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Probabilistic calibration of the strength reduction factor for the design of rectangular 

short concrete columns reinforced with FRP bars under eccentric axial loading – 

update of ACI 440 rules. 

 

Abstract: 

The design of concrete columns reinforced with fibre-reinforced polymer (FRP) bars is currently debatable. The present 

study proposes a reliability-based approach with the objective of calibrating the optimal strength reduction factor for the 

design of short rectangular FRP-RC columns under eccentric axial loading according to the ACI-440 guide. The 

reliability approach relies on a fast hybrid first-order reliability method (FORM)-based response-surface (RS) method. 

The results of such a hybrid approach have been validated using a Monte Carlo importance sampling (MC-IS) 

technique. The uncertainty of geometrical, material and loading variables is considered through various dedicated 

statistical distribution laws. Several design parameters have been considered: load eccentricity, aspect ratio of the 

concrete section, reinforcement ratio, live to dead load ratio, strength of concrete, and grade of FRP bars. In addition, 

Top-Bottom and Uniform reinforcement configurations, which are preferred for high- and small-load eccentricities, 

respectively, are considered. To ensure the generalization of the approach, full combinations between the design 

parameters are performed, resulting in more than 105 structural classes. Thus, calibrated strength reduction factors can 

cover a wide range of design situations. After demonstrating the possible inappropriateness of ACI-440 rules, the study 

proposes a novel approach to choose the strength reduction factors based on a quadratic function of the live-to-dead 

load ratio and load eccentricity. Eventually, the study presents recommendations for the selection of reduction factors 

distinguishing small and high load eccentricity and concludes with a working example. 

 

Keywords: Fibre Reinforced Polymer bars; short concrete columns; design code; structural reliability analysis; 

calibration of strength reduction factor. 

 

1. Introduction 

Reinforced concrete (RC) members containing conventional steel reinforcing bars often suffer from a decrease in their 

strength with time due to corrosion, which is inevitable, and sometimes at an early age, especially in coastal and/or 

industrial zones [1-3]. Corrosion is a common problem in conventional steel materials and cannot be totally prevented 

throughout the life span of structures. Thus, engineers have been forced to use another type of reinforcement, and in 

the last two decades, fibre-reinforced polymer (FRP) composite bars have been used as an alternative reinforcement 
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material in concrete structures since FRPs are noncorrodible materials [4]. Furthermore, use of FRPs could offer more 

advantages, such as light weight, ease of transportation and fabrication, high static [5] and cyclic [6] strength and 

durability [7], and even under high temperature [8], compared to conventional steel bars. 

Flexural and shear design rules of RC members reinforced with FRP bars are included in several design guidelines or 

handbooks, such as [9], FIB [10] and ISIS Canada [11]. Currently, most of the available codes are actually used, 

deviating from their initial purpose to design cross-sections under eccentric axial compression actions, against the 

advice given by the same codes. For instance, the ACI 440-guide [9] does not recommend relying on FRP bars under 

compression, while the bars are especially experiencing such action under eccentric axial compression loading. 

Furthermore, the Canadian guideline [12] permits the use of FRP reinforcing bars in concrete under compression 

actions if their strength and modulus are ignored. Moreover, the FIB technical report [10] excludes only glass-FRP bars 

from use unless otherwise more experimental studies qualify the properties of FRP bars under such actions. Numerous 

studies (e.g., [13, 14]) have handled the limitations of such design guides and considered them conservative material. 

Recent studies have been conducted (e.g., [13, 15-17]) to demonstrate the feasibility of using FRP bars in RC 

elements subjected to axial compression forces. Such studies change the trend of some design guides to consider the 

contribution of FRP bars in concrete members subjected to compression forces. For instance, the recent version of the 

Canadian highway bridge design code [18] allows the use of FRP bars in FRP-RC columns subjected to eccentric 

force while considering their contribution until a compressive strain of 0.002 is reached. 

Based on the recent trend towards using FRP bars under compression actions, it is important to provide the necessary 

safety factor(s) required for design purposes. Herein, the rules of ACI-318 [19] code format were considered to derive 

the ultimate axial eccentric capacity Pu of short concrete columns reinforced by means of steel bars. Nevertheless, the 

steel bars contribution is replaced by the FRP bars contribution. The ultimate capacity can be taken as Pu=φ(Fc+FFRP), 

where Fc and FFRP are the internal forces carried by concrete and FRP bars, respectively. Evaluation of these forces 

depends mainly on the position of the neutral axis, strain profile across the RC section and concrete crushing strain 

εcu=0.003 (see Figure 1). φ is the strength reduction factor proposed to be calibrated in the present study. Currently, the 

ACI 440-1R-15 guide [9] proposes a strength reduction factor ϕ that addresses only FRP RC beams, as given in Eq. 1: 

 ϕ = �0.3 + 0.55 if �
��/�
��,� ≤ 1.00.25�
��/�
��,� if 1.0 < �
��/�
��,� < 1.40.65 if �
��/�
��,� ≥ 1.4  Eq. (1). 

where ρFRP and ρFRP,b are the actual and balanced FRP reinforcement ratios, respectively. 

 �
�� = �����.�  Eq. (2a) 



 

 �
��,� = �. !"#$%&$���,' ( )*+%&)*+%& ,$���,'- Eq. (2b) 

where b and d are the dimensions of the column section, .
�� corresponds to the area if FRP bars, /01 and /
��,2 are 

the concrete compressive and FRP tensile strengths, 301  is the extreme fibre concrete compressive strain in conjunction 

with /01, 4$ is the elastic modulus of FRP, and 56 is the ratio between the depth of the equivalent rectangular concrete 

stress block and the neutral axis depth. Similar to steel-RC flexural members, two possible failure modes could occur. 

The first failure mode is tension failure mode (i.e., FRP rupture), which takes place when ρFRP < ρFRP,b. FRP rupture 

failure is a sudden and catastrophic mode. The compression failure mode (i.e., concrete crushing), which takes place 

when ρFRP > ρFRP,b, is marginally more desirable for flexural FRP-RC members. However, both FRP rupture and 

concrete crushing failure modes are acceptable in designing FRP-RC flexural members. 

Existing codes of practice have fundamental structural safety uncertainties that have major implications for the 

structural design and safety of FRP RC elements. Inability to address this uncertainty issue may lead to uneconomic 

design in many situations. Updated design codes suggest that the value of the strength reduction factor φ should be 

evaluated using a mathematical calibration procedure that enables to consider the uncertainty inherited in design 

variables such as load, material, and geometry. The uncertainty of random variables should be treated using their 

statistical parameters, such as the mean value, standard deviation and probability density function. Calibration can be 

considered an optimization procedure that is used to achieve a certain goal over reliability classes of structures. This 

goal may be of safety, risk or economical type [20]. 

The reliability of concrete columns reinforced with conventional steel bars has been studied by several researchers. 

Frangopol et al. [21] performed a reliability analysis of steel-RC short/slender columns, in which the authors 

implemented Monte Carlo simulation to evaluate the reliability of steel-RC columns considering material nonlinearity. 

