in plasma from non-OSAS (N-OSAS) and OSAS patients
(n = 7-9). (B) Thirty pg of proteins of microparticles from N-OSAS and OSAS patients
were analyzed by Western blot using antibodies against VEGF and tubulin. Data are repre-
sentative of four separate blots, and the densitometry values are expressed in arbitrary
units (A.U.) as mean 4 SEM. *P < 0.05, **P < 0.01.
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Actinomycin D was used as positive control of apoptosis induction. Also,
both types of MPs did not modify HAOEC adhesion (Fig. 2B). However,
OSAS MPs, but not N-OSAS MPs, were able to increase cell proliferation
(Fig. 2C).

In vitro treatment during 24 h of HA0ECs with OSAS-MPs induced
increased capillary formation in a similar manner than VEGF, reflecting
angiogenesis (Fig. 3A and B). N-OSAS MPs had no effect on capillary
length. Endothelin-1 concentration in HAoECs (under basal conditions
32.2 + 6.4 pg ml™ ") was increased by 27% in cells treated by N-OSAS
MPs and 46% in cells treated by OSAS MPs (Fig. 3A). Interestingly, the en-
hanced angiogenesis induced by OSAS MPs was abolished in the presence
of the antagonist of endothelin-1 receptor type B (ETB), BQ-788 (Fig. 3B
and C), suggesting that OSAS MPs might stimulate the angiogenesis pro-
cess in OSAS patients resulting from endothelin-1 release sensitive to
blockade of endothelin-1 receptor type B.

4. Discussion

MPs have been described to act directly through the interaction
ligand/receptor or indirectly on angiogenesis (i) by modulating soluble
factor production involved in endothelial cell differentiation, prolifera-
tion, migration, and adhesion, (ii) by reprogramming endothelial
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Fig. 2. Effects of microparticles on apoptosis, adhesion and proliferation of human aortic
endothelial cells. (A) Quantification of propidium iodide staining by flow cytometry
under different conditions (Control, actinomycin D (ActD), N-OSAS microparticles and
OSAS microparticles). (B) Adherent cells in the absence (Control) or in the presence of mi-
croparticles from non-OSAS (N-OSAS) or OSAS patients were evaluated by crystal violet
staining. (C) Proliferative effects of microparticles from OSAS patients, but not from non-
0OSAS (N-OSAS) patients, compared with vehicle (Control). Results are means + SEMs
from five independent experiments. *P < 0.05.

mature cells, and (iii) by inducing changes in levels, phenotype, and
function of endothelial progenitor cells (for review see [1]). In the pres-
ent study, we show that MPs from OSAS, but not those obtained from
non-0SAS patients, induce both endothelial cell proliferation and angio-
genesis to the similar extent than VEGF. Other studies have shown that
MPs from patients with different pathologies are able to regulate endo-
thelial angiogenesis by different mechanisms. Indeed, circulating MPs
from atherosclerotic patients have been shown to enhance the pro-
angiogenic ability of circulating angiogenic cells via RANTES pathway
activation [23]. Also, MPs isolated from vitreous from patients with pro-
liferative diabetic retinopathy increase endothelial cell proliferation and
new vessel formation and [24]. In contrast, circulating MPs from diabet-
ic retinopathy and diabetic foot ulcer patients induce unstable capillary-
like tube networks that collapsed over time [25]. Taken together, these
results suggest that in pathologies associated with an exacerbated an-
giogenesis, MPs can participate in favoring new vessel formation; in
contrast, in those in which failed angiogenesis is described, MPs may
be involved in the process of unstabilization of new capillary formation.
In the present study, intermittent hypoxia, a powerful regulator of an-
giogenesis, observed in OSAS may be responsible of the generation of
MPs harboring VEGF. In this way, Gaustad et al. [26] have shown that
acute cyclic hypoxia induced angiogenesis in melanoma tumors
resulting in increased density of small-diameter vessels. Also, mice ex-
posed to acute cyclic hypoxia showed increased incidence of pulmonary
metastases, and the primary tumors of these mice showed increased
blood perfusion, microvascular density and vascular endothelial growth
factor-A (VEGF-A) expression [27].

It has been largely described that MPs from different cell origins can
affect endothelial function by mainly decreasing NO production, in-
creasing generation of ROS and cyclooxygenase derivatives [2,3,22,28].
In particular, we have previously shown that MPs from OSAS patients
induce endothelial dysfunction mediated by reduced NO bioavailability
and vascular hypereactivity to vasoconstrictors as results to cyclo-
oxygenase metabolite production [2,3]. Another factor such as
endothelin-1 released by endothelial cells might participate in
the vascular alterations observed in OSAS patients. By acting
through ETA receptors localized in smooth muscle cells, endothelin-1
induces vasoconstriction via phospholipase C activation, 1,4,5-insoitol
triphosphate formation and the consequent release of calcium from in-
tracellular stores [29]. In contrast, ETB receptors are predomintaly
expressed on endothelial cells and mediate vasodilation by increasing
NO and prostacyclin production [29]. Here, we show that treatment
of human endothelial cells with MPs from OSAS patients induces
endothelin-1 release and most importantly, OSAS MP-induced capillary
tube formation is completely prevented when ETB receptors are
blocked. These results are in agreement with those of Salani [30] show-
ing that endothelin-1 is able to promote in vitro human endothelial cell
proliferation, migration and invasion and in vivo mice neovasculariza-
tion, and BQ 788, an ETB receptor antagonist, block the angiogenic
effects induced by endothelin-1. Most interestingly, hypoxic stress
evokes a significant increase of endothelin-1 release by brain endothe-
lial cells that is associated with a decrease of endothelial NO synthase
expression [31]. Several works show that intermittent hypoxia in-
creases plasmatic levels of endothelin-1 in OSAS patients [5,9] and in
animal models [13] suggesting that endothelin-1 antagonists may be
use as therapeutic tools in OSAS [13]. Further studies are needed to
determine whether MP-induced angiogenesis represents an adaptive
mechanism to local hypoxia and may impact on the development of
cardiovascular abnormalities in OSAS patients.

One potential limitation of the present study is that we only included
male patients. The male predominance of OSAS is well known with a
2-3:1 ratio of male to female OSA cases in the general population, and
a 8:1 or greater ratio in clinical populations. Gender-related interactions
were also observed between OSAS, metabolic and cardiovascular abnor-
malities [32,33]. Therefore, the findings of the present study may not be
extrapolated to women.
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(Control) or in the presence of microparticles from non-0OSAS (N-OSAS) or OSAS patients (n = 4). (B) Phase-contrast micrographs showing the effects of microparticles from N-OSAS and
OSAS patients on capillary-like structure formation in human aortic endothelial cells. Cells were incubated in the absence (Control) or in the presence of the antagonist of endothelin-1
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*P < 0.05, P < 0.01.

In summary, we underscore a novel role of MPs in the vascular path-
ogenesis in OSAS patients in which increased circulating endothelin-1 is
highlighted. Furthermore, OSAS MPs display increased VEGF expression
and enhanced release of endothelin-1 from endothelial cells to promote
the tube formation. Thus, MPs can also act as vector of information to
induce release endothelin-1 responsible for increased of both angiogen-
esis at the endothelial side and arterial pressure resulting from vascular
contraction at the level of smooth muscle.
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