Structural responses were evaluated through a simplified buckling formula and sectional analysis. The results revealed 

that both the loading path and load correlation can affect the reliability of the columns. In another study by Diniz and 

Frangopol [22], the effect of long-term creep of concrete on the structural reliability of eccentrically loaded nonsway 

slender RC columns was investigated, where many design factors, such as the reinforcement ratio, load eccentricity 

and concrete strength (i.e., normal and high strength concrete), were studied. The major conclusion drawn by the 

authors is that ACI-318 [19] code rules for the case of long steel-RC columns using high strength concrete are too 

conservative compared to the normal strength concrete case. The longitudinal reinforcement ratio showed a significant 

effect on the reliability of steel-RC columns with high eccentricities and high concrete strengths. Mirza [23] aimed to 

evaluate the strength reduction factor φ of tied slender steel-RC columns. The study recommended a strength 



 

reduction factor with a value of 0.7 for the concrete crushing failure mode and linearly increased to 0.9 when the axial 

force dropped from a balanced value to zero. 

Szerszen et al. [24] carried out a reliability-based calibration study. ACI-318 guide rules [19] were assumed, and their 

objective was to calculate the strength reduction factor for the design of different types of steel-RC members 

considering various load combinations in shear and flexural limit states. According to the authors, there is a need to 

decrease the strength factors in different situations of the ACI-318 rules. Such required decreases in strength factors 

should be followed by changes in load combination factors for dead and live loads. Although the study of Szerszen et 

al. [24] considers various loading combinations and structural types, the study relies on a limited number of design 

situations for each structural type or limit state. Moreover, from a reliability analysis point of view, the study does not 

provide a full probabilistic formulation of the problem, whereas it uses a simplified formula for calculating the reliability 

indices. Mohamed et al. [20] provided a reliability-based calibration procedure to obtain uniform reliability indices of 

steel-RC columns. The structural performance was obtained using a response surface method based on finite element 

simulations. Geometric and material nonlinearity were included in the finite element model. Partial safety factors were 

evaluated according to the Eurocode format. Many design parameters were considered in the analysis, such as the 

slenderness ratio, cross-section dimensions, reinforcement ratio, material strengths and load eccentricity. However, 

only the uncertainties in material properties (concrete strength and steel yield strength) were considered. Based on the 

results obtained, the proposed model provided a better format of steel and concrete safety factors, which results in a 

constant safety level. However, the safety factor format obtained was expressed in a very long polynomial relationship, 

which is not practical for design purposes. Putting the matter generally, reliability-based calibration of safety factors can 

show a certain level of inappropriateness of the design codes. As the initial approach of developing FRP-RC design 

guidelines was to modify conventional RC codes of practice, safety factors applied to FRP-RC members may be 

questionable. 

A large number of research studies concerning the reliability-based design of FRP-strengthened reinforced concrete 

structural elements have been published in the recent literature. Most of these research studies deal with the use of 

FRP sheets or plates to strengthen RC beams (bridge girders) in bending [25-28], shear [29-31] or RC columns in 

compression [32,33]. Reliability-based approaches for the calibration of safety factors for FRP-bar RC members are 

very infrequent in the literature, mentioned mainly in the works of Behnam and Eamon [34] and Shahnewaz et al. [35]. 

The first article cited presents the reliability-based optimization of concrete flexural members reinforced with ductile 

FRP bars, but the authors insist mainly on the interest of using ductile vs brittle FRP bars and do not debate the 

calibration of the safety factor. In the second article cited, the authors dealt with the shear design equation for slender 



 

concrete beams reinforced with FRP bars and stirrups using a genetic algorithm and reliability analysis. Nevertheless, 

the authors do not question the relevance of safety factors. Above all, these two articles do not deal with column 

members, which are the structural elements studied in the present work. At this point, it can be stated - considering the 

possible lack of relevancy, shown by many authors, of partial safety factors in current design guides or codes, and, that 

the case of short concrete columns reinforced with FRP bars has not yet been studied - that there is an interest to 

study the actual accuracy of the current design codes. 

In summary, the main objective of this paper is to calibrate the strength reduction factor φ found in the ACI 440-1R15 

design guide for short rectangular concrete columns reinforced with FRP bars. The ultimate eccentric axial force of the 

column will be obtained using sectional analysis (see section "2.1. Structural modelling"). The structural reliability will 

be presented in terms of reliability index β. First-order-reliability-method FORM-based quadratic response-surface RS 

was used to obtain the safety/reliability index for each case in the class of structure (see section "2.2. Structural 

Reliability aspects"). Loads, strength, and geometrical parameters are considered random variables. Statistical 

parameters (mean, standard deviation and distribution type) of all considered random variables are taken from 

previous studies available in the literature. The calibration approach is carried out in sequential steps (see section "3. 

Calibration procedure"). To ensure the applicability of these calibrated strength reduction factors to a wide range of 

situations, various configurations of short concrete column cases, for which experimental data are available, were 

considered. Generally, the reinforcement of concrete columns can be arranged in two different configurations. First, a 

uniform distribution of FRP bars around the four sides of the column is observed. Second, an unsymmetrical 

reinforcement configuration about the horizontal axis passes through the centre of gravity (c.g.), as shown in Figure 1. 

Secondary effects, such as long-term, environmental, local buckling of FRP bars, column slenderness and confinement 

effects due to transverse reinforcement, were neglected in the calculations. The results will be discussed in terms of 

the summation of squared differences between the target and the actual reliability for all structure classes considered 

(see section "4. Results and discussion"). 

2. Methods 

2.1. Structural modelling 

The present study focuses on short concrete columns reinforced with FRP bars under eccentric loading. In very simple 

terms, the design principle here relies on the simple condition that design capacity 7� is greater than or equal to 872 

(i.e., 7� ≥ 872), where 72 is the ultimate eccentric load of the column, and 8 is the strength reduction factor, as 

mentioned before. In the case of columns under an axial load applied with high eccentricity, the section can be 

considered to work under both axial and bending forces. To determine the ultimate eccentric load 72, a sectional 



 

analysis procedure, also called the fibre section method, is conventionally used. The cross section of concrete columns 

reinforced with FRP bars was divided into several slices, as shown in Figure 1. Each slice simulates a fibre of the 

material running in the longitudinal direction of the RC member. The following two main assumptions were included in 

the fibre section method. First, the plane section remains planar before and after bending, i.e., strain profile across the 

section is likely to be linear. Second, concrete and FRP bars are assumed to be perfectly bonded. 
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Figure 1. Discretization of concrete section. 

Concrete compression is depicted by the following nonlinear stress-strain 9:0 − 30< law: 

 :0 = /0′ (=+%+> − ?+%+>@=- Eq. (3). 

where 3� = 2/01 40⁄ , Ec is the elastic modulus of concrete and was taken to be equal to 4700B/0 in MPa, adopted 

according to ACI 318-14 [19]. 

The tensile strength of concrete was assumed to be neglected. The stress-strain response of the FRP bars is assumed 

to be elastic-perfectly brittle; thus, the FRP stress can be evaluated as σFRP=εFRP*EFRP, where εFRP and EFRP are the 

strain in the FRP bar and elastic modulus of the FRP material, respectively. Nevertheless, FRP bars under 

compression strains are considered to have a modulus and strength lower than the modulus and strength for FRP bars 

under tensile strains, as stated in the ACI 440-1R-15 design guide [9] and as explained in §3. As mentioned above, two 

possible failure modes were considered. The first failure mode is concrete crushing, which takes place as compression 

strain in the upper fibre of the section reaches 3′0, as shown in Figure 1. The second failure mode is FRP rupture, 

which takes place when the tensioned FRP reaches a strain equal to fu,FRP/EFRP [36]. 

The following steps describe the procedure to obtain the ultimate eccentric force Pu: 



 

1. Define column parameters such as eccentricity value e, material (/0′, 301 , /2,
��, 4
��) and geometrical 

properties (b, h, A'FRP, AFRP), and a tolerance ϵ for the calculation stop condition. 

2. Specify the failure mode of either concrete crushing or FRP rupture. 

3. Specify an initial position of the neutral axis cn (which can be negative). 

4. Calculate the strains in all concrete divisions and FRP bars and their corresponding stresses. 

5. Thus, construct the following governing nonlinear function f: 

 / = D 72 − E2 = D ∑ :G.GHGI6 − ∑ :G.GJGHGI6  Eq. (4). 

where ϭk is the stress applied on a specific area Ak (either concrete slice or FRP bar) whose centre is located at 

distance yk from the centre of gravity of the column cross-section. Mu is the Bending moment. 

6. The Newton-Raphson algorithm was used to update the unknown value of cn involved in Eq. 4. 

7. Repeat steps 4 to 6 until convergence is achieved (i.e., absolute value of function f < ϵ), and the final value of cn 

is obtained. 

8. Check whether the specified failure mode, in step 2, is correct. Otherwise, repeat the analysis with the other 

failure mode. 

9. Calculate the final ultimate load Pu according to Eq. 5: 

 72 = ∑ :G.GHGI6  Eq. (5). 

The relevance of such a mechanical model is a crucial factor to be used for reliability analysis and should be checked 

by comparison with actual results. Thus, the accuracy of the sectional analysis algorithm in determining the eccentric 

ultimate capacity Pu has been verified using an experimental data set of seven specimens collected from [13, 37]. All 

specimens were concrete columns reinforced with FRP bars. Table 1 presents the geometrical and material properties 

of the collected specimens. The final column of the table provides the ratio (λ) between the experimental eccentric 

ultimate load Pu,exp and theoretical ultimate load Pu,th. According to the statistics (mean and standard deviation) of the 

ratio λ, it can be concluded that the theoretical model used can accurately predict the ultimate eccentric load of 

concrete columns reinforced with FRP bars. This ability to predict the ultimate eccentric load of concrete columns 

reinforced with FRP was also confirmed in other previous studies (e.g., [21, 38]), whereas the required ultimate load 

was found to be accurately predicted. 

Calibration is performed over wide ranges of structural classes that are extracted from full combinations between 

ranges of eight design parameters including geometrical, material and loading characteristics: longitudinal FRP actual 

reinforcement ratio ρFRP, load eccentricity distance to column height ratio e/h, concrete compressive strength f'c, live 

load LL to dead load ratio DL, column height h to width b ratio (called also aspect ratio, R=h/b), amount of FRP in 



 

compression zone to FRP in tensile zone ratio α, failure mode (concrete crushing or FRP rupture) and FRP grade 

(FRP tensile strength fu,FRP and FRP modulus EFRP). 



 

 

specimen 
b 

(mm) 
h 

(mm) 
cover 
(mm) 

e 
(mm) 

fc 
(MPa) 

No of 
bars 

bar size 
(mm) 

fFRP 
(MPa) 

EFRP 
(GPa) 

Pu,exp 

(kN) 
Pu,th 

(kN) 
KL = 72,MNO72,PQ  

R-e10 [13] 150 150 20 15 35 6 16 629 38.7 693 645 1.07 
R-e20 [13] 150 150 20 30 35 6 16 629 38.7 578 491 1.17 
R-e30 [13] 150 150 20 45 35 6 16 629 38.7 354 366 0.97 
Ge80 [37] 400 400 35 80 71 6 19 1236 62.7 5100 5182 0.98 

Ge120 [37] 400 400 35 120 71 6 19 1236 62.7 3621 3569 1.02 
Ge160 [37] 400 400 35 160 71 6 19 1236 62.7 2457 2356 1.04 
Ge240 [37] 400 400 35 240 71 6 19 1236 62.7 1367 1301 1.05 
                     mean value of γm: 1.04 
           standard deviation of γm: 0.07 

Pu,exp and Pu,th are the experimental and theoretical eccentric ultimate loads, respectively. 

Table 1: Geometrical and material properties of the experimental data set. 

 
 
2.2. Structural Reliability aspects 

The ultimate capacity of concrete columns reinforced with FRP bars can be presented in terms of the ultimate limit 

state G as follows: 

 R9S< = KLT − U = KL729V6, V=, … VH< − 97XY + 7YY< Eq. (6). 

where γm is the model error, which reflects the uncertainty in the numerical procedure described in the previous 

section. R is the strength of the column, which corresponds to the ultimate eccentric load Pu. Such a load is a function 

of a vector of strength random variables x={x1, x2 …xN}T, where the components xi correspond to strength design 

parameters such as b, h, fu,FRP,… S is the applied eccentric axial forces, including dead load PDL and live load PLL. 

Structural reliability is expressed in terms of reliability index β, which is to be estimated in the standard Gaussian space 

[39] and is directly related to failure probability Pf (probability that function G(x) is negative), through relationship Pf = 

Φ(-β), where Φ is the standard normal distribution. Therefore, the limit state G(x), expressed in the physical space, 

must be represented in the standard Gaussian space H(u). u represents a vector of standard normal variables {u1, u2, 

u3 …un}T that corresponds to the x-vector. Principles of isoprobabilistic transformation T were used to obtain the 

function between x and u so that u=T(x) → H(u)=G(T-1(u)). The first order reliability method (FORM) was used to 

evaluate the reliability index β, which can be evaluated by solving the following constrained minimization problem:

 

 

 5 = minimizeB∑ ^_=H_I6 under the constraint i9j< ≤ zero  Eq. (7). 

The minimization problem given in Eq. 7 can be solved in an iterative procedure using the Hasofer–Lind–Rackwitz–

Fiessler (HL–RF) procedure described in [39]. In this context, within the calculations of the FORM algorithm, the 

gradients of the limit state function {∇H(ui)} can be determined and normalized with respect to its norm ||∇H(u)||, 

resulting in the sensitivity factor αi of the reliability index with respect to the variable i: 

 lm_n = o p"p2qr = l∇s92∗<n‖∇s92<‖ Eq. (8). 



 

where u* is a vector of random variables presented in the standard normal space at the most likely design point. 

Although the FROM method provides a full analytical solution of the problem, the FROM method approximates the 

actual limit state relationship given by Eq. 6 by a linear relationship at u* [39]. Such an approximation needs to be 

verified via another trusted reliability method, as will be presented later. 

For a certain random variable, the sensitivity factor αi has two main advantages. First, αi shows the contribution of its 

corresponding random variable to the reliability index. Second, the sensitivity factor sign of the variable under 

consideration reflects whether that variable positively or negatively affects the safety of the structure. Due to the high 

nonlinearity in the structural modelling, it was found to be difficult to express, directly, the required partial derivatives of 

the limit state function H(u) with respect to each random variable ui. Furthermore, numerical differentiation leads to a 

potential oscillation of the numerical procedures in the vicinity of the most likely design point [40]. Thus, full analytical 

forms of the derivatives of the function H(u) are essential requirements. Therefore, the limit state H(u) was 

approximated using the quadratic response surface RS, which can be expressed as: 

 i9^< = vw + ∑ v_^_H_I6 + ∑ v__^_=H_I6 =Uvx Eq. (9). 

where θ is the unknown coefficient vector, θ = [θo θ1, θ2 … θn, θ11, θ22, … θnn]T, n is the number of variables and U is 

vector of basis polynomial functions U = [1, u1, u2..un, ^6=, ^==, ^_= … ^H= ]T. To obtain the coefficient vector θ, a dataset 

consisting of m=2n+1 u-vectors is constructed around a reference point u* and their corresponding U m-vectors. The 

constructed dataset consists of two samples on each axis of the random variables (^_ = ^_∗ ± z, where r is an arbitrary 

scalar [41]). Accordingly, the vector of ultimate loads is obtained using the structural model described in the previous 

section. Defining a matrix V as [U1, U2… Um] T,. the vector θ can be calculated on the basis of minimizing the error 

between exact and approximated values in the constructed dataset. The conventional least squares method (LS) can 

be used to minimize such errors [42, 43], and the moving least squares MLS method can be used to provide a better 

approximation of the response function H(U). MLS is a weighted LS method that involves weight functions W(U) that 

depend on the approximation position. The MLS can be expressed as: 

 E{U = ∑ |i| ^} 6, ^} =, ^} _ … ^} H~ − vw − ∑ v_ ^} _H_I6 − ∑ v__ ^} __=H_I6 ~= =L}I6 9i9j< − jv<x�9j<9i9j< − jv< Eq. (10). 

Hence, the estimate of θ can be expressed as 

 v = ��x  ���6�9j<��x i9�<� Eq. (11). 

where W(U) is a diagonal matrix and can be defined as 

 �9j< = ��6 00 �} … 0… 0⋮  ⋮0  0 ⋱ ⋮… �L
� Eq. (12). 



 

where wj is the product of two weight functions and can be defined as follows [42]: 

 �} = DV� (− s9��<�s9� ∗<s9��< - . DV� (− X��= - Eq. (13). 

where H(Uj) and H(U*) are the limit state functions at the jth point ju and reference point u*, respectively. Dj is the 

distance between the jth point ju and reference point u*. Eventually, the required response H(U) or its derivatives with 

respect to a certain random variable ∂H/∂ui can be obtained easily in a full analytical form given in Eq. 9. Herein, the 

most likely design point defined in the FORM algorithm was considered the reference point. Figure 2 shows the flow 

chart of FORM based on RS. 

 

Figure 2. Summarized flow chart of FORM based on RS procedure. 

 

Two main approximations are inherited in FORM-RS. First, the FORM algorithm is an approximate estimate of the 

reliability index and should be controlled with a simulation technique. Second, the RS method is an approximation of 

the ultimate limit state function H(u). Therefore, FORM-RS should be verified using the structural reliability simulation 

method. From the other point of view, the use of crude Monte Carlo (MC) simulation is highly time consuming, 

especially in the case of a high number of random variables. Based on knowledge of the design point u*, obtained 

using FORM-RS, a Monte Carlo-based importance sampling (MC-IS) simulation technique was used to validate the 

results of FORM-RS. To eliminate the approximation inherent in the RS method, the required structural responses for 
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the MC-IS technique were obtained directly using the structural model described in the previous section. ns-vectors of 

u are generated in the standard Gaussian space. Accordingly, the corresponding limit state function H(u) is evaluated 

based on the exact structural response given in the previous section. Hence, the estimate of the probability of failure 

can be expressed as: 

 �$ = 6H� ∑ �$H�_I6 DV� ?−^∗x^_ − "�= @ Eq. (14). 

where If is indicator failure (If=1 if H(u)<0, otherwise If=0). β is the reliability index obtained using FORM-RS. 

 

3. Calibration procedure: 

Concerning the design of FRP-reinforced concrete members under a pure bending moment, ACI-440 [9] provides the 

strength reduction factor φ given in Eq. 1 as a function of the FRP reinforcement ratio ρFRP. Thus, the main scope of the 

present study is to optimize the strength reduction factor φ given in Eq. 1 and to assess its variation with respect to 

various design parameters. The general design form of ACI [9, 19] codes for reinforced concrete members can be 

expressed as a combination of actions as given in the following equation: 

 φ72 = K�7XY − K�7YY Eq. (15). 

where γG and γQ are dead and live load partial safety factors, which were taken to be equal to 1.2 and 1.6, respectively. 

Pu is the ultimate eccentric load obtained using Eq. 4-5. PDL and PLL are the applied eccentric dead and live loads, 

respectively. 

As already mentioned, to ensure the generalization of these calibrated strength reduction factors to a wide range of 

situations, different combinations of design parameters (load eccentricity, aspect ratio of the concrete section, 

reinforcement ratio, live to dead load ratio, strength of concrete, grade of FRP bars) were considered. Two main 

reinforcement FRP configurations were considered. The first is the Top-Bottom configuration, where the FRP main 

reinforcement is located at the tensioned side with area AFRP,k, while a secondary FRP reinforcement is located at the 

compressed side with area A'FRP,k, (or expressed as a ratio α =A’FRP,k/AFRP,k), as shown in Figure 3a. This configuration 

is more convenient for columns with high eccentric loads. The second configuration is the uniform configuration with 

FRP reinforcement uniformly distributed around the perimeter of the concrete section, which is more suitable for 

columns with small eccentric loads, as shown in Figure 3b. 
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Figure 3. Top-Bottom and Uniform FRP reinforcement configuration. 

Table 2 presents the range of the characteristic values of each design parameter. According to this table, the total 

possible number of combinations is 64800 and 34560 classes of structures for the Top-Bottom and Uniform FRP 

reinforcement configurations, respectively. The maximum spacing between longitudinal FRP bars in the case of the 

uniform configuration is taken to be equal to 150 mm, as recommended by ACI-318 [19], while the effect of side bars in 

the Top-Bottom configuration required to resist secondary effects (e.g., shrinkage of concrete) is neglected in the 

calculation of the ultimate eccentric load. Referring to Table 2, ρFRP/ρFRP,b values are chosen such that they cover all 

the possible categories provided by Eq. 1 proposed by the ACI-440 committee [9]. Nevertheless, ρFRP,b is evaluated so 

that it is related not only to material properties as for FRP RC beams (see Eq. 3b) but also, it is related to loading 

properties. 

 
Parameter Values (units) 
Column width bk 200, 350 and 500 (mm) 
FRP reinforcement ratio ρFRP=AFRP,k/bkdk 0.5, 1, 1.5, 2 and 2.5 times ρFRP,b for Top-Bottom configuration. 

Ranges from 0.01 to 0.08 with an increment 0.01 for Uniform 
configuration. 

Concrete compressive strength f’ck 20, 30, 40, 50 and 60 (MPa) 
Cross section aspect ratio R=hk/bk  1, 2, 3 and 4. 
Eccentricity ratio e/hk 0.1, 0.3, 0.5, 0.7, 1 and 1.5 for Top-Bottom configuration. 

0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 for uniform configuration 
FRP Compression renforcement ratio α=A’FRP,k/AFRP,k 0.2, 0.6 and 1 applied only in case of Top-Bottom, configuration 

FRP ultimate strength fFRP,k   500, 1200 and 2000 for FRP grades I, II & III, respectively (MPa) 
FRP modulus of elasticity EFRP,k 35, 70, 120 for FRP grades I, II & III, respectively (GPa) 
Live load to Dead load ratio PLL,k/PDL,k 0.5, 1.5, 2.5 and 4.0 
The subscript k refers to the characteristic value of the variables. dk=hk-c. where c (=25 mm) is the concrete cover. The properties of 
FRP grades I, II and III approximately represent the typical properties of glass, aramid and carbon of FRP bars, respectively, 
considered in the ACI-440 guide. 

Table 2: Values of characteristic design parameters. 
 
ACI-440.1R-15 [9], FIB [10], and ISIS Canada [11] stated, based on experimental studies, that the strength and 

modulus of FRP bars under compression are lower than the strength and modulus of FRP bars under tension actions. 

ACI-440 reduces the compressive strength and compression modulus of FRP bars depending on their type: glass 



 

(GFRP) or carbon (CFRP) bars. ACI 440 reports that the compressive strength of FRP bars is approximately 55 and 

78% of their tensile strength for GFRP and CFRP bars, respectively. Additionally, ACI-440 recommends compression 

moduli of 80 and 85% of the tensile modulus for GFRP and CFRP bars, respectively. The FIB guide [10] accredits the 

same recommendations for the compression modulus of FRP bars. Nevertheless, ISIS [11] considers that the 

compression modulus ranges between 77 and 97% of the tensile modulus. In addition, ISIS proposes that the tensile 

strength of FRP bars is strongly related to the fibre-volume ratio. In a recent experimental study, Khorramian and 

Sadeghian [44] demonstrated the importance of performing compression tests to estimate the compression strength 

rather than relating the compression strength to its tensile strength due to the wide variation in the FRP bar 

compressive strength. The study proposes a compressive strength almost equal to the tensile modulus for GFRP bars. 

Herein, as ACI-440 is the matter of the study, it is proposed to follow all ACI-440 recommendations for the mechanical 

properties of FRP bars under compression. Therefore, compressive strength and compression modulus were adopted 

using reductions of 0.55 and 0.8, respectively, of their corresponding tensile properties for both GFRP and CFRP bars. 

The choice of the reduction factor (=0.8) that concerns the compression modulus is based on the reported range being 

small (e.g., ≈0.8→0.85 [9]). Hence, for more conservatism, a lower value is considered. Concerning the compressive 

strength, the FRP ultimate compressive strain was specified as 0.55*500/(0.8*35000)=0.01, 

0.55*1200/(0.8*70000)=0.012, and 0.55*2000/(0.8*120000)=0.011 for grades I, II and III, respectively, as reported in 

Table 2. The ultimate compressive strain cannot be reached, as their values are greater than three times the ultimate 

concrete compressive strain (=0.003). 

The calibration procedure considers the randomness of the mechanical model error, loads, geometrical and material 

properties. Table 3 presents the statistical parameters (mean, standard deviation, distribution type) of the random 

variables considered in the reliability analyses. 

Variable Distribution Units Characteristic Mean (Biasa) Stdb (CoVc) Source 

fFRP, Weibull MPa See Table 2 (1+3*CoV) (0.05) [45], [9] 
EFRP Normal GPa See Table 2 (1) (0.05) [45] 
AFRP   Normal mm2 AFRP,k (0.97) (0.015) [45] 

f’c Log-normal MPa See Table 2 

max � $%�&6�6.���w�9$%�& ��.!6�=.���w�
; if fck<=35 

max � $%�&6�6.���w��.�$%�&6�=.���w�
 ;if fck>35 

(0.16) [22,19] 

b Normal mm bk bk+1.5 6.35 [22] 
h Normal mm hk hk+1.5 6.35 [22] 
Dead load PDL Normal kN PDL,n (1.05) (0.1) [20-22] 
Live load PLL Extreme type I kN PLL,n (1) (0.25) [22] 
Model error γm Normal --- 1 1 0.025+0.18e/hk≤0.11   [23] 
aBias; Mean value/nominal value, bStd standard deviation, cCoV; coefficient of variation. 

Table 3: Probabilistic parameters of random variables. 
 



 

 

The calibration procedure aims to determine the value of the strength reduction factor φ that minimizes the function: 

 /9ϕ, 5x< = ∑ �_95_ − 5x<=�_I6  Eq. (16). 

over the N classes of structures considered [25, 46] and where βT is the target reliability index considered in codes. βi, 

wi are reliability index and weight/frequency of a certain class of structure (i) of the considered class of structures. The 

corresponding frequency ωi for each ith class of structure means that ∑ �_�_I6 =unity. Herein, all design situations were 

assumed to have an equal frequency of 1/N, where N is the number of situations in the combination set. All 

mathematical calculations were carried out using MATLAB software [47]. To perform the calibration algorithm, the 

following introductory data should be defined: N-class of structures (depending on the expected ranges of design 

variables), failure modes, design rules (Eq. 15), goal of the code, the target reliability index βT (i.e., according to 

Szerszen and Nowak [24], ACI-318 code βT proposes a target reliability index βT of a value equal to 4.0 for the design 

of RC columns), and set of size M of strength reduction factors (i.e., φ=0.5:0.025:0.9). Consequently, the calibration 

procedure was performed according to the following main steps [25]: 

1. Initiate counter j, which represents the strength reduction factor under consideration. 

2. Select a jth φj of the M values of the strength reduction factor set. 

3. Initiate counter i, which represents the class of structures under consideration. 

4. Choose an ith case of the N class of structures (i.e., a set of [bk, rFRP, f’ck, R, e/hk, α, fFRP,k, EFRP,k, PLL/PDL]i 

according to Table 2). Then, provide the corresponding frequency ωi for each ith class of structure such that 

∑ �_�_I6 =unity. Herein, all design situations were assumed to have an equal frequency of 1/N, where N is the 

number of situations in the combination set. 

5. Deduce from this set the value of Pu using the structural model described by Eq. 4 and Eq. 5. Then, calculate 

the applied working loads PLL or PDL from Eq. 15. 

6. Apply FORM-RS algorithm to Eq. 6 to calculate the reliability index βi considering probability laws presented 

in Table 3. The results of FORM-RS can be verified using the MC-IS procedure using Eq. 14. 

7. Update the value i (i.e., i=i+1), then repeat steps 4 to 6 until counter i reaches N. 

8. Evaluate the penalty function fj(φj) using the least square form given in Eq. 16. 

9. Update the value j (i.e., j=j+1), then repeat steps 2 to 8 until counter j reaches M. 

10. Choose the optimum value of φ that corresponds to the minimum penalty functions. 

 



 

The calibration outlined above is the most widely used calibration algorithm and has been described in many previous 

studies, such as [25, 46]. Although the procedure can be applied in a simple manner and does not require a 

complicated optimization method, the procedure needs a huge number of calculations (i.e., calculations are to be 

performed for all classes of structures and repeated at each value of φ in the assumed range). 

Referring to the previous section, FORM-RS has two main approximations: the first is the linear approximation of the 

limit state function, while the second is the use of the response surface approximation. To determine the accuracy 

results obtained via the FORM-RS method, structural reliability results obtained using FORM-RS were verified with 

MC-IS using two samples of sizes equal to ns=103 and ns=104. Table 4 presents ten reliability results – as sample 

results - arbitrarily chosen cases that cover the extent of the design parameters. The last three columns of the table 

provide the reliability indices obtained using FORM-RS, MC-IS considering ns=103 and MC-IS considering ns=104. The 

proposed FORM-RS algorithm could predict the reliability index accurately, as its results are very close to the results 

obtained using the MC-IS technique. Differences between the FORM-RS and MC-IS methods do not exceed 2.5%, 

which reflects the accuracy of using both the FORM and RS methods regardless of the change in section configuration 

or the value of the design variable. 

Sample 
bk 

mm 
R 

fck 
MPa 

FRP 
Grade 

e/hk 
7YY,G7XY,G 

Reinforcement  

φ 

Reliability index β 
% 

Error configuration FRP amounts FORM-RS 
MC-IS 
ns=103 

MC-IS 
ns=104 

1 200 2 40 I 1.5 0.5 Top-Bottom ρFRP=1.5ρFRP,b α=1.0 0.50 6.80 6.76 6.77 0.44 
2 350 3 50 II 0.3 1.5 Top-Bottom ρFRP=2.5ρFRP,b α=0.2 0.55 4.99 4.95 4.97 0.40 
3 500 4 60 III 1.5 2.5 Top-Bottom ρFRP=2.5ρFRP,b α=1.0 0.60 4.52 4.51 4.51 0.22 
4 200 2 30 I 0.7 1.5 Top-Bottom ρFRP=2.5ρFRP,b α=0.2 0.65 4.48 4.50 4.46 0.45 
5 350 1 20 II 0.5 0.5 Top-Bottom ρFRP=1.0ρFRP,b α=0.6 0.75 4.03 3.94 3.94 2.28 
6 350 4 30 II 0.3 1.5 Uniform ρFRP=0.05 0.50 5.28 5.23 5.26 0.38 
7 500 1 20 III 0.1 0.5 Uniform ρFRP=0.08 0.55 4.99 4.90 4.91 1.62 
8 500 2 40 III 0.25 0.5 Uniform ρFRP=0.01 0.60 5.09 5.00 5.01 1.60 
9 200 3 40 I 0.25 2.5 Uniform ρFRP=0.04 0.65 4.14 4.10 4.11 0.73 

10 350 3 50 II 0.15 2.5 Uniform ρFRP=0.06 0.75 3.80 3.80 3.76 1.06 

where ns is the number of importance sampling simulations. % Error=100| βFORM-RS- βMC-IS |/βMC-IS 

Table 4: Verification of FORM-RS results with MC-IS simulation. 
 
4. Results and discussion 

Generally, the value of the target reliability index βT is specified by design codes depending on the consequences and 

costs of failure. For the flexural limit state, ACI-440 [9] recommends a target reliability index (βT) ranging from 3.5 to 4, 

which was also previously proposed by Szerszen and Nowak [24] for designing flexural members under compression 

control. In the present study, βT is considered equal to 4 to ensure a safer design. The reliability indices for all classes 

of structures were evaluated. Then, the penalty functions f(φ) were calculated and plotted in Figures 4 and 5 for the 

Top-Bottom and Uniform FRP reinforcement configurations, respectively. The idea of creating these figures is to 

observe and quantify the effect of certain design variables on the factor φ∗ that minimizes the function f(φ) given by Eq. 

16. The curves shown in Figures 4 and 5 are characterized by a decrease in f(φ) as φ increases until f(φ) reaches its 



 

minimum at φ*; thereafter f(φ) increases again. Values of φ  before φ* correspond to β>βT resulting in underdesign, 

while values of φ  after φ* correspond to β<βT resulting in overdesign. Generally, underdesign is penalized/desirable 

more than overdesign. According to the figures, the optimum strength factors lie in the range φ=0.65→0.75, which is 

higher than the range given for flexural design provided by Eq. 1 (φ=0.55→0.65), due to the nature of failure in each 

problem. Moreover, βT required for flexural design is equal to 3.5, which is lower than βT required for column design 

[24]. In addition, the variations in PLL/PDL (in Figures 4e and 5f) and e/h (in Figures 4b and 5b) are observed to cause 

the most notable changes in the minimal value of the penalty function f(φ) and their corresponding reduction factors. 

For the Top-Bottom configuration, minima of the function f(φ) can be reached for φ∗ values ranging between 0.8→0.65 

and 0.675→0.75 for PLL/PDL and e/h ranging between 0.5→4 and 0.1→1.5, respectively. Similarly, for the uniform 

configuration, minima of the function f(φ) can be reached for φ∗ values ranging between 0.75→0.65 and 0.65→0.7 for 

PLL/PDL and e/h ranging, respectively, between 0.5→4 and 0.05→0.3, respectively. 

Accordingly, the FRP reinforcement Top-Bottom configuration requires a slightly higher reduction factor than the 

uniform configuration because the Top-Bottom configuration relies on the mode of failure, i.e., the FRP rupture failure 

mode requires values of φ (=0.65) lower than the concrete crushing failure mode (=0.725), as shown in Figure 4g. 

Regarding the fc parameter (in Figures 4d and 5c), a slight variation in factor φ can be observed in both considered 

configurations. In the same concern as all other design parameters, no significant change in φ can be noted as their 

penalty functions f(φ) reach their minimum values at a strength factor φ equal to 0.725 and 0.7 for the Top-Bottom and 

Uniform FRP reinforcement configurations, respectively. 

Figures 4h and 5g involve global curves, named “all cases”, which express the function f(φ) for all classes of structures 

regardless of the failure mode. f(φ) reaches the minimum values at φ∗ equals to 0.725 and 0.675 for the Top-Bottom 

and Uniform configurations, respectively. However, considering these values of φ∗ results in 65.2 and 53.8% of 

considered classes having β<βT (overdesign) for Top-Bottom and Uniform configurations, respectively. Thus, there is a 

need to consider a strength factor lower than the strength factors obtained from Figures 4 and 5, as presented in the 

later paragraphs. 

Referring to the Top-Bottom FRP reinforcement configuration where either FRP rupture or concrete crushing failure 

modes can take place, it is important to quantify to what extent the ACI design rules agree with the concept of design 

points (u*) in predicting the same failure mode. Hence, the relevance of φ to the failure mode is avoided. The 

inconsistency in the failure mode between the ACI design rules and the concept of the design point takes place due to 

changes in the material and/or geometrical properties in the two design procedures. Figure 6 shows the % class of 



 

structures that failed by FRP rupture according to ACI rules and those failed by FRP rupture according to both ACI 

rules and the concept of the design point (u*) obtained using the FORM-RS algorithm. A large gap between the two 

curves at a small reduction factor φ can be observed. This gap decreases as φ increases and totally vanishes at φ = 

0.9. In addition, the number of situations that failed due to FRP rupture does not exceed 3.5% of the total number of 

situations (=64800), whereas the dominant failure mode in most design classes of structures is concrete crushing. 

 

Figure 4: Evaluation of penalty function versus strength reduction factor φ (Top-Bottom configuration). 
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Figure 5: Evaluation of penalty function versus strength reduction factor φ (uniform configuration). 
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Figure 6. Class of structure number failed by FRP rupture (Top-Bottom reinforcement configuration). 
 

 
The necessity to enhance the ACI approach is highlighted, and a way to estimate the strength reduction factor for FRP-

reinforced RC columns is proposed. Providing a strength reduction factor φ to the designer is a quite difficult decision 

and requires more analyses of the data provided obtained using a calibration algorithm. The proposed calibration 

procedure enables the evaluation of the reliability index for all classes of structures at different strength factors. 

Minimum, maximum, and average values of reliability indices were recorded at each considered strength factor during 

the calibration procedure. Figures 7 and 8 show plots of these values versus their corresponding strength reduction 

factors φ for the Top-Bottom and Uniform FRP reinforcement configurations, respectively. Such plots could enable 

information about minimum (worst safety level) and maximum reliability index values that will be reached after design. 

According to the figures, a strength reduction factor of approximately ≈0.6 can be suggested for designers to provide a 

reliability index of β≥4.0. This suggested strength reduction value (φ=0.6) is close to the average value given by the 

ACI-440 rules in Eq. 1 regardless of the ρFRP/ρFRP,b ratio, which is valid for pure flexural design, as reported in the ACI-

440 guide [9]. Moreover, only 1403 (2,2%) and 1116 (3,2%) classes of structures are found to have a reliability index 

lower than βT for the Top-Bottom and Uniform configurations, respectively, when φ=0.6. Nevertheless, if the global 

minima of the function f for all cases are considered, strength factors φ of 0.725 and 0.7 for Top-Bottom and Uniform 

cases, respectively, can be proposed, as shown in Figures 4i and 5g. For these values of reduction factors, 42308 

(65.3%) and 25299 (73,2%) classes of structures are recorded to have reliability indices lower than βT for the Top-

Bottom and Uniform configurations, respectively. However, φ=0.6 could be recommended to maintain more than 95% 

of situations that match the requirements of the ACI code (β≥βT) for the design of RC columns. 

Referring to the Top-Bottom configuration, FRP rupture and concrete crushing failure modes could possibly occur. 

Figures 7a and 7b show that concrete crushing provides higher reliability indices if the same strength reduction factor 

is considered because tension failure relies on the variation in both concrete and FRP materials, while compression 

strength reduction factor 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
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failure relies only on the variation in concrete material. This context matches the ACI-440 recommendation, as it 

considers the concrete crushing failure mode for FRP-RC members under flexural loading, which is marginally more 

desirable than FRP rupture. From this point of view, compression failure can be recommended for FRP-RC columns 

because it provides a more desirable and safer design than tension failure. 

 

Figure 7. Minimum, average, and maximum reliability index recorded versus strength reduction factor φ (Top-
Bottom configuration). 

 

Figure 8. Minimum, average, and maximum reliability index recorded versus strength reduction factor φ 
(Uniform configuration). 

 

The proposed calibration algorithm can be considered for any other target reliability index (βT). However, Figures 7 and 

8 simplify this step by choosing the target reliability index and evaluating the corresponding strength reduction factor 

(ϕ). Considering the minimum values of the reliability index in the figures could provide a conservative value of ϕ for 

design purposes and ensure a level of safety greater than the target value, e.g., considering βT=3.5. Thus, a strength 

factor of ϕ=0.69 is required for uniform configuration. 

It is now obvious from the above discussion that using a fixed value of the strength reduction factor leads to 

uneconomic design [11]. As previously observed, (PLL/PDL) and (e/h) are the most important design parameters that 

could significantly affect the strength factor. Thus, proposing a strength factor related to these two design parameters 
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results in a more economic design than using a fixed value. Consequently, the penalty function f was evaluated with 

respect to each combination of each value of the PLL/PDL and e/h parameters reported in Table 2. The minimum values 

of f(φ) and their corresponding φ with respect to each combination of (PLL/PDL) and (e/h) were calculated. Thus, the 

values of φ were fitted against PLL/PDL and e/h in a quadratic response polynomial function. The fitted functions are as 

presented in Eq. 17a and 17b for the Top-Bottom and Uniform configurations, respectively, 

 8 = 0.7941 − 0.1083 ?������@ + 0.0152 ?������@= + 0.1614 ?MQ@ − 0.0846 ?MQ@=
 Eq. (17a). 

 8 = 0.7701 − 0.068 ?������@ + 0.2223 ?������@= + 0.0086 ?MQ@ + 0.9821 ?MQ@=
 Eq. (17b). 

It is important to evaluate the levels of safety provided by these equations with respect to the reduction factor of a fixed 

value (i.e., φ=0.6). Figure 9 shows a comparison, considering all 64800 and 34560 classes of structures for Top-Bottom 

and Uniform FRP reinforcement configurations, between the minimal/maximal values of reliability indices β calculated 

either with the strength factor φ  values obtained using Eq. 17 or with a fixed value of φ equal to 0.6. In addition, Eq. 1, 

which follows the ACI-440 design guide for FRP RC beams, has been applied to the considered classes of structures. 

The effectiveness of the proposed values of ϕ can be achieved by decreasing the % number of cases having β<βT and 

decreasing the gap between the maximum recorded β indices to provide more economic design. According to Figure 

9a (case of the Top-Bottom configuration), Eq. 17a significantly decreases the gap between the maximum and 

minimum recorded reliability indices. Therefore, a more economic design and more uniform reliability index are 

provided. In addition, the maximum reliability index approaches the target value βT, which means that more economic 

design is achieved. However, 44% of structural classes tend to provide β lower than βT, which illustrates that Eq. 17a 

may provide a more economic but less safe cross-section than using a fixed factor φ=0.6. Applying a 10% reduction of 

the values of φ  given using Eq. 17a could improve the safety considerations since only 4.76% of structural classes will 

now have a β lower than βT. Unlike the Top-Bottom configuration, the Uniform configuration (Figure 9b) with a fixed 

strength factor provides a safer and more economical cost than the cost given by Eq. 17b. Furthermore, Eq. 1 

proposed by the ACI-440 guide results in safe but uneconomic design for the Top-Bottom configuration, as it provides 

higher values of safety levels (β). Moreover, the use of Eq. 1 in designing the uniform reinforcing configuration results 

in an unsafe design for more than 30% of cases. which can reflect the need for lower values of the strength reduction 

factor for design purposes for FRP-RC columns with Uniform configurations. 

Finally, it can be recommended that a strength reduction factor φ taken at 90% of the varying values given by Eq. 17a 

should be used for optimal design for the Top-Bottom configuration. In contrast, a fixed value of φ at 0.6 could be used 



 

for Uniform configurations. 

Figure 9. Assessment of varied versus fixed strength reduction factor. 
 
Referring to the basic aspects of the structural reliability section described above, the first-order reliability method 

(FORM) can be used for sensitivity analysis (Eq. 8), which basically aims to differentiate between the considered 

random variables that could be treated as random or deterministic variables. Hence, the sensitivity analysis also aims 

to decrease the dimensions of the reliability problems to address. Figures 10 and 11 provide the range of sensitivity 

factor αi for each random variable i considered within the reliability analysis for both reinforcement configurations. It 

can be emphasized that the concrete compressive strength fc, section dimensions (h and b), model error γm, and loads 

are the variables of first importance and could significantly affect the results of the reliability analysis in both considered 

failure modes. The importance of the remaining variables depends on the failure mode of the columns; e.g., the area of 

the FRP bars AFRP and ultimate strength of the FRP bars fFRP can be treated as deterministic variables when the 

concrete crushing failure mode occurs, while the column b width, concrete compressive strength f’c and modulus of the 

FRP bars EFRP can be treated as deterministic variables when the rupture failure mode occurs. 

 
Figure 10. Maximum and minimum values of sensitivity factors αi of random variables considered (Top-Bottom 

configuration). 
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Figure 11. Maximum and minimum values of sensitivity factors αi of random variables considered (Uniform 

configuration). 

 

Although FRP ultimate compressive strain will never be reached in concrete columns reinforced with FRP bars as it is 

controlled by the concrete compressive strain (=0.003), the ACI-440.1R-15 [9] design guide does not recommend 

relying on FRP bars that carry compressive stresses. Additionally, FIB [10] reports that FRP (or just glass-FRP) bars 

under compression loads should be ignored unless otherwise stated by experimental studies. Recently, many 

experimental studies, such as [37, 38, 48-50] have been carried out to study the behaviour of concrete columns 

reinforced with FRP bars under eccentric compressive forces. All these studies confirm the ability of concrete columns 

reinforced with FRP bars to efficiently support axial compressive loads with small and high eccentricities. Nevertheless, 

using glass-FRP bars reduces the column capacity by 13% when compared to an equivalent amount of conventional 

steel bars, as reported in [49]. However, FRP bars are still more economical than steel bars when a long-life cycle is 

required, especially in highly corrosive/coastal zones. 

To conclude, our article, a working example of the design is proposed to assess the efficiency of the calibrated strength 

factor in producing FRP-reinforced RC columns with β≥βT. A rectangular concrete column with dimensions equal to 

b=350 mm and h=800 mm is considered. Concrete cover was taken equal to c=25 mm. The results are plotted in 

Figure 12 in the form of an interaction diagram normalized with respect to the cross-sectional dimension. Different FRP 

reinforcement ratios (ρ=1,2,3,4 and 5 where ρFRP=ρ/100) were considered. Two different concrete compressive 

strengths (fc=30 MPa and fc=50 MPa) were considered. Two different grades were used for FRP bars: Grade-I (i.e., 

EFRP=38.7GPa and fu,FRP=629 MPa) and Grade-II (i.e., EFRP=62.7GPa and fu,FRP=1236 MPa). As there are no given 

rules for columns reinforced with FRP bars, strengths φPu and φMu were obtained using ACI-318 recommendations and 

considering the elastic behaviour of FRP bars until failure. A strength reduction factor of 0.6 was used as proposed in 

the present study. During the analysis, concrete crushing was observed to be the most frequent failure mode. The FRP 
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grade has a significant effect only on the cross-section normalized strengths under high eccentricities. However, 

concrete strength is the most dominant material factor that could greatly affect the column strengths for both small and 

high eccentricities. Moreover, the reliability index of each of the analysed cases was recorded and found to be in the 

range of 4.51→5.13 (i.e., greater than the ACI target value (βT=4). 

 
Figure 12. Interaction diagram of concrete sections reinforced with FRP bars (Top-Bottom configuration). 

 
5. Conclusions 

Because ACI rules are not addressed for the design of short FRP RC columns, the present study focuses extensively 

on the probabilistic calibration of the strength reduction factor φ, included in the ACI-440 guide, throughout an 

optimization algorithm. With the objective of providing generalized rules covering most structural classes, 

approximately 100 000 classes have been considered with two main reinforcement configurations (Top-Bottom and 

Uniform reinforcement configurations preferred for high- and small-load eccentricities, respectively). In the first step, all 

design variables (geometrical, loadings, materials) were considered random variables. A fast hybrid first-order reliability 
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method-based response surface approximation (FORM-RS) and Monte Carlo-based importance sampling (MC-IS) 

were used to perform the reliability analysis. 

Based on this analysis, the first following conclusions can be drawn. 

� The concrete crushing failure mode is the most dominant, while FRP rupture occurs in very few design 

situations and does not exceed 3.5% of the total design situations. 

� The strength reduction factor depends mainly on the live-to-dead load ratio and load eccentricity, unlike the 

FRP strength reduction presented in ACI-440, for the flexural limit state, given by Eq.1. 

� A quadratic function of the live-to-dead load ratio and load eccentricity is a more accurate way to specify more 

accurate values of the strength reduction factor φ. This approach with an adjustable value of the reduction 

factor has proven to be more appropriate for Top-Bottom configurations used in the case of high eccentricity. 

However, it can be recommended to use a fixed value of φ=0.6 for Uniform configurations (case of small 

eccentricity) to ensure a minimum reliability equal to the target ACI value (βT=4.0). 

� Compression failure can be recommended for FRP-RC columns with Top-Bottom reinforcement configurations, 

which correspond to high eccentricity values, as FRP-RC columns exhibit a safer design than tension failure 

columns. 

� The strength reduction factor proposed in ACI-440 for designing FRP-RC beams provides an unfeasible 

design, especially FRP-RC columns with uniform configuration reinforcement. 

 

6. Perspectives  

The results obtained in the present study can be considered as an initial guess of the strength reduction factor and the 

analysis can be extended to include any other expected ranges of the design parameters. In addition, the calibration 

algorithm developed in the present study can be extended over other code formats such as Euro or Canadian codes. 

Furthermore, the study can also be used to include other loading configurations (e.g. biaxial loading) and/or slender 

FRP-bars RC columns. Moreover, other secondary effects can be included in the analysis such as confinement effect, 

bulking of FRP bars, etc. 

 

Data availability statements 

Some or all data, models, or code that support the findings of this study are available from the corresponding author 

upon reasonable request (MATLAB code used for reliability assessment). 
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